
To them that already understand, more knowledge will be
freely given. To the rest of us dolts, it's a struggle.

Jared M. Diamond
The Ethnobiologist 's Dilemma,

Natural History (June 1989)

COMMUNICATIONS OF THE ?&X USERS GROUP

EDITOR BARBARA BEETON

VOLUME 10, NUMBER 2 JULY 1989
PROVIDENCE RHODE ISLAND U.S.A.

TUGboat TUGboat Editorial Committee

During 1989, the communications of the TJ$ Users
Group will be published in four issues. One issue

will consist primarily of the Proceedings of the
Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are for the most part
reproduced with minimal editing, and any questions
regarding content or accuracy should be directed
to the authors, with an information copy to the
Editor.

Submitting Items for Publication

The deadline for submitting items for Vol. 10, No. 3,
is September 11, 1989; the issue will be mailed in
November. (Deadlines for future issues are listed in
the Calendar, page 285.)

Manuscripts should be submitted to a member
of the TUGboat Editorial Committee. Articles of
general interest, those not covered by any of the
editorial departments listed, and all items submitted
on magnetic media or as camera-ready copy should
be addressed to the Editor, in care of the TUG
office.

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either Plain 7J$
or IPQX, will be sent on request; please specify
which is preferred. For instructions, write or call
Karen Butler at the TUG office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboatOMath. AMS . corn on the Internet.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists, write
or call Charlotte Laurendeau at the TUG office.

Barbara Beeton, Editor
Ron Whitney, Production Assistant
Helmut Jiirgensen, Associate Editor, Software
Laurie Mann, Associate Editor, Training Issues
Georgia K.M. Tobin, Associate Editor, Font Forum
Don Hosek, Associate Editor, Output Devices
Jackie Darnrau, Associate Editor, D m
Alan Hoenig and Mitch Pfeffer, Associate Editors,

Typesetting on Personal Computers

See page 145 for addresses.

Other TUG Publications

TUG publishes the series wniques , in which have
appeared user manuals for macro packages and
7J$-related software, as well as the Proceedings
of the 1987 and 1988 Annual Meetings. Other
publications on W n i c a l subjects also appear from
time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TJ$ community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such

items or know of any that you would like considered
for publication, contact Karen Butler at the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
A&TE)E is a trademark of the American Mathe-

matical Society.
APS p5 is a trademark of Autologic, Inc.
METAFONT is a trademark of Addison-Wesley Inc.
PC QX is a registered trademark of Personal TJ$,

Inc.
Postscript is a trademark of Adobe Systems, Inc.
7&X is a trademark of the American Mathematical

Society.
UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 10 (1989), No. 2

Addresses

Note: Unless otherwise specified,
network addresses (shown in
typewriter font) are on the Internet.

Users Group Office
P. 0. Box 9506

Providence, RI 02940-9506

or
653 North Main Street
Providence, RI 02904

401-751-7760
TUGQMath . AMS . com

Peter Abbott
Computing Service

Aston University
Aston Triangle
Birmingham B4 7ET, England
21 359 5492

pabbottQnsfnet-relay.ac.uk

Janet: abbottpQuk.ac.aston

Phil Andrews
Pittsburgh Supercomputer Center
Mellon Institute

4400 Fifth Avenue
Pittsburgh, PA 15213

412-268-5006

andrews%cpwscQclipr.psc.edu

Michael Ballantyne
TEXplorators
3701 W. Alabama

Suite 450-273
Houston, TX 77027

Stephan v. Bechtolsheim
2119 Old Oak Drive

W Lafayette, IN 47906

317-463-0162
svbQcs.purdue.edu

Barbara Beeton
American Mathematical Society
P. 0. Box 6248

Providence, RI 02940
401-272-9500
bnbQMath.AMS.com

TUGboatQMath.AMS.com

Karen Butler
l&X Users Group
P. 0 . Box 9506

Providence, RI 02940-9506
401-751-7760
TUGQMath.AMS.com

Lance Carnes
Personal

12 Madrona Avenue

Mill Valley, CA 94941

415-388-8853

S. Bart Childs Regina Girouard

Dept of Computer Science American Mathematical Society
Texas A & M University P. 0. Box 6248
College Station, TX 77843-3112 Providence, RI 02940
409-845-5470 401-272-9500 ~ 2 2 4
bartQcssun.tamu.edu RMGQMath.AMS.com

Bit net: BartoTAMLSR
Raymond E. Goucher

Malcolm Clark TpJ Users Group

Imperial College Computer Centre P. 0 . Box 9506
Exhibition Road Providence, RI 02940-9506
London SW7 2BP, England 401-751-7760

Janet: texlineQuk.ac.ic.cc.vaxa REGQMath.AMS.com

John M. Crawford Dean Guenther

Computing Services Center Computing Service Center
College of Business Washington State University
Ohio State University Pullman, WA 991641220
Columbus, OH 43210 509-335-0411

614292-1741 Bitnet: GuentherQWSWMl
crawford-jQosu-20.ircc.ohio-state.edu

H o ~ e Hamilton
National Center for

Bitnet: CRAW4DQOHSTVMA

Jackie Damrau
Mission Research Corporation
1720 Randolph Road SE
Albuquerque, NM 87106-4245
505-768-7647
damrauQdbitch.unm.edu

Bitnet: damrauQbootes

Michael DeCorte
2300 Naudain St. "H"
Philadelphia, PA 19146

215-546-0497
mrdQsun.soe.Clarkson.edu

Bitnet: mrd@clutx

Allen R. Dyer
13320 Tridelphia Road
Ellicott City, MD 21043

301-243-0008 or 243-7283

Shawn Farrell
Computing Centre
McGill University

805 Sherbrooke St W
Montreal H3A 2K6, QuBbec, Canada

514398-3676
Bitnet: CCSFQMCGILLA

Jim Fox
Academic Computing Center HG-45
University of Washington

3737 Brooklyn Ave NE
Seattle, WA 98105

206-543-4320
foxQuwavm.acs.washington.edu

Bitnet: f ox7632Quwacdc

David Fuchs
1775 Newel1
Palo Alto, CA 94303

415-323-9436

Richard Furuta
Department of Computer Science
University of Maryland

College Park, MD 20742
301-4541461
furuta@mimsy.umd.edu

Atmospheric Research

P. 0. Box 3000
Boulder, CO 80307

303-497-8915
HamiltonQMMM.UCAR.Edu

Brian Hamilton Kelly
School of Electrical Engineering &
Science

Royal Military College of Science

Shrivenham

Swindon SN6 8LA, England

+44 (793) 785252
Janet: rmcs-tex0uk.ac.cranfield

Doug Henderson
Division of Library Automation

Office of the President
University of California

300 Lakeside Drive, Floor 8

Oakland, CA 94612-3550
415-987-0561
Bitnet: dlatexQucbcmsa

Alan Hoenig
17 Bay Avenue
Huntington, NY 11743

516-385-0736

Don Hosek
3916 Elmwood
Stickney, IL 60402

Bitnet: U33297QUICVM

Patrick D. Ion
Mathematical Reviews
416 Fourth Street

P. 0. Box 8604
Ann Arbor, MI 48107
313-996-5273

ionQMath.AMS.com

Helmut Jiirgensen
Deparment of Computer Science
University of Western Ontario

London N6A 5B7, Ontario, Canada
519-661-3560
Bitnet: helmutQuwovax

UUCP: helmutQjulian

TUGboat, Volume 10 (1989), No. 2

David Kellerman
Northlake Software

812 SW Washington
Portland, OR 97205

503-228-3383
uucp: imagen! negami ! davek

Donald E. Knuth
Department of Computer Science

Stanford University

Stanford, CA 94305
DEK(DSail.Stanford.Edu

David H. Kratzer
Los Alamos National Laboratory
P. 0 . Box 1663, C-10 MS B296

Los Alamos, NM 87545
(505) 667-2864
dhkcPlanl . gov

Joachim Lammarsch
Research Center of the University
Heidelberg

Im Neuenheimer Feld 293
6900 Heidelberg 1

West Germany
Bit net: RZOPQDHDURZI

Charlotte Laurendeau
Users Group

P. 0. Box 9506
Providence, RI 02940-9506

401-751-7760

TUG@Math.AMS.com

Yoke Lee
(see Michael Ballantyne)

Pierre A. MacKay
Northwest Computer Support Group
University of Washington
Mail Stop DW-10

Seattle, WA 98195

206-543-6259; 545-2386
MacKaycPJune.CS.Washington.edu

Laurie Mann
Stratus Computer
55 Fairbanks Boulevard
Marlboro, MA 01752

617-460-2610

uucp: harvard! anv i l ! es !Mann

Robert W. McGaffey
Martin Marietta Energy Systems, Inc.

Building 91042
P. 0. Box Y

Oak Ridge, T N 37831

6155740618

McGaffey%ORN.MFEnetQnmfecc.arpa

Frank Mittelbach
Fachbereich Mathematik

Universitat Mainz
Staudinger Weg 9

D-6500 Mainz
Federal Republic of Germany
Bitnet: SCHOEPFQDMZNAT51

Dezs6 Nagy
Geological Survey of Canada

1 Observatory Crescent

Ottawa KIA OY3, Ontario, Canada
613-995-5449

David Ness
803 Mill Creek Road
Gladwyne, PA 19035

215-649-3474

M. Edward Nieland
Systems Research Laboratories, Inc.
2800 Indian Ripple Road
Dayton, OH 45440-3696

513-255-8846
TNIELANDcPAAMRL.AF.MIL

Dr. Hubert Part1
EDV-Zentrum

Technische Universitat Wien
Wiedner Hauptstrak 8-10
A-1040 Wien, Austria

Bitnet: z3000pacPawituw01

Mitch Pfeffer
Suite 90

148 Harbor View South
Lawrence, NY 11559

516-239-4110

Craig Platt
Department of Math & Astronomy
Machray Hall

University of Manitoba
Winnipeg R3T 2N2, Manitoba, Canada

204-4749832
Csnet: plattcPuofm. cc .cdn

Bitnet: plattcPuofmcc

Jon Radel
P. 0. Box 2276
Reston, VA 22090

Thomas J . Reid
Computing Services Center
Texas A&M University
College Station, TX 77843

409-845-8459

Zalman Rubinstein
University of Haifa

Department of Mathematics and
Computer Sciences
Mount Carmel

Haifa 31999 Israel

David Salomon
Computer Science Department

School of Engineering and Computer
Science

California State University,
Northridge

18111 Nordhoff Street

Northridge, CA 91330
818-885-3398

Rainer Schopf
Institut fiir Physik

Johannes Gutenberg Universitat
D-6500 Mainz

Federal Republic of Germany
Bitnet: SCHOEPFcPDMZNAT51

Larry Sharlow
10 Toltec #3
Flagstaff, AZ 86001

602-774 1630

Michael Spivak
l&Xplorators
3701 W. Alabama

Suite 450-273
Houston, TX 77027

Christina Thiele
Canadian Journal of Linguistics

Carleton University
Ottawa K1S 5B6, Ontario Canada
Bitnet: WSSCATcPCarleton

Georgia K.M. Tobin
The Metafoundry

OCLC Inc., MC 485
6565 Frantz Road
Dublin, OH 43017

6147646087

Andrew Trevorrow
Kathleen Lumley College

North Adelaide, SA, 5006, Australia

(08) 267 1060
ACSnet: atrevorrowQg . ua. oz

Brother Eric Vogel, FSC
P. 0 . Box 5150
Saint Mary's College
Moraga, CA 94575

415-631-4296

Samuel B. Whidden
American Mathematical Society

P. 0. Box 6248
Providence, RI 02940
401-272-9500
sbwcPMath.AMS.com

Ron Whitney
Users Group

P. 0. Box 9506
Providence, RI 02940-9506
rfvcPMath.AMS.com

TUGboatcPMath.AMS.com

Patricia P. Wilcox
The Coolspring Banjo Works

6617 Home Road
Delaware, OH 43015

614881-5032
banjoQDCI2PW.DAS.NET

Hermann Zapf
Seitersweg 35

D-6100 Darmstadt
Federal Republic of Germany

TUGboat, Volume 10 (1989), No. 2

General Delivery

born the President

Bart Childs

The program of the annual meeting is set. The
program committee has done an excellent job. It is
appropriate to call this a celebration of 10 years of
rn and TUG.

I am writing this so soon after the distribution
of the most recent TUGboat that I have not
had any feedback on the dingbat competition.
That announcement was missing a statement that
a sample submission has been prepared by Doug
Henderson and is available from TUG headquarters.
I encourage you to submit a dingbat or two. Doug's
sample dingbats (an anchor for TUG and a check
mark) and methodology should be a big help. Send
your entries to Doug; his address is on page 145.
Judging will take place at the annual meeting.

See you at the celebration at Stanford.

Editorial Comments

Barbara Beeton

This column seems to be becoming my personal
soap box, so I may as well make the most of
it. I shall feel free to award compliments where
due, and to nag gently when I think it is called
for. Mostly, though, I shall try to bring to
your attention items that I think are important or
interesting, that haven't been mentioned anywhere
else in the issue. This will usually include a
report on what are the latest versions of the official
w- re la t ed software, trip reports on meetings I've
attended, and anything else that strikes my fancy.
Suggestions from you readers are always welcome -
the addresses for TUGboat, postal and electronic,
are inside the front cover.

l&X news

The big news about m, really about Stanford,
is that the Score machine is to be unplugged on
August 31, just after the TUG meeting. This
computer has been home to the authoritative
distribution since the beginning. The TUG Board

has been informed of Score's demise, and they are
investigating all reasonable possibilities for alterna-
tive locations. Several criteria are essential for a
suitable new home: the machine must be on the
Internet; it must support anonymous FTP; and
a installation must have the full support of
the management. All news will be communicated
via the electronic mailing lists- m h a x , U K w ,
T@MAG, et al. - and published in TUGboat.

As long as Score is viable, updates to the
l&X system will continue to be posted there. The
current versions are

rn 2.99
PLAIN. TeX 2.94
METAFONT 1.7
PLA1N.W 1.7

Changes to T@, METAFONT and the CM fonts
can be obtained by requesting the latest errata list
supplement from the TUG office.

All changes have been communicated to all the
irnplementors and distributors on my mailing list.
If you are creating a new implementation of rn
and distributing it to other users, you should be
receiving this information. Send me your name and
address (preferably an electronic address accessible
via the Internet), and a short description of the
implementation you're working on.

Updates to items in TUGboat 10 #1,
and a suggestion to authors

Several pairs of braces (. . .) were omitted from
Georgia Tobin's article "A handy little font", mak-
ing it nearly impossible for someone not already
versed in METAFONT to recreate the fonts described
there. Georgia's column in this issue contains the
correct code for the handpointing character.

This brings up the subject of good coding
practices. Some readers of TUGboat, I am told,
take a new issue directly to their keyboard and
enter the code to try it out for themselves. Authors
of macros and of METAFONT code can make that
activity easier for readers by making their code
statements complete and precise. If redundant
segments of code are omitted for conciseness, then
that should be stated, along with some indication
of how the missing code can be reconstructed; the
techniques used in Appendix B of The W b o o k
may be a good model. Fwther, an author shouldn't
assume that all readers are experts. For example, if
Q is used in "internal" control sequences, appropriate
\catcode'\@=. . . statements should be included in
plain code, or the equivalent \makeat. . . in

A couple of years ago, a "Birds of a Feather"
session at a TUG meeting discussed what are good

148 TUGboat, Volume 10 (1989), No. 2

macro coding practices. A number of good ideas
were mentioned and recorded, but nothing has been
published. I intend to encourage this work to begin
again at the upcoming TUG meeting, and perhaps
we will see some macro guidelines appear to join the
emerging DVI driver standards. In the meantime,
the suggestions by Don Hosek for creating portable
METAFONT code (page 173) make sense for macros
too.

The TUGboat schedule

Unanticipated delays in the printing schedule for
issue 10 #1 assured that it arrived too late for most
potential authors to respond to the editorial dead-
line for #2. After considering various possibilities,
we have decided to set fixed dates for future issues.

The first issue has always been scheduled to
permit authors a break after the holiday rush. In
the past, the second and third issue dates have
depended on the schedule for the annual meeting;
there was sentiment for issue #2 to be in members'
hands in time to read before the meeting, and for
the deadline for #3 to give sufficient time after the
meeting to permit reactions by the authors to what
happened there. (The fourth issue - the meeting
proceedings - of course depends directly on the
meeting schedule, but it has a separate editorial
and production staff.)

The new schedule for the three regular issues
will follow the same general pattern. For each issue,
the editorial deadline will be a Tuesday, permitting
authors a weekend for last-minute cleanup. Editorial
and production work will be allowed six weeks (the
Editor has a full-time job with the Math Society,
and TUGboat is her evening and weekend activity).
Camera copy will be delivered to the TUG office on
a Monday for shipment to the printer. For the past
year, the printer has required six weeks; the TUG
office is investigating printers and expects to find a
reliable one who can handle the job in four or even
three weeks.

Editorial deadlines will be determined by the
following.

Issue
#1 3rd Tuesday of January
#2 2nd Tuesday of April

#3 Proceedings: as soon as possible,
but no later than deadline for #4

#4 2nd Tuesday after Labor Day
The long summer gap should accommodate a meet-
ing scheduled any time from the middle of July
through late August, and also give the Editor some
time to relax.

The deadlines for 1990 are given in the calendar;
see page 285. Applying the expected production,
printing and mailing time, it can be seen that issue
#1 may not reach prospective authors until after
the deadline for issue #2. To provide an appropriate
warning, it has been proposed that the schedule be
sent along with acknowledgements for receipt of
dues payments. We promise that deadlines will be
shown in the calendar for at least two issues.

Informal discussion at the CongrCs GUTenberg
(see below) yielded some suggestions regarding the
technical articles in TUGboat. These included peer
review and actual testing of macros and METAFONT

code. I believe it is time to consider these actions,
as they would enhance the quality and utility of
the presentations, but they will mean a change in
the way that the proposed schedule is interpreted-
the six weeks permitted for production simply
doesn't allow the necessary time for communication
between reviewer/editor/author should revisions be
found desirable. Another suggestion was to include
abstracts of the main articles in several languages
(English and, say, French and German), also to
accept articles in languages other than English. I
will solicit opinions and report in the next issue.

So, what are your opinions? Let us hear from
you, about the schedule, the suggestions concerning
review and testing, or anything else about TUG-
boat. (If you've noticed no letters to the Editor
in recent issues, you've only yourselves to blame.)
Electronic mail is, as always, most convenient, and
most likely to get a quick acknowledgement, but all
comments will be considered carefully.

TUGboat selections on-line

The following additions have been made to the di-
rectory <TeX. TUGBOAT> at Score.Stanford.edu since
the last issue.

the tables of contents, file TB1089. CNT, for this
year's issues so far.
FIGPLACE.TeX and FIGSPACE.TeX by Joost
Zalrnstra and David F. Rogers (TUGboat

10#1)
Check the file -CHRONO-.DIR for a chronological
list of the directory contents, and -READ-. TUG and
TUGFIL.CHG for a description of the files in the
directory and details of changes.

These files are available through August 31
from Score via anonymous FTP on the Internet.
Copies have also been installed in the archives at
Clarkson and Aston. We are looking into ways to
make them available from the TUG office for those
who have no network access.

TUGboat, Volume 10 (1989), No. 2 149

Congrhs GUTenberg - A trip report

The second annual CongrBs GUTenberg was held
in Paris on May 16-17, on the theme "m and
graphics". I was going to prepare a detailed report
of the program, but Malcolm Clark has done such a
good job (see page 150) that I will limit this report
to my impressions.

The first day of the CongrBs was occupied
by two short courses, the first an introduction to
DQX, by Olivier Nicole and Jacques Andre, and
the second "first steps in METAFONT", by Victor
Ostromoukhov, which I attended. I had seen
some results of Victor's work in Exeter at m 8 8 ,
and was pleased to be introduced to some of the
basic techniques he uses to make character shapes
look their best on a low-resolution display device
while enforcing stylistic uniformity within a group
of related characters. The letterforms he chose
for demonstration were from the outline alphabet

known as "blackboard bold": W, Q, N, K, Z, H,
F and 43. (These samples are from the AMS font
msyml0, not from Victor's production; I feel that
he has corrected some of the problems known to
exist in these old versions.) These were sufficient
to illustrate such principles as uniformity of stem
widths and line thickness, keeping paired lines
parallel to one another when they are not parallel
to an axis, and the like. Victor's use of a Macintosh
to demonstrate, almost instantaneously, both bad
and good effects was a powerful reinforcement.

The official first day ended with the annual
AssemblCe GCnCrale, where the order of the day was
the presentation of secretary's and treasurer's re-
ports, ratification of actions of the Board, and other
items of GUTenberg business. Bernard Gaulle,
GUTenberg's president, presided. I learned that
GUTenberg now has about 90 members and an-
other 50 or so subscribers to their journal, the
Cahiers GUTenberg. If my memory serves, TUG
was about that size at the same age; at the age of 10,
TUG has over 3,000 members, and I wish GUTen-
berg the same success. Thanks were extended to
several organizations and persons who had con-
tributed facilities or efforts toward strengthening
GUTenberg or improving communications among
QX users in the French-speaking world and else-
where. These included the IRISA and CIRCE (and
another, whose name I did not catch) laboratories,

the ~ c o l e Normale SupCrieure (rue d'Ulm), Peter
Abbott (moderator of U K W) , and Pierre MacKay
(moderator of w h a x) . Two individuals were made
"membres d'honneur" . Raymond Seroul, author of

Le petit Livre de was one, and I was very much

honored to be the other. As a token of the honor,
I was presented with a copy of Les bons Romans,
bound from semiweekly editions of 1870-1871 con-
taining the complete Le Comte de Monte Cristo by
Alexandre Dumas and selections by other authors
including de Balzac; when I have finished reading
it all, my understanding of French should be very
much improved.

The second day, the conference proper, was
opened with an introduction by the chairman of
the session, Nicolas Brouard. This was followed by
greetings from Bernard Gaulle and his recitation
of all the anniversaries to be celebrated this year,
starting with the bicentennial of the French Revo-
lution. He reported on the concerns of the French
QX community, the various sources of available in-
formation, and ended with a review of the business
meeting of the previous evening. The presentation
of papers then occupied the rest of the day.

Although I am aware that the desire and need
for graphics inclusion in TEX documents is very
great in many environments, the fact that it is not
the most urgent problem facing the Math Society
has insulated me from most such activity. The
scope and ingenuity of the approaches described by
the speakers was most impressive. Many tools are
available to assist in document preparation, and
of these, quite a few are compatible with m,
though the graphcs tools are usually dependent on
the facilities of particular output devices. Nelson
Beebe observed that the basic problem is that m
came ten years too soon. (Of course, if it hadn't,
we wouldn't be able to celebrate ten years of TEX
this summer, and the CongrBs GUTenberg wouldn't
have taken place.) Postscript was mentioned in a
number of contexts, with or without connection to
the Macintosh. Another topic that kept surfacing
was that of standards, graphics and otherwise.
Standards seem to have generally stronger support
in Europe than in the U.S., although with the
adoption of SGML by the Department of Defense the
awareness of standards has been raised considerably.
The interoperability of QX and various document
and graphics standards seems a very fruitful area
for investigation. Several papers described more
individualistic solutions to particular problems; the
use of the "screen graphics" symbols to produce
diagrams was one such. Another suggested approach
was to reprocess DVI files to insert commands
suitable for particular print engines. DVI portability
is sometimes hard to realize even with text, and
the problems are magnified with graphics. One goal
that seems worth working for is the ability to archive
documents for long-term storage; if graphics are to

150 TUGboat, Volume 10 (1989), No. 2

be an integral part of such archived documents,
then we might be warned to think hard before
revising TEX too soon.

I have already mentioned Raymond Seroul
and his book, Le petit Livre du T&$. I would
like to recommend this book highly (and not just
because Raymond gave me a copy). It contains,
among other useful features, a fine "Dictionnaire-
Index", what I would call a glossary, which lists,
with extensive explanations and references to the
main text, all the important control sequences and
other useful concepts, e.g. "accolade" (a brace),
"fonctions (noms de.. .)". I have heard this kind of
reference suggested many times, but Le petit Livre

has the first example I have seen in print. TUG
is investigating having it translated and making it
available in English. In the meantime, the French
edition should present little difficulty, and much
information, to a reader who has some familiarity
with the French language, and a dictionary.

Raymond Seroul,
Le petit Livre de T&$,
PrCface de Dominique Foata.
InterEditions, Paris, 1989. 317 pp.
ISBN 2-7296-0233-X

Finally, I can also recommend the Cahiers
GUTenberg, which is a window on the world
with quite a different view than TUGboat. Malcolm
Clark's report on the CongrCs gives all the details
of how to join GUTenberg and subscribe to the
Cahiers.

RBflexions sur le Congrhs GUTenberg

Paris, Mai 16-17, 1989

Malcolm Clark

The French rn users group has been around for
a few years, in an 'unofficial' form. Over the last
year or so they have become 'official', much more
active and they now organise an annual meeting.
The first well-publicised GUTenberg meeting was
held in Paris last year. I was impressed there by
the attendance (well over loo), the stamina (the
room was tiny and without air-conditioning), and
the range of topics covered. There is, in any case,
a tradition of ?IEX activity in France- the second
European 'l&X Conference was held in Strasbourg,
in 1986.

This year's meeting was again in Paris, but
used far larger rooms to accommodate the 120-150
people who attended. Scanning down the list of
attendees, there are the usual academic and research
organisations, but also publishers, and the printing
trade in general. This bodes well for the future. The
meeting was held over two days: the first day was
given over to two seminars-one on I 4 m (from
Olivier Nicole and Jacques AndrC), and the other
on METAFONT (Victor Ostromoukhov); followed by
the AGM. The second day was the conference
proper. I attended part of Victor's 'Premiers pas en
METAFONT'. As usual, I was impressed by Victor's
breadth and depth of METAFONT-lore. And he
seemed to be getting something useful across to the
forty or so would be METAFONTers. Since he used
a Macintosh to demonstrate the points, there was a
reasonably quick interaction between intention and
realisation. I confess I didn't stay to all of this;
my powers of concentration are not great enough to
follow a full day of technical METAFONT (far less in
a foreign tongue). However, one quote from Victor:

<mathematical typesetting> + <empty> I <TJ$O
<T~X>-+<T~.$82>

That sums things up nicely I think.
Bernard Gaulle, GUTenberg's President ran

the AGM with great efficiency and some humour. I
particularly like the French style of democracy (it
runs: question- 'anyone against?'; answer - 'no';
conclusion - 'passed'; excellent). I won't plough
through all the bits of the AGM, except to note
that the group is in excellent financial health, that
this is a year of anniversaries in France - 200 years
since the Revolution, but also some others: 10 years
of TUG, 50 years of CNRS (Centre Nationale
de la Recherche Scientifique), one of the homes
of W , and of course this is also the year of
the 4th European Conference. The AGM
honoured two people with 'honorary membership':
Barbara Beeton and Raymond Seroul (the author
of Le petit Livre de m). By way of recognition,
they were each presented with an edition of 'Les
bons Romans', published over a hundred years ago.
Peter Abbott was also thanked for the help he has
given in easing '[les] perturbations bitnet'. net'. 1
was particularly pleased to see Barbara honoured
and Peter thanked in this way. The whole TJ$
community owes them much for their dedicated
adherence to the cause, and it was particularly
refreshing and tactful that GUTenberg saw fit to
include them in this way.

Besides this conference, GUTenberg produces
its own journal, Cahiers GUTenberg. The inaugural
(or prototype) edition (confusingly numbered 'zCrol)
was available at last year's conference. The first and

TUGboat, Volume 10 (1989), No. 2 151

second editions were out by this year's conference. L'anne'e de tous les anniuersaires: Bernard Gaulle.
Many of the talks in the conference were also printed A welcome to GUTenberg, and an overview of
in the Cahiers (which helped me enormously). the services and facilities available to rn users
Although the group is 'francophone', several articles in France (and elesewhere); touches on the public,
are in English. Allowing for the technical words private and commercial domains; addresses GUTen-
which dictionaries never seem to get right, it isn't berg's relationship with the rest of the world.
too difficult to make sense out of the papers/articles.
The Cahiers represent a major undertaking, in time,
effort, and in financial commitment (as I well know
from my own limited venture in m i n e) . If the high
standards already being established are maintained,
GUTenberg will have created something which will
be of great and lasting service to the whole T@
community. My only minor criticism of the Cahiers
is the lack of consistency in the provision of abstracts
(a failing it shares with TUGboat). If abstracts
were included, it would be possible to prepare
multilingual translations which could be circulated
more widely, alerting others to the range and
relevance of the material.

The major theme of the Conference was 'graph-
ics' - a popular one these days. Fortunately, thanks
to Sebastian Rahtz' talks, I think I know a little
about the background here. Rather than report
each talk in detail, it is perhaps more productive
to try to select some of the major themes. Af-
ter all, the text of most of the talks is available.
As usual, it is notable how far IPT@ dominates
in Europe (or perhaps, just outside the US). It
is also notable that 'standards', however defined,
keep cropping up: X-Windows, POSTSCRIPT, T@
itself, PHIGS, GKS, SGML, and even emacs. This
seems particularly healthy, although equally there
are many forays into areas which are less portable.
Nevertheless, the apparent domination of C, as the
implementation language of choice, (with or without
the spectre of Unix) would indicate the possibility
of transfering some of the applications to other
platforms. From the summaries, it is evident that
one of the great concerns is the use of POSTSCRIPT,
and the incorporation of POSTSCRIPT (and EPSF)
files into (especially) Urn. Perhaps my favourite
paper was Maurice Laugier's. His was a very simple
and straightforward idea- namely that the PC's
graphics characters may be mapped quite easily
into rules, and that tables (and some diagrams)
may be prepared by this means, provided that a
monospaced font is adequate.

A list of the talks, together with a brief
summary (usually the authors'/author's own) is
included here. Some of the talks were in English
(a bold move for a francophone group), and some
summaries (notably that of Lance Carnes) were
distributed in English and French. Very tactful.

Xwindows, U Q X , QXdraw et Plot79, ou com-
ment calculer, re'diger, dessiner et imprimer plus
aise'ment: Nicolas Brouard. A workstation run-
ning under X-Windows offers a way of calculating,
writing and designing which is much simpler than
with a 'classic' terminal. Two graphics tools,
W D r a w (a public analogue of MacDraw) and
PLOT79 (a 3D graphics system based on CORE),
can easily be employed with IPQX.

l&X and Graphics: the state of the problem: Nelson
Beebe. Inclusion of graphics in documents typeset
by TQX is not yet a satisfactorily solved problem,
and no final general solution is in sight. This paper
surveys alternatives for insertion of graphics in TEX
documents. It summarizes graphics primitives of
several modern software systems, and shows how
9&X has seriously deficient support for their direct
incorporation in TJ$ itself.

L'enuironment de production de documents l&Y
d 1'IRISA: Philippe Louarn & Bertrand Decouty.
The group consists of over 200 researchers, teachers
and engineers, who need to produce reports, articles,
theses, books. . . The objective was to provide a set
of homogenous tools in a heterogenous environment
(Unix, VMS, workstations, PCs.. .). Naturally, W
was chosen as the fundamental tool. In graphics,
the two main avenues are through the incorportion
of POSTSCRIPT, and by the use of eepic in the
WQX picture environment.

Survey of l&X Graphics for the PC: Lance Carnes.
This talk reviews the various graphics systems
offerings for the IBM PC and compatibles, and the
ways these systems can be used in conjunction with
rn; the use of POSTSCRIPT, HP PCL and bitmap
files in conjunction with current T@ drivers; the
use of output from screen oriented drawing systems;
and the conversion of graphics files from one format
to another, and scaling of images, for inclusion in
documents.

QX et les graphiques dans l'environment Mac:
Anestis Antoniadis. Painting and drawing are
the two sides of the creation of graphics on the
Macintosh. Paint images (otherwise known as
bitmaps) are known to the Mac as a set of points
on the screen. Draw images (also known as

152 TUGboat, Volume 10 (1989), No. 2

vector drawings) are known to the Mac as objects
(rectangles, lines, circles, polygons) and are defined
by their mathematical attributes. As a consequence
of the way in which they are defined, they take
full advantage of the resolution of POSTSCRIPT
peripheral devices. The goal of this article is to
give an overview of the methods and software for
the generation of graphics on the Mac, and to
discuss the insertion of such graphics in documents
prepared with Textures, one of the implementations
of 7&X on the Macintosh.

METAFONT et POSTSCRIPT: Victor Ostromoukhov.
Conversion between METAFONT and POSTSCRIPT
is possible. What are the best techniques, and what
are the constraints? (No written contribution, but
see his MacMETRFONT program.)

DDI: un environnement de travail pour la re'ali-
sation de graphiques scientifiques, techniques et
fantaisies utilisables avec l'@C Andre Violante.
DDI is a work environment for the creation of
scientific, technical and artistic graphics. The
fundamental idea of the system is the creation and
use of graphic fonts. To use these, several tools are
available: design software (Designcad); a program
to convert Designcad files to METAFONT; META-
FONT itself; GFtoPK; TkX; and a suitable device
driver.

texpic: design and implementation of a picture
graphics language in QX (i la pic: Rolf Olejniczak.
texpic is a rn implementation of a graphics
language similar to Kerhighan's t ro f f preprocessor
pic. The implementation consists of two parts, a
set of elaborate 7&X macros and a postprocessor
for drawing (in the dvi file). texpic objects and

or IP!l&X commands may be combined at will.
texpic is written in C, and is fully portable, to
the extent that every implementation, every
preview and every correctly written printer driver
will work with texpic.

Traduction en d'un fichier SGML avec re'cupe'r-
ation des graphiques et des tableaux: Maurice
Laugier. The logic of SGML markup is close
to that of U r n , and translation from SGML to

can be realised quite simply. However,
the problem is rather different for graphics and
tables. This paper presents a way in which the PC
graphics characters were successfully mapped into
W&X, easing the production of tables and simple
diagrams.

G I Q X , PAPS: deux logiciels manipulant POST-
SCRIPT et I47jjX Christophe C6rin. From PC-
based graphics programs, PAPS (Programme

d'Application POSTSCRIPT) transforms an image
into a POSTSCRIPT format. It will also allow

some manipulation of the graphics image. G I W
(G6n6rateur d'Image W) is a program which al-
lows a f igure environment to be constructed for
inclusion of the POSTSCRIPT into a U W file.

L'incorporation de graphiques duns I N R S W
Michael Ferguson. The approach used in INRS-

is to use the power of the printer to create
graphics, and not to introduce special charac-
ters. The capability to generate graphics has been
achieved for POSTSCRIPT and for QMS graphics
on a QUIC laser printer. The paper discusses the
role of the printer as well as the need for support
software to permit the incorporation of graphics
produced by other systems. The paper also dis-
cusses some of the limitations inherent in the choice
of graphics systems.

Like most conferences, the most interesting and
valuable discussions take place in the corridors, over
coffee, or at lunch. This tradition was maintained
here. The corridors were also used to display
various pieces of m w a r e . The inclusion of a
noticeboard for general 7&X-notices, trivial as it
seems, was extremely useful. There was a display
of ArborText's Publisher (about the only place
you don't see Publisher these days is in the UK),
and an extensive display of books, where Raymond
Seroul's book was selling well (on its first day of
publication).

Conclusion

I was impressed. There can be no doubt about it,
GUTenberg provides us all with much to emulate.
The strength and coherence of the group is manifest.
Taken purely at the national (or francophone) level,
GUTenberg is contributing massively to the strength
of m. The Cahiers are excellent, and look capable
of sustained quality. The annual meeting is now
well-established and imaginative. GUTenberg's
involvement with several French publishers must
also be a good sign.

GUTenberg is also keenly aware of other French
speaking areas (Belgium, Switzerland, Quebec) and
of the advantages of international electronic com-
munication. And the committee ensured that
the various national representatives (myself, rep-
resenting TUG and u-; Joachim Lammarsch,
representing the German group, Dante; and Kees
van der Laan representing the Dutch group) had
the opportunity to discuss how we could cooperate
for the common good.

TUGboat, Volume 10 (1989), No. 2

I am a shade worried by what I see as the
determination to stay outside the TUG orbit. Per-
haps I am over-sensitive- being described either as
English or Anglo-Saxon does tend to make me a
trifle testy - but I have always thought of TUG as
an international organisation, not an American one.
Others do not share this perception. If our conclu-
sion is that we are not getting what we need out
of TUG, the solution is in our own hands. We can
influence the organisations in which we participate.
That's the key -participation. 7&X must be worth
it.

Joining GUTenberg; subscribing to the
Cahiers

To join GUTenberg, you need only part with
200 FF. This has two advantages (besides preparing
you for 1992 and demonstrating your adherence
to the European ideal)-it enables you to pay
a reduced fee at the annual meeting and for the
Cahiers. To obtain the Cahiers costs a further
150FF if you are a member, but 250FF if you
are not. This year's conference cost 200FF for
members and 400 FF for non-members. Clearly
membership pays for itself if you are contemplating
attending the conference and taking the journal.
In other words, joining GUTenberg and subscribing
-to-- the-Cahiers costs you a total of 350 FF (made
payable to GUTenberg). Of course Eurocheques are
acceptable.

Note that membership comes in several diffe?
ent categories: individual membership is 200 FF;
institutional membership on behalf of a non-profit
organisation is 700FF; while institutional mem-
bership on behalf of profit-making (as opposed to
profitable?) organisation is a hefty 1400 FF. On the
other hand, institutional membership does allow
you to nominate up to seven individuals.

Send your money to:
GUTenberg

IRISA
Campus Universitaire de Beaulieu
35042 Rennes Cedex
F'rance

o Malcolm Clark
Imperial College Computer Centre
Exhibition Road
London SW7 2BP, England
Janet: tex1ineQuk.ac.ic.cc.vaxa

International Standards and TEX

Malcolm W Clark

Editor's note: The following "article" is really two
papers that Malcolm prepared as notes for his

presentation on standards at the June Nordic
meeting (see page 287). International standards
are becoming increasingly important in technical
publishing, and they will undoubtedly affect the
way in which many rn users carry on their work.
It seems only fair that we should work to make rn
affect the way in which standards are defined. With
Malcolm's permission, these papers have also been
submitted to the U.S. working groups on the Office
Document Architecture (ODA) standard, X3V1.3
and .5.

Standards and '&jX

TEX is a standard. It is rigidly defined; every
implementation of 7&X must pass the 'trip' test
before it has the right to call itself ''I)$'. Even

the components of 7&X are standards; dvi format
is defined rigorously; even the formats of pxl, pk,
and gf are defined. Thanks to this standardisation,
every user of QjX (U r n and A M - W) knows
that he or she can expect the same results from
the same input, no matter what equipment they
use to prepare their document. This is a degree
of standardisation which is unheard of outside the
7&X world.

There are areas within the T)$ world without
adequate standards. Some of these have been at
least considered by the 'I)jX community. Both
device driver standards and macro-writing stan-
dards have been the subject of working parties:
the driver standards working party has made some
preliminary announcements, but the macro-writing
standards working party seems to be moribund.
Other areas require consideration, including the
handling of specials, but this may be tackled by
the driver standards people.

But there are wider standards which affect us
in the world. The QX world is only a small
(and many would argue, privileged) part of the
'document' world. There are international and de

facto standards which are of critical importance to
us.

We have to acknowledge the importance of the
de facto standard, POSTSCRIPT. In a sense,
'sits above' POSTSCRIPT. No-one (well, almost
no-one), would ever dream of writing a document
in straight POSTSCRIPT. Normally, we write a pro-
gram which generates POSTSCRIPT- for example,

TUGboat, Volume 10 (1989), No. 2

m. Nevertheless, we must be aware of the way
in which P O S ~ S ~ ~ ~ ~ ~ - c o r n p a t i b i l i t y is crucial if we
are to be taken seriously by the rest of the world.
We must have an acceptable answer to the question
'Can you generate POSTSCRIPT?', even if we feel
that the question is ill-posed.

The first 'international' standard which is of
importance to us is SGML, the Standard Generalized
Markup Language. is itself a markup language,
but SGML takes this one step further to become
divorced completely fiom the realm of typesetting.
UT@ has a closer affinity to SGML, although it
does not go quite far enough. While it is possible to
argue that the basic paradigm of SGML is flawed, its
widespread acceptance and use (by, among others
the US DoD, and the EEC) demands that we do
not ignore it. Many SGML-based systems use m
(or U m) as the document formatting engine.

But SGML is an existing 1so standard. An
evolving standard of which we must be keenly
aware is ODA (Office Document Architecture). One
of the objectives of ODA is to permit the electronic
interchange of documents over open systems. In the
l&X world we would argue that this has already
been achieved. One aspect of concern to ODA is
mathematical text. Again, we would argue that
this has already been achieved. Sadly, the way that

- ~&iona l a& inkdomF*ndar$s-m ermted
does not ensure that the best de facto standard
becomes enshrined in the ultimate ISO standard. At
present, the various ODA national committees and
panels are considering the input of mathematics.
The principal European submission which has been
received suggests the use of eqn.* This is a
somewhat limited and limiting approach. It is of
the utmost importance that we in the 'I)$ world
promote the other alternatives that we know (and
love).

We can live outside the 'standards world'. It
is possible. But it is uncomfortable, and ulti-
mately it will lead to atrophy. We should ensure
that decisions, like those to become part of the
ODA standard, are made with reference to a wide
spectrum of possibilities. It may be that 'TFJ is
inappropriate to ODA. But that conclusion must
be reached by active and informed debate, not by
ignorance and apathy.

* Editor's note: A U.S. contribution has recom-
mended examination of eqn, TpJ, and SGML.

A n approach t o t h e interchange of
mathematical expressions

Introduction:
There are a number of existing ways in which math-
ematical information may be interchanged, using
only the ASCII character set. These include eqn,

(and its sibiings, and A M - m) , and
SGML. There are, of course others, but they tend
to be linked to some proprietary system. The

three above all have the advantage of belonging,
in a sense, to no-one. The first two, eqn and
T# have the further advantage of having been
tested 'in the field' for a number of years. They

are well understood by a large population. eqn
is, of course, a Unix tool, distributed widely with
that quasi-standard operating system. T)$ has
been implemented on a wide variety of computers
(including Unix machines), and has the further
advantage of belonging even more firmly to the
public domain-to the extent that its algorithms
often crop up in proprietary systems. Mathemat-
ical encoding in SGML is possible, but is found
infrequently, many SGML systems opting out of the
difficulties by adopting either eqn or as their

mathematical processor.
It is not the purpose of this presentation to

extol the virtues of over eqn. The purpose
--
is to m a f i v i d ; ~ p o w e r 7 f - ~ T Z o a e ~
mathematical expressions in an unambiguous and
straightforward way which is generally both 'hurnan-
readable' and coherent, and which may also be
reasonably compact. And by implication, that
any consideration of a suitable technique for the
interchange of mathematical information should
include examination of T@.

It should be understood that 'T&X7, as used
here, is intended to include the common 'add-on'
facilities provided by both I4m and AMST@.

Use of existing standards:
As noted above, Tf$ uses only the ASCII character
set; thus it is commonly used for the transmission
of technical material over existing local- and wide-
area networks. This practice is some years old
now. m, (unlike eqn), has no 'reserved words'.
The sole 'reserved' character is the backslash \
(and even that is not very reserved), which is used
as an 'escape character' to denote that the token
(symbols) which follow should be treated in a special
way. Thus \alpha is a way of representing a. This
takes us no further than SGML, where we could use
the Public Greek Symbols Entity 'alpha'. However,
it does provide us with extra tools which enable us

TUGboat, Volume 10 (1989), No. 2 155

to write expressions like a\over b to obtain f . It
is but a small step from this to something a little
more grandiose like

.~ - -,

Keyboard symbols are used when appropriate (like
the parentheses, the = and - signs), but all
other symbols are obtained through the use of
the \ operator. The T@l encoding for these two
expressions is:

A = \prod^{p-1)-Cj=l)\int-OA\theta

\d L-j=\thetaA{p-2)

and

C\phi(\theta-i) - \phi(\theta-{i-I))
\over 1-\phi(\theta-{i-1)))

= P , (i = l , 2 , \ l do t s ,n)

Apart from explaining that the and - symbols
are used to denote super- and sub- scripts, the only
other point to note is the use of { and) for grouping
sub-expressions.

Parent hetically, an apparent arnbiguit y:
Obtaining superscripts requires comment. rn
- - -- - -- - - - - - - pp

uses the same 'operator' for superscTiptEg and6r
'raising to a power': that is to say, x2, where
the '2' is a power is indistinguishable from x2,
where the '2' is a 'true' superscript (or superior) -
they are both obtained from x-2. This may be
seen as an ambiguity. If it is, we can point to
the T@l control sequence \sp which can be used
in place of ^. Thus, although x\sp 2 will give
exactly the same formatted result as x-2, they
would be distinguishable in the original ASCII text.
In common with most computer systems, there is
always a tendency to want to minimise keystrokes,
so that most TEX users would tend to type rather
than \sp, even if what they meant was 'superscript'.

Extensibility:
Indirectly this also points to another feature of TEX.
It allows the creation of 'macros' - combinations of
more primitive commands which can be extended to
provide very powerful features. As an example, we
may take \matrix, a macro which allows us easily
to write expressions like:

x - X 1

A = (0 x-X ;)
0 0 x - X

where the TFJ code is

A=\left(\matrix{x-\lambda & I & 0 \ c r
0 & x-\lambda & 1 \ c r
0 & 0 & x-\lambda \ c r

) \ r ight)

For a fuller explanation here we need to add that
& is the 'pseudo' tab character, which separates
columns, and \ c r is a control sequence which
indicates the end of a row.

T@l is, in fact, a powerful programming lan-
guage its own right, although this may not be an
essential feature in this context. Nevertheless, it
indicates that any apparently omitted features in
the base language may be created for future needs,
or, in fact, needs outside strict mathematical uses.

A de facto standard:
Q$ has been used widely in the academic commu-
nity (the main users of mathematical typesetting
software) since 1978. It was first released in a
protype form in 1978, but underwent a substantial
revision before its present form, which was com-
pleted in 1982. Since then, w has been ported
to an astonishing variety of computers. Almost any
and every machine with at least 16-bit words has a
version of TF)(working on it. All versions of 7&X - -
must pass the so-called 'trip' test, before they may
call themselves m. This is intended to ensure

f hateach-a_nd_eve_rp ~ergo-n p j o d c e s exactly the
same output for the same input.

Naturally it is not the formatting qualities
of T@l which are relevant here, but instead its
ability to represent the full range of mathematical
expressions. One indication of its success in this
area is the use to which rn has been put in
teaching blind mathematicians. We know of at
least two projects where this has been undertaken,
with apparent success. The attractiveness of w
here lies in its ability to linearise an expression,
much as one would do if one had to 'talk' maths
to a colleague, without the advantage of chalk and
board.

But besides this linear quality, we must point
to the widespread use and adoption of 7&X, the
de facto standardisation which has occurred in the
academic world, and the huge pool of m-fami l ia r
keyboarders.

Conclusion:
TEX has the ability to encode mathematical expres-
sions in a way which is both human-understandable
and easily transmitted by electronic means. A great
many implementations exist which can turn such
encoded material into displays of one sort or an-
other - the linear encoding is readily transformed

TUGboat, Volume 10 (1989), No. 2

into a two dimensional display. Since QX has
been available widely for a number of years, it is
well understood by a large population, although, as
public-domain software it lacks the outright backing
of any large commercial organisation.

The approach adopted by TEX, and the lessons
which may be learned from it, can be put to good
use as part of the o D A standard for mathematical
encoding. It is not the contention here that only
TEX is a suitable vehicle, or even that adoption of

as it exists now is the very best solution. The
principal argument is that to exclude it from discus-
sion and examination would be counter-productive
and limiting.

o Malcolm W Clark
Imperial College Computer Centre
Exhibition Road
London SW7 2BP, England
Janet: tex1ineQuk.ac.ic.cc.vaxa

Acknowledgements, Disclaimer, and Calls

This is a continuation of the paper on "Syllabi for
T)$ and METAFONT courses", pages 117-127 in
the Proceedings of the 9th TUG meeting. This
paper contains some of the details of the previous
paper in tabular form. The errors are mine, but
many of the ideas are those of the teams who did
the work. I would expecially like to thank Barbara
Beeton, Dean Guenther, Pierre MacKay, and David
Ness for their continual reading, editing, and other
input. Don Knuth also reviewed an earlier draft
and said he is no longer a "10". Well . . .

This paper includes a flow chart to illustrate
the prerequisites of 'l&X, U r n , and METAFONT

classes. A two page table is used to show the
contents of the TEX courses, and another table
shows the contents of the I4w courses. The U r n
overview was not written by I P m p e r t s . The three
level test for 'T3$ has been revised several times.

I am calling for input of the following form:
1. constructive criticism of this document, espe-

cially the IP'l&X contents;
2. submission of additional questions for the rn

tests;

3. submission of questions for the (yet to be done)
U r n tests; and

4. your suggestions for any other items that you
think will help.

I will make these sources available for all. I intend
to incorporate input and reissue this document on
a periodic basis. The rest of this paper is what I
would distribute.

Overview

A user should be familiar with the use of a text
editor before undertaking the Beginning QX course.
In some cases the user can employ a word processor
and store the file as an ordinary text file if such an
editor is the user's common means of creating a file.

The Beginning w course should give the
student an understanding of the basic nature of 'l&X
and the parameters it uses in producing attractive
documents. After the course, the student will feel
comfortable taking examples from The w b o o k for
use, but may not yet be fully at ease modifying
these examples.

Upon completion of the Intermediate T)$X
course, the student should be able to adapt and
modify examples from The m b o o k to suit indi-
vidual purposes. He or she will also be able to
develop creative solutions to typesetting problems

u s i x W. - - - - - -- --

The Advanced course should give the
student knowledge of how many of the examples
in The m b o o k are created. Further, the student
should be able to create new macros and documents
using these concepts. At this stage of knowledge,
'l&X1s capability as a 'text-oriented programming
language' can be exploited.

Beginning QX

This course provides a practical introduction for
those with limited, or no, exposure to TE,X and
will be composed of about equal parts lecture
and "hands-on" sessions, including many practical
exercises for each object of study. Participants will
be introduced to TEX as a language for typesetting,
also learning its context in the history and milieu of
word-processing and typesetting. rn is compared
with other popular formatting systems such as
word-processors and desktop publishing systems.

TEX concepts to be covered include: methods of
preparing simple paragraphs, changing line spacing
and specifying fonts; simple boxes, characters and
accents; justification and line breaking. In math
mode, superscripts, subscripts, and fractions will be
addressed.

TUGboat, Volume 10 (1989), No. 2 157

Each registrant will be given copies of The
w b o o k and First Grade w .

Prerequisite: familiarity with a text editor is
essential.

Intermediate 'TEX

This course comprises equal parts lecture and labo-
ratory sessions, including many practical exercises.
It builds upon the foundation laid at the beginning
level.

Topics to be covered include: more complicated
paragraph shapes, paragraphs with labels, hanging
indention; more complex interaction between glues
and boxes; greek letters, special symbols and delim-
iters in math mode; displayed equations; control of
line and page breaks; simple tables.

Prerequisite: Beginning QX or equivalent
knowledge.

The student will furnish his/her own copy of
The w b o o k .

Intensive 'QjX

This course is a combination of the above two
courses. It is taught at a high speed in approxi-
mately one week.

Advanced TEX

This course is designed for all experienced QX users
and includes both lectures and experimentation.
This course will give an intensive study of macro
writing and designing macro packages.

Topics will include: detailed explanation of the
relationship of boxes (\vbox, \vtop and \hbox)
and glue; usage of registers, especially box registers
and counter registers; basic concepts and ideas
of macros; use of \ h a l i p in constructing tables
and equation arrays in math mode; loading fonts,
magnification, kerning, ligatures; controlling the
line and page breaking algorithms; delimited and
undelimited macro parameters; global us. local
definitions; conditionals, loops, and counters; tools
such as \ l e t , \f uture le t , \chardef, \cat code,
and \begingroup; expansion of tokens, and when
such expansion takes place. We will design macros
in class and analyze common constructions, with
practice in interpreting existing macros so that they
may be customized for special applications.

Prerequisite: Intermediate Tp3 or equivalent
knowledge.

Course Contents

Following the tests below are tables showing several
topics concerned with QX and typesetting. The
tables attempt to indicate the suggested detail in

which these topics are covered in each of the three
courses.

The Test

The test is divided into three levels. The first level
is intended for students who have completed the
Beginning T@ course. Upon completion of the
course, you should be able to answer at least 75%
of the questions with correct answers. We would
hope that it could be done without reference to
the w b o o k , First Grade w , or other sources.
With these sources and an extra thirty minutes or
so you should be able to answer all the questions,
regardless of your instructor.

Performance at this level on the first test should
be a prerequisite for taking the Intermediate TEX
course. Similarly, an equivalent level of performance
on the second test should be a prerequisite for the
Advanced QjX course. Completion of the third
course should lead to a good score on the third level
of the test.

We realize that a lot of QXers have been
self taught. We feel the tests could be used as
effective self-tests after independent study of the
The w b o o k or another such manual.

Many of the questions contain fragments of
QX code. These fragments are in the typewriter
font and their lines are numbered. Ellipses (. . .) are
used liberally to indicate that more TFJ material
may be present.

These tests and other teaching materials are
the property of the TFJ Users Group. They may be
used freely for the purpose of expanding knowledge
about QX systems as long as proper credit to
their source and acknowledgment of the goals and
purpose of the rn Users Group are prominently
displayed.

The rn Users Group solicits contributions and
opinions on these materials. We intend to reissue
these materials on a regular basis with updates
containing new contributions.

The tests are based on levels of expertise
varying from 0 to 10. Level 0 corresponds to
knowing nothing about QX while Donald Knuth is
level 10.

The =test - Level One

1. One of the visible ASCII characters
is used as QX's escape character. It
is the - symbol and its name is

2. In the following QX code fragment:
1 ...

TUGboat, Volume 10 (1989), No. 2

2 l a s t l ine of a paragraph.
3 \parskip=6pt
4 First l i n e of a new paragraph

what horizontal and vertical spaces will
be between ". . . a paragraph." and "First
Line.. . "?

What 7l&X control sequence is the equivalent
of a blank line?

How do you cause the Tm program to
execute and process the file "testf i l e . tex"
on your system?

When has finished processing
"t estf i l e . tex" , how can you get another
look at the error messages (with more detail)
without running = again?

The code fragment "the \TeX program"
produces output "the =program" which is
obviously missing a space after the logo.
Give two or more ways to correct this.

What is the name of T@'s monospaced font
and what control sequence is used to access
it?

What is the typographer's name for straight
lines?

How do you end the indentation from the
\narrower instruction?

How should you end the current paragraph
before ending the \narrower mode?

What is the indentation of the following
paragraph and why?

1 C\narrower\narrower
2 f i r s t l ine of a paragraph.
3 ...
4 l a s t l i n e of a paragraph.

5)\par

12. Consider the following code fragment:
1 \parindent=O.5in
2

3 A f i r s t paragraph . . .
4 \parindentl.Oin
5

6 A second paragraph . . .
7 \bye

How much will each of the paragraphs be
indented? first second -

13. How do you specify an italic correction?

14. What does an italic correction do?

15. Is the space in:
1

2 \centerline (Centered)
3

necessary - , optional - , or in error

- ?

16. What will T$jX output from the following
code fragment?

1

2 \centerline Center This!
3

17. Describe the output of this code fragment?
1 \bf (this is bold text) . . .

18. What is a widow?

19. How do you place the page number flush
right in a running head?

20. How do you keep the left margin fixed and
move the right margin to the left by 0.5in?

A new TFJ user has decided to create some
macros. The following definitions are OK or BAD!
Mark each of these OK or BAD, and indicate what
is wrong with the BAD ones. Assume the plainest
of m s .

21. \def \ A l i . . .)
22. \def \A-OK(. . .)
23. \def \Test(. . .3

24. \def \\(. . . 3

25. \def \lo{. . .)
There are ten visible ASCII characters that 7l&X
has reserved for special uses. For example, the - - -

dollar sign is used to toggle mathematics mode.
List the other nine and their use as illustrated.

26. $ toggle math mode
27. -

The =test - Level Two

1. What mode is l$J in when building a
paragraph?

2. How do you end a \topinsert?

3. If l$J hyphenates a word badly, how do you
fix it?

4. What happens to a paragraph that has both
normal indentation and a \hangindent
specification?

5. What will \line(A Short Line) look like in
a normal page?

TUGboat, Volume 10 (1989), No. 2

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The

1.

2.

3.

4.

Why won't a field like (\hf il x \hf il) be
centered in a \ se t tabs environment?

How can you get a black square, like m, in
the middle of a line of text?

Consider the code fragment:
1 ...
2 \e ject \vskip2in
3 How now brown cow.. .

Where is the "How now brown cow" placed
relative to the top margin of the page?

How do you move a \vbox to the right one
inch?

How do you reduce or prevent widows?

What is a penalty?

What happens when you forget to end a
\footnote?

What happens when you try to end a
document without a proper end to an insert?

What happens if you have a blank line in
display math mode?

How is the \ tabskip parameter used?

How are the \ l ineskip and \ l ineskip l imi t
parameters used?

What actions should you consider to correct
the conditions that caused the warning
Overfull hbox?

What actions should you consider to correct
the conditions that caused the warning:

1 Underfull \vbox has occurred
2 while \output i s ac t ive

Show how to assign the control sequence \8
to a new font L'cmss8" that has not already
been defined in p l a in m.
What is the meaning of # I in a macro
definition?

Arguments to macros may be delimited or
undelimited. Describe how l&X determines
arguments in the two cases. How do users
notice the difference?

=test - Level Three

How is l&X's escape character determined?

What is the name of the control sequence
that can be used to accomplish the function
of the left brace, (, inside a macro that will
not have its matching right brace, I?
What are the names of the parameters that
specify the amount of glue above and below
display math?

QX treats several consecutive spaces as one.
Thus the usual practice of keyboarding 2

spaces after periods does not insert extra
space at the end of a sentence. How does
TEX know to put more than an ordinary
interword space at the ends of sentences?

Are the leading spaces in \halign entries
significant?

Are the trailing spaces in \halign entries
significant?

Are the leading and trailing spaces in
\ se t tabs entries significant?

How serious will underfull vbox badness 3412
be?

Build a macro called \xx that has one
parameter delimited by a semicolon. The
macro is to center its one parameter and set
it in bold.

What happens when \def \p#l (\ i t \center l ine#l)
is called with \pol234 ?

The following code fragment is an exercise in
being careful:

1 \newcount\cntr
2 \advance\cntrl\the\cntrl

What is the resulting value of the counter?

How can you zero all the dimensions of boxo?

What information is in a tfm file?

What information is stored in a pk or gf file?

How are \vtop and \vbox similar? How do
they differ?

A two column macro package works by
gathering enough information for both
columns before invoking the \output routine.
What is the name of the TEX primitive that
is probably used to determine each column?

What does \ fu tu re l e t allow you to do?

What m commands would you have to use
to automatically build an index and/or table
of contents to a separate file, and print it in
the output?

What happens when you underestimate the
number of lines in a \parshape command?

Under what conditions can you use the
built-in fonts of an arbitrary printer?

What characteristics should you look for on
a page of output to try to determine if the
page was prepared using PageMaker, troff,
..., or l&X.
What element(s) of is (are) case
insensitive?

TUGboat, Volume 10 (1989), No. 2

TITLES and PREREQUISITE STRUCTURE

T@ Courses

T@LlOO (5 days)

Beginning 'QX

m . 4 0 0 (3..5 days)

Output Routines

'QX.490 (2..5 days)

Special Topics and Seminars

UTfi Courses

I4T~X.100 (5 days)

Beginning I 4 T S

I4Ts.210 (5 days)

Intensive I~TEX

JATfi.400 (2 days)

I4T$ Style Files

METAFONT Courses

METAFONT.100 (3..5 days)

Logos via METAFONT

1

Font via METAFONT

TUGboat, Volume 10 (1989), No. 2

- - - -

I Dimensions. Terminology I Stretchability / Shrinkability 1 Output Routines

TEX Courses - Contents

Beginning

Boxes

Primarily in Error Messages
Boxes have height, depth, and
width

Rules
\hrule

Fonts

What is a font, CM family
What does TJ$ needs to know
Other fonts ?

Paragraphs

Paragraphs, especially
\parindent, \parskip, \par

Intermediate

Lines

Advanced
Typesetting

Typesetting Milieu, Design and
Typesetting Dimensions,
T@ and WYSIWYG

Design

margins, typesize,
\ le f tskip, \r ightskip,
\narrower, \parindent
Programming

Public domain, why pay, WEB
Use of ASCII keyboard
How it runs

'QX and Other Things
rn vs. UT$ vs. Script us.

us. Pagemaker us. WORD . . .
Markup Language

They exist, What is p l a in
Primitives vs. Macros
Syntax

I), do they surround or follow

Spacing

Significant / Insignificant Spaces
Tilde, Slash, Space
\hskip, \vskip, \baselineskip
Glue

Negative glues

moving boxes around
\ ra ise , \lower, \moveright, . . .
What \hbox \vbox are
Stephan's \hboxr \vboxr

\hrules and \vrules au naturel
\?rules for \ s t ru t s
\?rules for boxes

What are sources of fonts
Scaling and metrics
pk us. pxl us. gf
Proprietary fonts, their limits

\narrower, \hangindents, \items

\centerl ine, \ le f t l i n e . . .
\ l i ne

Math
Display math as paragraph
suspender
In-line math

\ spl i t topskip , \splitmagstep,
\ v sp l i t , \padjust, \unhbox,
\unvbox

Understanding Stephan's boxing

Introduce METAFONT
TFxxxxx PKxxxxx etc.

\parshape, \prevgraf

What you should unlearn
(Underlines, . . .),
Magnification

penalties and affecting design,
\looseness, \ tolerance

It is a programming language

What can and cannot be
imported and exported

line / paragraph interactions +
meaning

Subscript Superscript
(incl use as footnote numbers)

\eqalign and other math stuff

Database driven design, interface
between T@ and other worlds,
\pagegoal, \prevgraf

WE and internal structure

everyline?

Broken equations
Special math spacing
Special math fonts

plain.tex as info source,
d,IMS-rn, UTFF what - why?

Spaces that behave unexpectedly

\vglue, \kern, \hbox, \vbox,
\vspace, \vglue, \hspace,
\thinspace

Designing your own

Why \obeylines works like it
does, \obeyspaces, verbatim

letterspacing, sidebaring

TUGboat, Volume 10 (1989), No. 2

TEX Courses - Contents

Beginning

Macros as shorthand

Debugging

Inserts
I \ topinser t I \midinsert, \pageinsert,

Macros
Intermediate

- . Macro structure and exceptions

Macro with parameters,
delimiters

Simple debugging

Putting in artificial ends . . .

No mention other than \$

confusion

I insert interaction
Chars

Advanced

\unskip, \outer, \xdef, \gdef
Combinations of macros

Purposeful errors
\showthe, \showbox, \show

\ b o d e us. \mode what and how
Math modes, Restricted modes

\ t rac ing. . . and \showbox
Visible boxes, \ t r ac inga l l

\ i fmode . . .

I No Mention I \def\xx.(\char..) I Redefine Chars

Graphics and 'I]EX

I I create \newcount, \newdimen I \ fu ture le t , \expandafter, I

Genuine obscurities

Create an alignment
Alignments and Rules

All penalties - What they really
do

[We had nothing?]

Errors

Space for graphics, \boxit

Grouping simple existing \ i f s

I \af terassignment, \noexpand I
Pot Pourri-Anomalies, Etc.

and SGML
dvi and Postscript
Graphics, availability, . . .

1 / 0 Management and Files
I Comments, Documentation etc. I \input % to get rid of spaces I writes index table of contents

Modes

Flesh wounds, Fatal errors,
Misunderstandings
Which can be ignored ?

Tabs and Alignment

\set tabs, \ tabalign, \c r
Copy alignment from W b o o k
and Use it

Penalties

Notice that they exist
\hyphenpenalty

Output Routines

No mention except for
\hoff se t , \voff s e t , \footnotes

P i C m other things available,
Manual, UT+ Circle and Line

Fonts, Rounded Boxes

When errors can be understood

Copy an alignment and modify it
\hidewidth, \omit, \ s t ru t , rules

Penalties in formatting
\goodbreak . . .

\footnotes with numbers

Tokens
I No mention I No mention I Explain tokens

Font Families
I No mention (Mention I Understand and create

Control Structures

\begingroup, \endgroup, \ i f s
modifying existing \ ifs ,

\new. . . , \bgroup, \egoup,
\ repeat , creation of \ i f s

TUGboat, Volume 10 (1989), No. 2

UT$ Courses - Contents

Typesetting
I UT'T, Typesetting milieu, Design, Dimensions I What you should unlearn (underlines, . . .)

Beginning

Design
I margins, typesize, \ lef tskip , \rightskip, I Penalties affecting design, \looseness, 1

Intermediate

I \narrower, \parindent I \tolerance

UWT and Other Things

- .--

I Dimensions, Terminology I Stretchability/Shrinkability, Negative glues
Boxes

UT$ vs.Script vs.UT$ vs.Pagemaker vs.WORD
. . .Public domain, written in m ,
Use of ASCII keyboard, How it runs

Spacing

I Only in error messages I \mbox, \makebox, \fbox, \f ramebox
Rules

What can and cannot be imported and exported
d#m, UT$ - what do they do, and

compare to a markup language

Significant/Insignificant spaces, Tilde, Slash,
Space, \hspace, \vspace, \hf il

Syntax
I {I, [I 's, and \begin - \end I Spaces that behave unexpectedly

*'d as opposed to not

I In-line and display I [Much more]
Environments in general

Glue

Fonts

What is a font, CM family, What does UT$ need
to know, Governed by logical structure

[Some objects (tables and figures) float
Pot Pourri-Anomalies, Etc.

I What is IATfi's meaning of objects?

\newfont is rare, math fonts are different

-
I \picture and more on the others

Styles
I Discuss article, book, letter, report, etc.

Definitions
I Commands (macros) as shorthand I \newcommand, \newenvironment, \renewcommand I

Debugging

[Simple debugging, putting in artificial ends . . . I Purposeful errors, \shouthe, \showbox, \show 1
Errors

Paragraph Environments
I Quotations, centering, verbatim, verse I \narrower, \hangindents, \items

Line Environments
[flushright, flushleft, \raggedright (Linelparagraph interactions & meaning

List Environments
(Itemize, enumerate, description I [More]

Math Environments

Flesh wounds, Fatal errors, Misunderstandings,
When not to worry about content

Special UTfi errors 1
Tables

I Arrays and tabular alignment
Penalties

Notice that they exist, Errors fall through to 7QX I Penalties in formatting
1 / 0 Management and Files

I Comments, Documentation, etc. I \includes 1
Inserts

TUGboat, Volume 10 (1989), No. 2

H 1 - m Cutting & Pasting

Michael Ballantyne
Michael Spivak
Yoke Lee

The Problem

As more and more macro packages are written
for T@, the problem of exceeding W ' s memory
capacity becomes more common and more acute.
In fact, versions of T@ with larger memory have
already been created to help alleviate this p rob
lem, but such versions don't run on the personal
computers that most of us have.

Some macro packages try to skirt the problem
by selectively loading only needed subsets, but
this strategy can fail when many different sorts
of constructions are required in the same file. It
remains true, however, that different collections of
macros are normally required for different parts of
a file, with insuperable problems arising only when
several different collections need to be loaded at
once.

For example, a large macro package might suc-
ceed in typesetting individual complicated tables,
but cause W ' s memory limits to be exceeded when
used in conjunction with other macro packages, or
when numerous tables have to be held over for
inserts. In this case, as a last resort, one could:
(1) make a special file to individually typeset all the
tables required for a book or paper, one to a page;
(2) leave the proper amount of blank space in the
main file for each table; (3) print the two files, cut
the tables from the special file, and paste them into
the blank spaces in the main file.

Though an analogous procedure is required
when a photograph has to be inserted in a book,
it seems singularly unattractive when the inserted
material is just more text that has already been
typeset by W. But some of the allure may
be restored when the computer is used to do the
cutting and pasting.

The DVIPASTE Solution

Our "solution" involves a little macro package,
dvipaste. tex, and a C program, dvipaste. c. In
the case of the table example discussed above, we
would first make a file, say t a b l e s . tex, of the
form

\input dvipast e
\input (macros for tables)
\setboxO\hboxC(table 1))
\sendout(\boxO)
\setboxO\hbox((table 2))

When this file is run through it will produce
t ab l e s .dvi, and an auxiliary file t ab l e s .dat.
Printing tab les .dvi will produce the various ta-
bles, one to a page, each positioned at the bottom
left corner of the page. The file t ab l e s .dat will
contain a sequence of lines like

where line n contains the height, depth, and width
of the table on page n.

Now the main file, say book. tex, will also have
\input dvipaste at the beginning, but here each
table will be replaced by

\paste(tables)(n)

where n is the number of the page on which
the desired table is printed in the t a b l e s file.
A \paste(. . .I(. . .) can appear anywhere, for
example, as

etc. T@ will replace each such \paste command
with a blank box having exactly the right height,
depth and width (which it reads hom t ab le s . dat) ,
at the same time inserting an informative little
\special , which most drivers will happily ignore.
When book. dvi is printed, exactly the right amount
of space appears for each table.

It would appear that we haven't done much
more than the procedure outlined in the previous
section, except that the amount of blank space for
each table has been measured for us by TEX. Now,
however, we can use the dvipaste program,

dvipaste book newbook

to use the file book.dvi to produce a new file
newbook.dvi. In creating this new .dvi file,
dvipaste will examine the t ab l e s .dvi file and
extract . dvi commands to be placed at the position
of the various \special 's that were inserted by
the \paste's. These extra . dvi commands have
the effect of causing the tables to be printed in
precisely the places occupied by blank spaces in
book. dvi. Thus, newbook. dvi will print exactly
what book.dvi would have printed if the table
specifications had been part of book.tex (which is
not to say that newbook.dvi is exactly the same
file that book. dvi would be).

Although this solution may not be ideal, it
involves only an insignificant amount of extra time,

TUGboat, Volume 10 (1989), No. 2

not to say that newbook.dvi is exactly the same
file that book. dvi would be).

Although this solution may not be ideal, it
involves only an insignificant amount of extra time,
since dvipaste runs much quicker than m , and lit-
tle extra work. It's true that an extra file is required,
but this isn't an overwhelming inconvenience-it
might even be more convenient to keep all the
tables in a separate file. This illustration used a
single auxiliary file t ab l e s . tex, but any number
could actually be used.

How it Works

\sendout#l, defined in dvipast e . tex, writes a line
to the .dat file giving the height, depth and width
of #I , and then adds a \vskip down to the bottom
of the page, followed by

\specialIbeginpaste : 3%
\noindent \rlap(\smash{#l3>%
\specialCendpaste : 3%
\vrule he ight l sp widthlsp depthopt
\ e j ec t

The \vrule is obviously not meant to be seen.
The only important thing is that it's there, more
precisely that it's here, right back at the point where
the \noindent began. This means that the .dvi
commands between the two \special 's will create
the table seen on the page, starting and ending at
the lower left corner of the table.

On the other hand, \paste((subfile) >Cn) ex-
pands to

\specialCdvipaste : (subfile)n3\vbox. . .
where the \vbox. . . is a blank box with the height,
depth and width given on line n of (subfile) .dat.
(The first \paste with the argument (subfile) causes
T@ to open the file, and store all the information in
an appropriate place; subsequent uses merely ferret
out that information.) The dvipaste program
looks for such specials, and replaces them by the
relevant . dvi commands on page n of (subfile) . dvi.
Of course, it's a bit more complicated than that,
because each font declaration in a .dvi file must
be made just once (before the postamble), so font
declarations from a (subfde) . dvi must be deleted
if they have already appeared in the main file,
renumbered if they declare new fonts, etc.

Extensions

Although current drivers will presumably ignore a
\special.Cdvipaste : 3 command, they don't have
to! In fact, screen and printer drivers could perform
the same maneuvers as dvipaste. A screen driver of

tables inserted, without using dvipast e. dvipast e
itself might be reserved for the final run, before the
. dvi file is sent off to the typesetter.

Availability

dvipaste. c and dvipaste. t ex are copyrighted in
the GNU spirit (they are distributed for a nominal
charge, and must be passed on according to the same
terms). For a standard IBM 360K double-sided
diskette containing dvipaste . tex, dvipaste . c and
an MS-DOS executable dvipaste . exe, send $4.00
to mplora tors , 3701 W. Alabama, Suite 450-273,
Houston, TX 77027.

this sort would preview the complete book, with the

TUGboat, Volume 10 (1989), No. 2

Another Dingbat Idea
b 1 take pen in hand to describe the design and
coding of a simple dingbat. I hope that this will
inspire all you would-be METAFONTers to try your
hands, heads and keyboards at creating entries for the
Dingbat Competition, announced in the last issue of
TUGboat.

I started with a sketch of a left hand holding a quill
pen (left, because I had to draw with my right) and
marked what I figured would be the necessary points
to describe the figure with METAFONT. Of necessity,
the figure is simplistic, somewhat cartoonish; remem-
ber that all the details that you lovingly describe on
your initial large sketch (mine was approximately 180
points high and 480 points wide) must survive down
to 10 points!

The next step was to lay out a grid and orient
the figure on it relative to the baseline and width.
Since I do not want any of the character to lie under
the line of text next to which it occurs, I oriented
the bottom of the hand and the cuff exactly on the
baseline. However, I did add a wee bit of descender
for the reverse video case. And there's no need for

any tricky machinations in terms of part of the figure
lying to the left of the line x=O or to the right of
x=charwidth; the apparent width of the character
is the real width we want T@ to know about.

My next step was to divide the total width and
height into some reasonable number of units. One
caveat here: don't make the grid too fine, or you'll
tend to overdo the number of points you select as
key points and over-analyze the character. Think
of the design process as a collaborative effort with
METRFONT, rather than as an attempt to control it.
As Don Knuth has said, some of the most fruitful
parts of design can occur when you let METAFONT
"have its own head".

Now, I selected my key points. I cannot stress too
much the need to be a little freewheeling from now
on. The fact that I believed a point was key at this
early stage of the design process ought not to force me
to keep that point in later on. In a bit, you'll see the
code for the figure, where I have left the numbering
of the points as I originally did them to illustrate
this. You'll notice some gaps between 230 and 241.

FIGURE 1 : Proofmode drawing of character.

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2 167

My original sketch involved a much fancier feather
on the quill, which just didn't work at a design size of
10 points. I opted for a plainer feather, and removed a
number of points. Figure 1 shows a proof mode of the
characters as finally produced, with the numbering
of the points as shown in the code.

I was now ready to start writing stuff that resembles
METAFONT code; and this is it:

% define points for hand
xi=10.75/16w; y1=3/8h;

x2=8.5/16w; y2=2.35/8h;

x3=x9=10/16w;

y3=1.75/8h; y9=0.35/8h;

x4=11.75/16w; y4=2/8h;

x5=12.65/16~; y5=2/8h;

x6=12.95/16w; y6=2.25/8h;

x7=12.125/16w; y7=1/8h;

x8=11/16w; y8=0.65/8h;

x10=8.125/16~; yi0=0.25/8h;

x20=9.25/16w; y20=2.95/8h;

x13=8.5/16w; y13=4.35/8h;

x14=11/16w; y14=4/8h;

% two points on the wrist that touch
% the cuff, and the cuff
xIi=x12=~15=~18=5.35/16~;

yll=0.5/8h; y12=3/8h;

yi5=0; yi8=3.25/8h;

x16=x17=3/16w; y16=yi5; y17=y18;

% define the button
xl9=x23=good.x 4.25/16w;

yl9=good.y 0.25/8h;

y23=yi9+0.5/8h;

x19=1/2 [x21 ,x22] ;

x21=x22-(y23-y19);

y21=y22=1/2 Cy19 ,y231 ;

x25=15.5/16w; y25=0;

x26=14.5/16w; y26=0.25/8h;

penpos27(quillWidth150);

penpos28(quillWidth,50);

penpos29(quillWidth,50);

penpos4l(quillWidth,50);

z28=z4; x29=x20;

x27=13.5/16w;

z29=whatever [z25,z281 ;

z27=whatever CzX, 2281 ;

x30=0.5/16w; y30=h;

x39=4/16w; y39=3.75/8h;

x4l=7. 75/I6w; z41=whatever [z29,z27] ;

You'll guess that my grid was 8 units high and 16
units wide. You'll note, too, that the leftmost point

is just a bit greater than 0, and the right a bit less
than w; this will account for sidebearings at either
side of the character. Most all these points are stated
in terms of the grid, rather than in terms of relation
to one another; but remember to use such relation-
ships whenever they are pertinent to the design. For
example, the last two lines above define where x41
and y41 lie; but what is important is not the precise
location of y41 on the grid, but the fact that the
point lies somewhere on the line between 229 and
227. Needless to say, don't be shy about articulating
the precise nature of these relationships in comments
in your code.

Once I had established the location of all the key
points on the character, I was reminded of one of my
favorite Monty Python sketches: a Shakespearean
actor elucidates on his craft thus: "It's not just a
question of the number of words. You have to get
them all in the right order." This is pretty much the
next step in our design process: I have established
a reasonable number of points, and now have to get
them all in the right order, by writing the code to
connect them in pleasing ways. This is the code I
came up with:

% draw the hand
pickup pencircle scaled penwidth;

draw zl---z20<left)..z2..tensionl.6..z3..z4

tz4Cleft). .tension I .6. .zi;

draw z12..tension 1.6..~13..

tension 1.8. .z14..

tension 1.6..~6..~5..<left)z4;

draw z4<right)..z7..~8..tension 1.3..z9..

tension 1.4..ziO..tension 1.4..<up)zil;

draw z5<(I,-I))..<(-I,I))z7;

draw z8<down)..<up)z9;

% draw the cuff
draw 218--217--216--215--cycle;

% draw the button
draw z19..~21..~23..~22..cycle;

% draw the quill
filldraw z27r--225

&z25<z28r-z27r>

..tension 2..((-1,-1))z26

tz26..<~281-z271)z271

tz271--cycle;

penstroke z29e--z27e;

fill z29r---z4ir..z30

&z30<z29-z30)..z39..tensionl.4..z291

tz291--cycle;

Niceties like amount of tension between points or
direction desired entering or leaving points are (at

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2

least in my experience) only rarely coded correctly
first time out. This is where you and METAFONT get
to work closely together. Draft some code, see what
METAFONT does with it, and then tune on the basis
of what you see. Often, you'll be pleasantly surprised
with improvements that sneak into the design as you
work.

But, of course, the code above is not yet ready for
a collaborative effort with METAFONT. We have to
attend to some housekeeping first. If you start the
lines above with

and conclude them with endchar; and preface them
with some code that specifies font size, width, pens
and so on:

%% Pen and character box info.
%% Set mode for device to print on
\mode=localfont;

mode-setup ;

f ont-size 60pt#;

em#:=60pt#; cap#:=.95em#;

desc#:=.025em#; w#:=16/7em#;

overshoot#:=.025em#;

penWidth#:=em#/60; quillWidth#:=em#/20;

define-pixels(em,cap,desc,w,overshoot);

def he-blacker-pixels (penwidth) ;

define-blacker-pixels(quil1Width);

and since you'll probably at some point want to see a
proofmode character printed out with all the points
numbered, include the lines:

However, with the mode set above, you won't get
a proofmode character, but a character suitable for
printing on your local device, namely:

So far, so good. But, I knew I wanted a right hand
version as well (in fact, all I really wanted was the
right hand version!) I did not even briefly consider
recalculating the positions of all the points to flip the
character. I could have simply copied all the code
for the character above, given it a new code number
and concluded it with a rotatedabout; but it seemed

much tidier to make the code for the dingbat proper
a macro. So, start the lines of code describing the
dingbat not with beginchar but with

def Handwithquill=

and conclude them, not with an endchar but with

enddef

The code for the character with code " A shown
above is then condensed to

beginchar("A",w#,cap#,desc#);

HandWithQuill;

endchar ;

and a mirror image version (the sought-after right
hand dingbat) is coded as

beginchar("~",w#,cap#,desc#);

HandWithQuill ;

currentpicture:=currentpicture

ref lectedabout ((0,O) , (0, h))
shifted (w , 0) ;

endchar ;

Since it is so easy to manipulate the currentpic-
ture, we might as well produce a reverse video of the
original left hand dingbat, with this code:

beginchar("C",w#,cap#,desc#);

HandWithQuill;

cullit ;

picture savecurrent ;

savecurrent=currentpicture;

clearit;

% blacken the whole character box
fill (0,-desc)--(w,-desc)--

(w, cap+overshoot)--(O, cap+overshoot)

--cycle;

currentpicture:=

currentpicture-savecurrent;

endchar ;

(Note well the cullit and clearit!) and produce

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2

and code a right-handed version like so:

beginchar("DU ,w#, cap#,desc#) ;

Handwithquill;

% Flip the image first
currentpicture:=currentpicture

reflectedabout ((0,0), (0,h))

shifted (w,O);

cullit ;

% Save the flipped image
picture savecurrent;

savecurrent=currentpicture;

clearit;

% Blacken the character box
fill (0,-desc)--(w,-desc)--

endchar ;

for the result

I hope that this description of the design and cod-
ing of a simple dingbat will encourage the reader to
attempt one, or better yet, several. While the de-
sign of a complete font with METAFONT is a difficult
and sometimes tedious process, the creation of a sim-
ple dingbat and some handy variations on it is not.
It provides an enjoyable introduction to the use of
METRFONT, and might just produce a dingbat that
the reader can use to enhance and to personalize
T a e d documents. A&

ERRATUM: "A Handy Little Font", Font Forum, TUGboat, Volume 10, No. 1

I regret that, inadvertently, I did something un-
derhanded in my last Font Forum - to wit, I neglected
to make the left and right braces visible in the code.
My apologies to all who heeded the largish admo-
nition at the end to "TRY IT", who were rewarded
only with surly messages from METAFONT.

The macro for the whole handpointing character
should read like this:

%Hand pointing right

def handpointing=

% define points for thumb and cuff
xi=x3=1/2 [OD 1/15w] ;

x2=~5=~4=x23=4/16w;

yi=y2=iO/l5 [-desc,cap] ;

y3=y4=2/15[-desc, cap1 ;

y5=6/7 Cy4, y21; y23=i/7 Cy4, y21;

x6=9.75/16w; y6=y2;

x7=11.25/16w; y7=4/5 Cy23, y51;

x8=8.75/16w; y8=1/4[y7, y61;

xi7=14.5/16w;

y17=9.25/15 [-desc ,cap] ;

% find a point at a certain height on
% the curve from 26 to 27
path dummycurve; path dummyline;

x.dummy=l/2[x8,x7]; y.dummy=yi7;

x9=7/16w; y9=y8;

x10=6/16w; yiO=2/5Cy23,y51;

% find another point on the
% curve from 26 to 27
x.dummy2=x5;

y.dummy2=yi6;

x.dummy3:=1/2[~8,~71 ;

y.dummy3=y.dummy2;

dummyLine:=z.dummy3--2.dummy2;

z12=dummyCurve intersectionpoint dummyline;

% define points for curled fingers
x15=~14=~19=~22=1/3 [x18,x17] ;

x13=x20=x21=x12;

yi5=yi6;

yi3=y14=y15-(y17-y16);

y2O=y19=y13-(yi7-yi6);

y21=y22=y2O-(yi7-y16);

% pick up pen and draw whole image
pickup pencircle scaled thinline;

draw zi--22--24--23--cycle;

draw z5((iD1))..tension 1.5..z6

%z6~z5-~2)...z7..tension 1.4..z8

&z8(down)..tension3..z9

&zg..tension 1.8..(left)zl0;

draw z18--zi7Cright~..zI6--~7;

draw z7--zi5(right)..zl4--zi3(left)..zl2;

dummyCurve:=z6Cz5-z2)..~7..tensionI.4..z8; draw zl4Crightl..zl9--z20Cleft)..z13;

dummyLine:=z.dummy--217; draw z19(right)..z22--z21<left)..z20;

zl8=dummyCurve intersectionpoint dummyline; draw z21((-1,-i))..tensioni.5..223;

x16=x17; yi6=y7; enddef ;

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 2

Chess Printing via METAFONT a n d 'I&X

Zalman Rubinstein
University of Haifa

Every chess fan knows the pleasant difference be-
tween seeing an interesting chess position or a
chess problem printed, and looking at the standard
description of the pieces by means of an 8 x 8
coordinate system a1 to h8. To help bridge this
gap we have written a M ETA FONT- 7QjX program
which enables one to print chess positions with ease,
and to incorporate these positions with an arbitrary
q$ output.

The implementation is based on the idea of
dispensing with the creation of a separate chess
board but rather in integrating the chess board
with the chess pieces, thereby multiplying their
number by two. We shall denote the chess pieces
by the letters K , Q, R , B , N, P, respectively. The
dark square will be designated by the letter D. In
this notation the king appears in four shapes: K ,
KD, DK, DKD, meaning the white king on a
white square, the white king on a dark square, dark
king on a white square and finally the dark king
on a dark square. Similarly for the queen, rook
bishop, knight and pawn. It follows that the twenty
four METAFONT designed pieces along with a single
dark square suffice to assemble any chess position.

The shape of the chess pieces is based on
simplicity rather than on artistic design at the
present with the hope that improvements will be
made at our METAFONT seminar this year.

It will suffice here to show the METAFONT code
for the white pieces K, Q, R , B , N , P and the
dark square D since all the other figures are easily
deduced by METAFONT geometric and set theoretic
operations such as fill, unfill, draw, undraw,
cullit. The basic font was designed at 8pt size
scaled 4000 (see illustration 1) on PC equipment.
A smaller version scaled 3000 was also prepared
(see illustration 2). The first approximation was set
up on square paper with each box of size 16 x 16

squares.
Following is the METAFONT code for the basic

figures mentioned earlier.

beginchar ("KING", 8pt# ,8pt#, Opt#) ;

h#: =8pt#; def ine-pixels (h) ;
pickup pencircle scaled 0.2pt;

pair w [I ;
w1=(2.5,0.5); w2=(2.5,1); w3=(0.5,11);

w4=(8,14); w5=(15.5,11); w6=(13.5,1);

w7=(13.5,0.5); w9=(6.5,14);

w10=(9.5,14); wll=(8,3);

w8=whatever Iw6, w5l ;

wl2=whatever Cw2, w31;

ypart w12 = ypart wll = ypart w8;

for i=l upto 12: z [il =h/l6*w Cil ; endf or

draw 29--210;

draw halfcircle scaled(3*h/l6) shifted 24;

draw 212--28; draw 22--26;

draw 21-27; draw 211--24;

draw 25--24;

draw ~1--~2--~3--~4--~5--z6--z7--cycle;

endchar ;

beginchar ("QUEEN", 8pt# ,8pt# ,Opt#) ;

w1=(3,0.5); w3=(2,1); w4=(1,13);

w5=(4,2); w6=(8,13); w7=(7.5,14.5);

w8=(8,15.5); w9=(8.5,14.5);

w10=(12,2) ; wll=(I5,13) ; wI2=(14,1) ;

wI4=(13,0.5);

ypart w2 = ypart w13 = 1;

wl-w2 = whatever* (w5-w4) ;

wl4-wl3 = whatever*(wlO-wll);

for i=l upto 14: zCil=h/l6*wCil ; endfor
draw z1--z2--z3--z4--z5--z6--~7--~8--

z9--~6--z10--zl1--zl2--zl3--zl4--cycle;

endchar ;

beginchar ("ROOK" ,8pt#, 8pt#, Opt#) ;

wl=(3,0.5); w2=(3,1.5); ~3=(4,1.5);

w4=(4,14); w5=(3,14); w6=(3,15.5);

~7=(5,15.5); w8=(5,14.5); ~9=(7,14.5);

w10=(7,15.5); wl1=(9,15.5);

w12=(9,14.5); w13=(11,14.5);

w14=(11,15.5); w15=(13,15.5);

w16=(13,14); w17=(12,14); ~18=(12,1-5);

w19=(13,1.5); w20=(13,0.5) ;

for i=i upto 20: z[il=h/l6*w[il ; endfor

draw ZI--Z~--Z~--Z~--Z~--Z~--Z~--Z~--

29--210--~11--z12--~13--~14--~~5--
~16--~17--~18--~19--z2O--~y~le;

draw 23--218;

endchar ;

beginchar("~~~~~~",8pt#,8pt#,0pt#);
w1=(5.5,0.5); w2=(10.5,0.5);

w3=(10.5,1); w4=(11.5,1);

w5=(11.5,5); w6=(8,14); w7=(4.5,5);

w8=(4.5,1); w14=(8,14.5); w9=(5.5,1);

w10=(7.75,5) ; w11=(8.25,5) ;

w12=(8.25,9) ; w13=(7.75,9) ;

for i=l upto 14: z[il=h/l6*wCil ; endfor

draw ziO--z11--~12--~13--~y~le;

TUGboat, Volume 10 (1989), No. 2

draw 21--22--23--24 . . . 25(up) . . . 26 &

26 ... z7<down) . . . 28--29--cycle;
draw 29--23;

draw fullcircle scaled (1*h/16) shifted 214;

endchar ;

beginchar("K~1~~T1',8pt#,8pt#,0pt#);

w1=(4.5,0.5); w2=(14.5,0.5) ;

w3=(14.5,4); w4=(12,10.5); w5=(5,15.5);

w6=(4.8,14); w7=(3.5,9) ; w8=(2,3.5) ;

w9=(4.5,4.5); w10=(8.5,5); wl1=(5.5,2);

for i=l upto I1 : z [i] =h/l6*w [i] ; endf or

draw 21-22 & 22. . 23(up). . 24(25-22). .25 &

~5(~2-z10)..z6Cdown3..z7Cdir 2503..

(z8+(1.5,3))(dom)..(z8+(3,0))(right>..

z9(dir 30)..Cright)ziO & zlO<dir 2403..

zil(z1-zlO)..<dom)zl;

endc har ;

beginchar("chssqrM ,8pt# ,8pt#, Opt#) ;

pickup pencircle scaled 0.3pt;

k:=8;

for i=l upto k:

draw (w/(2*k)*(2*(k+l-i)-l) ,w)--

(O,w/(2*k)*(2*i-1)) ;

endf or

for i=1 upto k:

draw (w,w/(2*k)*(2*(k+I-i)-1) 1--
(w/(2*k)*(2*i-l) ,0) ;

endf or

picture W,Z; cullit; Z=currentpicture;

clearit ;

fill (0,O) -- (0, h) -- (w ,h) -- (w, 0) --cycle ;
W=currentpicture;

addto Z also W; cull Z keeping (2,2);
currentpicture:=Z;

endchar ;

To accommodate the chessfont a short ?IEX
macro enables printing the initial position in chess
as follows:

In a general chess position the white squares can
be denoted by \W or by \u and the black squares by

\D. \whit echessline describes a horizontal chess
line whose leftmost square is white, and similarly
for \darkchessline.

Obviously 'I'@ has the capability of producing
a macro based on algebraic chess notation with only
the pieces on board to be specified. We have not
tried to do that.

It is to be noted that the program chssqr
for the dark square is called in all pieces on dark
squares as a subroutine. Because of the geometric

design, in order to produce a new version of the
twenty four chess pieces, it is only necessary to
give the detailed programs of the six basic pieces
with the rest following, as described earlier by

transformations and set theoretical operations.

We shall conclude this note by listing the W
macro code and printing the illustrations mentioned
earlier.

\font\chess = chesset scaled 4000

\font\chessm= chesset scaled 3000

\def\ifundefined#l(\expandafter

\ifx\csname#l\endcsname\relax~

\def\beginchessC\relax\begingroup

\ifundefinedCchess) \message<%

Undefined font , replaced with cmtt 10)
\let\tt=\tentt

\else \def\tt<\chessl\fi

\tt\more 3

\def\more<$$\vbox\bgroup

\off interlineskip\tabskip=Opt

\hrule height Ipt

\halign\bgroup

\vrule widthlpt

.............................

\vrule widthlpt\cr)

\def\endchess<\egroup

\hrule height Ipt

TUGboat, Volume 10 (1989), No. 2

This is the initial position in chess!

Illustration 1.

0 Professor Zalman Rubinstein
University of Haifa
Department of Mathematics and

Computer Science
Mount Carmel
Haifa 31999 Israel
Bitnet: rsma407ahaif auw

Mate in three. Illustration 2.

My 64K chess computer solved it in twenty seconds.

TUGboat, Volume 10 (1989), No. 2

Guidelines for creating portable
METAFONT code

Don Hosek

The community is currently starved for new
public domain meta-fonts and chances are that no
matter how useless you think that some meta-font
you may have created might be, there are at least
forty people "out there" who would want it.

So with this the situation and chances that your
code might find its way to operating systems vastly
different than your own, I would like to offer the
following guidelines to METAFONT designers for en-
suring that their code can be run on other systems
with a minimum of effort.

1 Internal documentation

METAFONT sources can go a long way and be trans-
mitted in many forms. Just because you might
send your source out in some encapsulated format
(e.g., tar or arc) doesn't mean that they will al-
ways be redistributed as such. More than once I've
found myself with a file with an ambiguous name
like newzm.mf and had no indication what it was
part of or intended for. I would recommend that
each source file you create contain the following in-
formation:

The name of the file (this often can get lost).

The last revision date. If you are modifying
an existing METAFONT file, you should retain
the old file's revision date and add your own
along with a description of all changes made.
This will allow easy updates to your file if the
original file is later revised.

The name of the package that the file is part of
(e.g., "CM Pica", "Pandora", etc.).

Your name. This will make it easier for later
users to track you down for complaints/sugges-
tions/whatever. You may also want to include
your current institutional affiliation and e-mail
address as well.

A brief description of the purpose of the file.
This will make things easier on the individual
who later attempts to follow the logic of your
code.

None of these are necessary for allowing a META-

FONT file to run other systems, but they will serve
as an aid to users on other systems attempting to
install your font.

Pierre MacKay has suggested the scheme shown
in Figure 1 for this internal documentation (based
on the file comments used by J. E. Pittman).

2 File names

The most important consideration when selecting
filenames is to do your best to avoid file name con-
flicts. METAFONT1s rule for selecting a file is to look
for the indicated file in the current directory, then
to look in MFINPUTS for the file. Personally, I believe
that the current directory when METAFONT is run
should be the one on which the METAFONT output
will ultimately end up, so in that case, we are left
with essentially a flat file space.' Thus it is essential
to try not to have file name conflicts.

While in theory, this is a nice principle, it might
be asked, "I can easily check my names against fonts
that I have, but how can I be sure that I won't con-
flict with some odd font from someone else?" The
short answer is that you can't. The longer answer
is that it's possible to reduce the probability, simply
by having all the files begin with the same initial
combination of letters. For example, in an extra
symbols font that I'm developing for use with inter-
nal fonts in the Xerox laser printers here on cam-
pus, I prefix each file used with the letters "cs" (for
Century Schoolbook). While I can't know for cer-
tain that I've avoided all conflicts in this manner,
chances are that name conflicts will not occur. As
an added guard against conflicts, you might want to
pick an additional arbitrary letter and tack it onto
the file name to further guard against name conflicts
(personally, I'm partial to "q").

Another important consideration is the fact
that all IBM systems (including PC's) have a file-
name restriction of eight characters. Now, it's not
strictly necessary to make all file names eight char-
acters or less, but it would be helpful to at least
guarantee that file names are unique to the first
eight characters. The PC restriction makes this es-
pecially important as PC floppies are a convenient,
inexpensive, and almost universally readable format
for exchanging information. In addition, in a re-
cent survey of rn users in MAG, over half the
respondents used on an IBM PC or compat-
ible. Ignoring the eight character restriction can
make your font inaccessible to a significant portion
of the TEX community.

Some operating systems, like IBM's VM/CMS
give you a flat file space whether you want it or
not; while one might be tempted to simply choose
to ignore CMS as a METAFONT operating system,
this is not feasible since the speed of IBM main-
frames makes running METAFONT under CMS quite
desirable-running METAFONT on Computer Mod-
ern fonts on an IBM 3081 took an average of 30
seconds per font!

TUGboat, Volume 10 (1989), No. 2

File : MF Inputs U-Wash.&

Author : Pierre A. MacKay

Internet: mackay@cs.washington.edu

Bitnet : mackay@cs.washington.edu

Date : November 27, 1988

This is the University of Washington collection of Imode-defls

together with the macros to provide font-wide specials describing the

Imode-defl that is used for each generated font, and the Xerox-world

comments in the tfm file. If a '? ' is typed as the first response

to the ' * ' prompt after this or a derived base file is loaded,
a list of all current Imode-defls will be given.

This file follows a convention that has emerged in the discussion

of Imode-defls in TUGboat.

I . The print engine is identified wherever possible, rather than

the printer which incorporates that print-engine.

2. Because Imode-defl names may not contain digits, each digit is

given its full name, as in RicohFourZeroEightZero.

WARNING: Some of the modes have never actually been tested

Figure 1: A model for internal METAFONT documentation

If you use a non-standard extension for any of
your METAFONT files, you should take care that it
is three characters or less, for the same reasons as
the eight character limit above.

A file name should ideally consist only of the
letters a-z and the digits 0-9. The first character of
the name or extension should be a letter (some o p
erating systems choke on file names beginning with
numerals). When specifying a file name on an in-
put statement, use all lower case; this will make life
easier for the Unix people.

Finally, never include an explicit directory path
on a METRFONT input statement. Since area
names are necessarily system dependent, this guar-
antees that your code will not be portable.

3 MFT compatibility

MFT is a system for producing "pretty-printed" list-
ings from METAFONT files; it was used in the pro-
duction of Volume E of Computers and Typesetting
and portions of The METRFONTbook. A complete
description of MFT's capabilities and conventions is
beyond the scope of this a r t i ~ l e , ~ but there are some
simple things you can do to prevent MFT from blow-
ing up.

An MFT manual is in the works

Use only a single percent sign on comments.
MFT uses multiple percent signs to flag special
handling code.
Make sure that all comments are valid in-
put. If you refer to any METAFONT commands,
variables, etc. enclose them in I . . . I .
If you must comment out lines of code, either
enclose the entire line in I.. . I as noted above
or use four percent signs (%%%%) to comment out
the line.

4 Coding considerations

Most of the METAFONT code you write will be
portable by default, but there are a few things that
should always be taken into consideration:

Never set mode inside the file. The proper way
to invoke METAFONT is to say

MF \mode=whatever ; input file

This eliminates the need to specify mode inside
the file. Similarly, mag should also not be spec-
ified in a METAFONT file.
Keep the parameter definitions in a separate
file from character definitions. While you might
need a given font only at, say ten point roman,
it's possible that someone else might want a
nine point boldface of the characters you've de-
signed. If you follow the model of Knuth's Com-
puter Modern, this sort of modification will be
much easier.

TUGboat, Volume 10 (1989), No. 2

4.1 Specifying dimensions definegoodx-pixels Converts a sharped variable

Always use sharped units when defining a dimen-
sion in your code and convert the sharped unit to
pixels using one of the METAFONT commands listed
on p. 268 of The M E T R F O N ~ O O ~ . I have encoun-
tered fonts which have specified things like pickup
pencircle scaled 2 which will work fine on a dot ma-
trix printer or even a write-black laser printer but
looks awful on a write-white laser printer. What
should have been done instead would be to spec-
ify some dimension such as tiny# which would later
be converted using define-blacker-pixels into the
appropriate pixel value for the output device.

METAFONT's sharped units provide a method
for specifying units in a device-independent way.
Rather than specify the widths of lines and other
dimensions in terms of pixels, one &st specifies
units in terms of sharped units (you are given all
of TEX'S dimensions to begin with), then converts
them with one of the macros listed below. Each is
called in the form define-pixels(war-one, war-two)
where there can be as many variable names listed
between the parentheses as necessary. For each vari-
able name given, METAFONT will set its value ac-
cording to a conversion into pixels from the corre-
sponding sharped variables. In the example above,
war-one and war-two would hold the pixel values of
var-one# and war-two#.

define-pixels Converts a sharped variable into pix-
els. This is done through a simple conversion.
This should be used for variables which would
not need any of the corrections described be-
low. For example, a parameter used in calculat-
ing the widths of characters (such as Computer
Modern's u#) would be converted into pixels
with this command.

define-whole-pixels Converts a sharped variable
into an integral number of pixels. This is
normally used for variables which indicate the
placement of certain points in the ~ha rac t e r .~

define~whole~verticaLpixels Converts a sharped
variable into an integral number of vertical pix-
els. This is used for the same sort of vari-
ables as define~whole~pixels, but takes into
account any non-unit aspect ratio which may
be used for the output device. This is gen-
erally used for vertical positioning while de-
fine-whole-pixels is used for horizontal pos-
tioning.

For a complete discussion of why using inte-
gral values for various parameters is important, see
Chapter 24 of the The METRFONTbook.

into a value such that a pen drawn using the
value as an x-coordinate will have its left edge
on a pixel boundary. You must have a current
pen selected for this to work. This is generally
used for character sets (such as the one used in
the METAFONT logo) where many of the char-
acters are drawn using a single pen.

define-good-y-pixels Converts a sharped variable
into a value such that a pen drawn using the
value as the y-coordinate will have its top edge
on a pixel boundary. This is the vertical ana-
logue to define-goodx-pixels.

define-blacker-pixels Converts a sharped vari-
able into pixels adding METAFONT's blacker to
the value obtained. This should be used for
a variable which will determine the width of
lines drawn or pens used. This is a very impor-
tant definition since without it, METAFONT's
mode-def convention is almost useless.

define~whole~blacker~pixels Converts a sharped
variable into an integral number of pixels taking
METAFONT1s blacker into account. This should
be used for variables which will determine the
width of lines drawn or pens used which should
be set to an integral value.

define~whole~vertical~blacker~pixels

Converts a sharped variable into an integral
number of vertical pixels. This has the same
relationship to define-whole-blacker -pixels
as define~whole~vertical_pixels has to de-
fine-wholepixels.

define-corrected-pixels Converts a sharped vari-
able into a pixel value after taking into account
the curve overshoot parameter (METAFONT'S
o-correction). This should be used on variables
which give the overshoot for a curved portion
of a character (e.g., the bottom of "U"). The
METRFONTbook has details on when this is ap-
propriate.

definehorizontal~corrected~pixels
Similar to define-corrected-pixels but does
the rounding for a horizontal value.

The METAFONT logo font (which is described
throughout The METRFONT~OO~ and listed in its
entirety in Appendix E of that work) is a good sim-
ple example to see how these different METAFONT
commands are used.

4.2 Compatibility with Computer Modern

Unless your font is designed explicitly for use with
some non-Computer Modern font (e.g., extra sym-
bols for use of with a printer-resident font), it

TUGboat, Volume 10 (1989), No. 2

is probably a good idea to plan your type so that it
is visually compatible with Computer Modern. You
will probably also want to follow the existing
coding schemes (except for odd fonts such as an as-
tronomical symbols font) as well. These practices
carry with them several benefits:

By following existing coding schemes you make
it easier to achieve compatibility with existing
'I'p3 macros.

0 Visual compatibility with Computer Modern al-
lows you to use CM fonts for things such as
typewriter type and math if you so choose.

In addition, if type "A" is visually compatible
with Computer Modern and type "B" is visu-
ally compatible with Computer Modern then
types "A" and "B" should be visually compat-
ible with each other.

The primary objective when striving for "visual
compatibility" is to guarantee that the characters
should align well with Computer Modern. At the
very least, baselines of characters should match well.
To allow use of Computer Modern math fonts with
your typeface, the weights of the characters should
roughly correspond to the weights of corresponding
characters in CM.

As an example, consider Figure 2 which mixes
Computer Modern and Concrete together in sev-
eral contexts. These two typefaces have a roughly
corresponding character grid, but the difference in
weights produces an odd mixture when the two are
~ o m b i n e d . ~ Overall. the samples above give some
indication of the flexibility obtained by striving for
compatibility with Computer Modern.

- - -- - --

Concrete and Computer Modern Roman will not
mix well.

Concrete and Computer Modern typewriter type

w i l l blend somewhat better.
Concrete does not produce optimum results with

I' + k a = 0 Computer Modern math.

Figure 2: Mixing Concrete and Computer Modern
in some different contexts.

o Don Hosek
3918 Elmwood
Stickney, IL 60402
Bitnet: u33297@uicw

In fact, as was explained in TUGboat 10(1),
these fonts were designed for use with the Euler
math fonts.

TUGboat, Volume 10 (1989), No. 2

Graphics

Integration of 'l&X and Graphics

at the Pittsburgh Supercomputing Center

Phil Andrews

Our Graphics Environment

The Pittsburgh Supercomputing Center is one of
five NSF national Supercomputer Centers estab-
lished to help scientific researchers. Our main
machine is a CRAY YMP8/24 (8 processors, 24
million 64 bit words of memory) running UNICOS,
the CRAY version of UNIX. We also have a large
number of DEC machines running both VMS and
ULTRIX, other general purpose computers such as a
HARRIS HCX/UX and special purpose computers
such as an ARDENT TITAN. Presently we have
approximately 1000 users, the great majority of
whom are remote and communicate with our center
over networks such as the Internet.

The center was established in the summer of
1986 in the enviable position of being able to
design our overall graphics system from scratch,
having no compatibility requirements. We decided
to standardise on the CGM (Computer Graphics
Metafile) format for picture storage and acquired
only graphics packages supporting that format, e.g.,
DISSPLA from CA-ISSCO, DI-3000 from Precision
Visuals and the NCAR Graphics package from
the National Center for Atmospheric Research.
If possible we adapted other packages, such as
MOVIE.BYU, to produce CGM format files.

While in 1986 CGM was an emerging standard
for picture storage, it is now both an ANSI and IS0
standard and is solidly ensconced as the preeminent
format for the description of two-dimensional graph-
ical data. There are several interpreters available
for the display of CGM files on various output
devices, but in general they can only display a small
subset of the CGM elements and are specific to
the CGM files produced by that vendor's graphical
packages. In addition they may be proprietary, and,
if purchased, we could not redistribute them to our
remote users. In order to mitigate the problems of
network access, we encourage our users to generate
CGM files on our machines, and then ship the CGM
output home to their host machines where it can be
viewed in a more interactive manner.

For these reasons, and because we wanted to
support any available output device, we decided to
write and maintain our own CGM interpreter, called

GPLOT for General PLOTting program. GPLOT
now processes all of our users' CGM files, indepen-
dently of their origin, and is used in-house for the
production of video animations (approximately 10
hours of animations in the last 12 months) which
we mail to users. We support numerous output
formats, including Postscript and QMS (QUIC)
laser printers, several types of workstations (via
UIS, X11, or CGI interfaces), numerous Tektronix
and other terminals, GKS devices and video output
via a Peritek frame buffer. We are continuously
updating the number of devices supported. GPLOT
will accept either binary or clear text format CGM
files and will convert between the two.

Integration with TEX

In designing the GPLOT system, I wanted to ad-
dress one of the outstanding problems in computer
related information interchange: the problem of text
and graphics integration. I chose the QX typeset-
ting system for this purpose, partly because of its
popularity and capabilities, and partly because of
familiarity. In the late 1970's I ported first the old
Pascal version and then the WEB version to both
TOPS-10 and VMS and wrote DVI processors for
Versatec and Tektronix output devices, and (later)
for QMS laser printers.

I removed the DVI interpretation part of that
program (GTEX), together with the font manip-
ulation system, and integrated it into emerging
CGM software to form our GPT system. Although
GPLOT and GTEX are separate commands, they
are part of a completely integrated system with
over 90% of code in common. Any CGM file pro-
cessable by GPLOT can be included in any QX
file by GTEX, and GPLOT uses the standard TE$
font files (in PK format) for the textual parts of
CGM files on output devices with limited textual
capability.

Naturally the interface to the CGM graph-
ics routines is by way of a \ spec ia l command, but
many different formats are possible. With over
1000 users from differing backgrounds, docurnenta-
tion and training can be a significant problem, and,
with this in mind, I decided to make the command
format for the \ spec ia l command identical to what
the user would type at the command level. That is,
if (under VMS) the user would type

gplot/dev=ps/pag=3/x-size=4.5/y-sizes4.5 foo

to instruct GPLOT to process the CGM file
foo .cgm, extract the third page only and pro-
duce output for a Postscript printer scaled to fit

178 TUGboat, Volume 10 (1989), No. 2

a 4.5 by 4.5 page, then inside a TEX file the
corresponding \ spec ia l command would be

Note that the \ spec ia l command itself is de-
vice independent, the output device being specified
on the GTEX command line that caused the inter-

pretation of this particular DVI file. Any device
specification inside a \ spec ia l command will be
ignored. The current page position in the DVI file
will become the origin for the included graphics

page. Any number of pictures from any combina-
tion of files can be included in an individual

page. However the effect of overlays is completely
device specific.

processing specifics

GTEX and GPLOT use the same command line
parser, with identical sets of options and supported
devices; if the device can use downloaded fonts (e.g.,
Postscript or QUIC) then I use that capability (only
the required characters are downloaded). Expanded
versions of the character descriptions from PK
format files are cached either internally in memory,
or externally in an indexed file. For any 'l&X file
of several pages or larger, the font processing is
normally a small part of either the CPU or I/O
requirements, and I do not attempt to use native
fonts for output. If the device cannot download
fonts then I convert character references to cell array
calls (the CGM raster operation). Rules naturally
map to CGM rectangle calls. One interesting result
of this mapping is that GTEX can convert DVI
files into CGM files; these CGM files, however, will
be partly resolution-specific with each character
represented by its bitmap. A proposed addendum
to the CGM standard adds segments (recallable
descriptions), and as soon as this becomes official
I will use this operation rather than cell arrays for
character representation. There are many devices
that do not support downloadable fonts but do have
segment support, and of course the associated CGM
files will be much smaller.

Problems

GPLOT and GTEX are wholly in the C program-
ming language and run under both UNIX and VMS,
but with different command interfaces. That means
that presently the \ spec ia l command syntaxes are
also different under each system, an unacceptable
format. As our users become more accustomed to
UNIX I hope to move away from the VMS format for
\ spec ia l commands, supporting the UNIX format
on both systems. However I plan to continue to

support the VMS format under VMS for our users
who are unconcerned with portability.

Many CGM files use colour tables for their
output, then use indices into this table to designate
colours. When two such pictures, with distinct
colour tables, are included on a single 'l)$ page
there may be clashes, depending on the capabilities
of the output device. I intend to eventually do an
automatic conversion from indexed to direct colour
in these cases. The difficulty is in deciding when
this is necessary.

=-specific graphics

In some cases what is really required is the capability
to process simple graphics at runtime, rather than
the inclusion of complex preprocessed graphics. In
this case the difficulty lies in organisation rather
than implementation. If there is no requirement
for interaction with the location of 'l&X elements
then a simple clear text CGM file can be written
and included. For more complex requirements
I have allowed (for experimentation purposes) a
simple \ spec ia l command that allows access (at
runtime) to the capabilities of any CGM element
processor. This can be used to change text colour,
produce lines linking 'l&X elements, fill polygons,
etc. What is needed here is some set of simple
\specials, preferably community wide. However
it should not be thought that some such set can
satisfy all graphics requirements. Many graphics
packages have more manpower investment than the
entire system and cannot be easily simulated.

Availability

We are presently distributing GPLOTIGTEX freely
via Internet (we don't write tapes), although it is
copyrighted and we request that you do not redis-
tribute any modified, spindled, folded or mutilated
copies. Nor can you sell it, include it any package
for sale, etc. For further information send mail to
ANDREWS%CPWSCBQCLIPR.PSC.EDU.

o Dr. Phil Andrews
Pittsburgh Supercomputer Center
Mellon Institute
4400 Fifth Avenue
Pittsburgh, PA 15213
andrews%cpwscbBclipr.psc.edu

TUGboat, Volume 10 (1989), No. 2

METAPLOT
Machine Independent
Line Graphics for 'QjX

Patricia P. Wilcox

Last winter my husband and I set out to use
A m i g a m to document a collection of FORTRAN
mechanical engineering programs. We had a stack
of drawings to include: some generated directly by
the FORTRAN programs, and some created using
the Aegis Draw 2000 program on the Amiga.

It would be a big help to be able to print those
drawings with w! I decided to give it a try, using
METAFONT to do most of the work, and within a
few days I had T@ drawing pictures like these two:

From that beginning has grown a set of META-
FONT and macros collectively referred to as
"METAPLOT". Here's how it works. The METAPLOT
macros enable METAFONT to simulate a line plotter,
so that it can turn a (suitably pre-formatted) line
plotter command file into a picture variable. The
picture is chopped up into rectangular tiles which
are shipped out as "characters" that can be typeset

by w.
This is not a particularly efficient way to do

things; there is extra overhead because METAFONT
runs as an interpreter, and even more overhead
due to the diabolical deviousness of METAFONT1s
mental processes. METAFONT run time for a single
drawing is likely to be several minutes. On the other
hand, this approach is virtually system and device
independent. Slowness notwithstanding, METAPLOT

is proving to be a simple and useful way to add line
drawings to TEX documents.

We present an account of our journey on the
road to illustrated w, in the hope that the reader
will find some interest therein, and perhaps benefit
from advance knowledge of some of the landmarks
and pitfalls to look for in his own excursions into
the wilder regions of METAFONT and 'l&X.

Scope of the Project

Our graphics needs were modest, compared with
some of the ambitious work being undertaken by
other members of the community. For one
thing, there was no need to worry about line color. If
colored printing should ever be required (unlikely!)
we will use the CAD software to separate the colors;
what a human printer wants to see is a separate
black line drawing for each color.

I also chose to ignore dot fill patterns, at least
initially, because METAFONT is terrible at dealing
with closely-spaced fill patterns over large areas.
This is because METAFONT encodes edges, not
points; a dot fill pattern has a lot of edges! (I
can envision some desperate workarounds for this
problem, but basically, if you need to do this sort
of thing, you should probably be using a Postscript
drawing program with a Postscript output device.)

METAPLOT does not attempt to process half-tone
photographs, which have much the same problems
as dot fill patterns. Besides, I have enough trouble
getting acceptably printed photographs when I am
working with an experienced printer who uses a
superb copy camera and metal printing plates on a
high-precision press! Most m output devices just
aren't good enough yet to print half-tones cleanly.

By limiting our scope to the representation of
black lines and solid areas, we thought to have a
useful project that could be accomplished quickly,
so that we could get back to the original task of
publishing documents.

In Search of Graphics Standards

My first step was an informal look at standardiza-
tion (or lack thereof) in the engineering graphics
field; METAPLOT could be much more generally
useful if it did not depend on a drawing format
specific to one drawing program or one computer
manufacturer.

I looked fmt at standards for the logical
representation of graphical objects. The possibilities
were IGES (a standard adopted by the U.S. in 1981)
[I], GKS (see [I] as well as discussion by Bart Childs
et al. in the April TUGboat [2]), and DXF, the
AutoCAD drawing exchange format [3], which is
something of a de facto standard in the industry.
Quite a few of the common CAD programs attempt
to support IGES, DXF, or both, although what I
have been hearing is that you can expect about
an 85% success rate in transferring a "standard"
drawing between unrelated software packages with
IGES or DXF, and that the standards change from
week to week. Not good enough!

180 TUGboat, Volume 10 (1989), No. 2

Although Bart Childs et al. (reference [2]
again) say that "Most vendors deliver reasonable
support for a GKS environment or it is available
from third party vendors for common systems,"
at the time I was designing METAPLOT it was not
evident that the GKS standard was supported by
any CAD programs for any of the common personal
computers. It may be that Dr. Childs is talking
about large mainframe computers.

The final blow is that not one of the four
computer aided drafting programs I use on the
Amiga is smart enough to understand IGES, DXF,
or GKS.

The next place to look was on the output
side: display standards. There are two major
philosophies at work in the structured graphics
software out there today. For want of a better
term, call them "traditional" vector graphics and
PostScript graphics. PostScript is rapidly winning
the field, because it's more powerful than straight
vector graphics, and vector graphics capabilities can
be handled as a subset of the functions supported
by PostScript.

In a traditional structured graphics program,
lines are drawn by moving a pen or an electron
beam along the shortest path from here to there.
There are no true curves, only straight-line approx-
imations. If fill patterns are used, they have to be
something that can be drawn with line segments.

PostScript graphics programs allow you to
generate curves from their Bezier control points and
fill areas with arbitrarily fine and complex pixel
patterns. Many 'I)$ implementations, including
A m i g a w , already have PostScript "\specialn
commands which allow you to integrate Postscript
graphics with QX documents for output to a
Postscript printer. There's just one little problem-
if you speak PostScript, you can speak only to
something that understands PostScript. Since I
want to print documents on "dumb" lasers
and dot matrix printers, and I have considerable
investment in traditional vector graphics software
and data files, PostScript will not work for me, yet.

Things are changing rapidly. It is encouraging
to hear about the good work of people much braver
than I who are working on Postscript interpreters
like the one described in "News from the V O W
Project" in the April TUGboat [4]. If such inter-
preters were universally available, the task of im-
porting vector plot files into 7&X documents would
be reduced to writing a simple program to translate
vector commands to PostScript commands.

But, let's face it, PostScript was designed as a
"write-only" standard. It's straightforward to write

a program that produces PostScript output, but
tricky to write a program that does a 100% correct
job of interpreting PostScript code and turning it
back into a bit-mapped image to drive a non-Post-
Script device. The "real" PostScript exists only in
the microcode of PostScript display devices, and is
not generally available to developers. The problem
is exactly analogous to what we would face if we
were asked to re-create w and METAFONT from
an external description of their behavior, without
the benefit of access to the original code and without
"trip" and "trap" tests to ensure adherence to the
standard.

Instead of waiting around until there was a
Postscript interpreter that could do my work for
me, I looked for something less elegant, but simple
and general, along the lines of the "standard display
file format" described by David F. Rogers [5] in the
last TUGboat. It didn't take long to find what I was
looking for. A sort of lowest common denominator
between all of these CAD software packages is that
they all know how to drive pen plotters, using a very
small set of graphics primitives. This "standard"

has the great advantage of being enforced by a
machine. Deviations from standard are punished
by the fact that the plotter simply won't work!

If you look at Hewlett-Packard Graphics Lan-
guage (HPGL), which is understood by HP plotters
(and a lot of other plotters on the market) you find
the following set of actual drawing commands:

Pen motion:

PU pen up
PD pen down
PA p lo t absolute

PR p lo t r e l a t i v e

C I c i r c l e
AA a rc absolute

AR a rc r e l a t i v e
LB l a b e l (draw t e x t)

Line spec i f i ca t i on :

LT l i n e type (dot/dash pa t t e rn)

SP s e l e c t Den color

..................................
Special purpose commands, mostly
f o r graphs & p i e char t s :

FT specify f i l l pa t t e rn

[type C , spacing C , angle1 I I
EA,ER,EW ou t l i ne rectangle/wedge
RA,RR,WG shade rectangle/wedge

XT,YT draw X and Y t i c k marks

along with a collection of auxiliary commands to
do things like plot scaling and plotter initialization
and cleanup. The specialized commands below

TUGboat, Volume 10 (1989), No. 2 181

the dashed line do not really belong in a standard
command set. Of the commands above the line, if
we omit the "relative" commands, we haven't lost
any functionality. This leaves, for a "standard" set
of line plotter commands:

Pen motion:

PU pen up

PD pen down

PA plot absolute

CI circle

AA arc absolute

LB label (draw text)

Line specification :

LT line type (dot/dash pattern)

SP select pen color

Could I omit anything else? Looking closely
at the actual HPGL plot commands used by CAD
software, you'll find that not everything in the list
is required by every graphics application. Ignoring
plotter setup and scaling, the three programs I use
on the Amiga (Aegis Draw, IntroCAD, and mCAD)
use just four commands: "move", "draw", "line
type", and "pen color". Generic CADD (on the
IBM PC) makes do with even fewer commands; it
uses only "move", "draw", and "pen color".

However tempting it was to pare down the list
further, I had one application (John's FORTRAN

plot package) that was going to need CI and LB
commands, and I later found another (VersaCAD)
that also used CI. Better leave them in.

Plot scaling would be done by scanning the
data (after rotation) for min and max x values, and
multiplying all coordinates by the ratio of printed
width (specified by the user) to width of the data

(X - x i) This is scaling from a printer's
point of view, where the important final dimension
is column width.

METAPLOT - Initial Implementation

Including the commands in the standard command
set didn't mean I had to implement them right away.
Color was at the bottom of my list; dashed lines
were near the bottom; label was too complicated
to deal with on the f i s t pass. I chose to start
the implementation of METAPLOT by writing META-

FONT macros analogous to plotter "move" and
"draw" routines.

You may notice that something is missing.
METAFONT is not very good at character string
manipulation. Surely we don't want to write an
HPGL language interpreter in METAFONT! How do
we get plotter commands translated to a form that
METAFONT can understand?

There were three answers to that. One of the
f i s t things we did was to write a version of the
FORTRAN plotting routines with output in the
form of METAPLOT macro calls instead of plotter
commands. This took care of the first stack of
drawings.

Translating the second category of drawings
(plots from the CAD program) depends on a sneaky
trick with Aegis Draw - watch closely! Aegis
Draw has the virtue of allowing the user to supply
his own plotter configuration file containing an
initial string, a separator, and a terminator for
each plot command. I created a configuration file
defining a rather strange imaginary plotter called
"META". When plotting to META, Aegis Draw
emits METAFONT macro calls instead of physical
plotter commands. Here's a small plot in HPGL,
with the equivalent META plot commands as first
implemented back in January:

HPGL : META :
----- -----
IN ; DF beginplot;

SP 1 pencolor(1) ;

LT 5 linetype(5) ;

PU;PA 100,100 moveto(100,100) ;

PD;PA 200,100 drawto(200,100);

PD;PA 150,167 drawto (l5OYl67) ;

PD;PA 100,100 drawto (100,100) ;

1N;DF endplot ;

Later on, I changed the most frequently-
used META plotter commands to more efficient
2-character codes, and added an explicit "-1" for
each unused HPGL parameter. (Line type has an
optional second parameter indicating pattern size.)
The same drawing, revised, looks like this:

beginplot; % EXPLANATION:

sp(1) ; % pen color
lt(5,-I); % pattern, spacing
pu(l00,100); % move to x,y
pd(200,IOO); % draw to x,y
pd(l5O,l67) ;

pd(l00,lOO) ;

endplot ;

The third way to convert plot commands to
META commands is a preprocessor called VGtoMF,
which is just now (May) becoming a reality. I'll
save VGtoMF to talk about later, because a lot of
things happened to METAPLOT between January and
May.

Once the META plot file exists, we need
a METAFONT driver file to generate the plot font.
This looks a lot like any METAFONT font generation
file, with a few extras needed for handling line

182 TUGboat, Volume 10 (1989), No. 2

drawings. (This sample anticipates the tile/mosaic
scheme described in the next section.)

mode-setup;

font-size .80 in#;

numeric current-char;

input plotmacs ; % METAPLOT macros
print-width:=1.5; % Inches! Using

max-tile_width:=,80; % dimensionless
max_tile_height:=.80; % numbers here is

% a design flaw.
print-rotation:=-90;

first-letter-code:=l;

plotter_pen_weight:=7;

%pen weight in plotter steps

mosaic ("myplot")(first-letter-code);

%characters generated here!

font-slant 0;

font-normal-space Opt;

font-normal-stretch Opt;

font-normal-shrink Opt;

u#= . lin#; % These values
font-x-height 5u#; % don't mean much

font-quad 2u#; % for a line plot
font-extra-space 2u#; % . . .
bye.

The resulting font could be used in by
explicitly typesetting the characters:

\font\plotfont=myplot50

. . . .
<\offinterlineskip\plotfont

\centerline(\charl\char2)

\centerline(\char3\char4}

3
or by invoking the "\plot" macro in plotutil . tex
(the third component of the METAPLOT package):

C\offinterlineskip\plot 1 (myplot50))

The Evolution of Modern METAPLOT

Dealing with Finite Memory. The biggest prob-
lem with our first test plots was that they weren't
big enough. They were small for two reasons:
METAFONT memory limitations and device driver
limitations. A complex plot (with lots of vertical
structure) will run out of memory sooner than a
very simple plot, but in any case, it doesn't make
sense to expect to keep a bit image of an entire plot
in memory at one time.

(Another reason for keeping character sizes
reasonably small is that some printers are limited
to characters 255 pixels on a side; this does not
happen with my DeskJet printer.)

It is not very easy to increase memory alloca-
tion for AmigaMETAFONT-it uses the maximum
memory addressable by 16-bit pointers. Adding
more memory would require doubling the size of all
address pointers.

Discussing TurboMETAFONT in the last TUG-
boat [6], Richard Kinch says, "We do not now see
the need to include the virtual memory simulator in
the TurboMETAFONT programs . . . the enterprise
of generating fonts does not seem to encourage the
use of enormous macros or tables" METAPLOT

may provide an incentive for including virtual mem-
ory in METAFONT, since METAPLOT could process a
large picture in a fraction of the time it takes now,
if the complete picture could be kept in memory at
once.

Figure 1. Mosaic tile layout.

Here's our initial solution for dealing with lim-
ited memory (Figure 1). A one-dimensional clipping
scheme is used, since 1-D clipping is faster than true
2-D clipping. Two new variables (max-tile-width
and max-tile-height) were added to the font
generation commands to specify how the picture
should be subdivided. The drawing is divided into
n horizontal strips, the plot file is scanned n times,
and on each pass, all lines are clipped against the
top and bottom of the current strip (remembering
to add half the pen width at the top and subtract
it at the bottom, so as not to lose the edge of a
line whose center just misses the box limits); after
clipping, any visible parts of the path are added
cumulatively to a picture variable. Then (and this
part is pretty fast) METAPLOT moves fiom left to
right across the strip, and-ing the picture with a

TUGboat, Volume 10 (1989), No. 2

black box exactly the size of one tile, and shipping
out the resulting piece of the puzzle as a character.

Note that the clipping is used only to reduce
the amount of memory used to store the picture.
The final character edges are determined by the
and-ing operation.

I had assumed that arbitrarily large pictures
could be processed by reducing the tile height,
thus requiring fewer square inches of picture to
be stored at one time. This works, up to a
point, but there is some tile height for which the
method breaks down. The figures in this article
were well within AmigaMETAFONT1s memory limits,
even at TUGboatls 723 dpi resolution, but some
of our FORTRAN-generated plots exceed memory
capacity at large size or high resolution.

Streamlined plots. Having, after a fashion,
resolved space problems, I started looking for im-
provements in the time domain. A 2:l performance
improvement resulted when I stopped culling the
picture variable after each path was added. (One
wonders what other easy speed-ups might still lurk
in the code . . .) One thing that would certainly
make things faster and reduce the size of plot files
would be to dispense with line-segment approxima-
tions to circles, curves, and filled areas, and let
METAFONT generate the curves mathematically.

It was frustrating-here was METAFONT,
which could solve all of our problems, acting
like a dumb line plotter. How could the CAD
program send circle, spline, and fill commands to
METAFONT? Well, we weren't using the pen color
command for anything . . .

And here was born the first of several "graphical
escape sequences". Let's say (assigning arbitrary
colors to pen numbers for purposes of discussion)
that we use pen 1 (black) for plain lines, pen 2
(blue) for "fill", pen 3 (green) for "filldraw", and
pen 4 (red) for "erase". Then if we hop over and
appropriate one of the line types on the DRAW
menu, and, by convention, call it a circle-drawing
pen, and use another spare line type for a spline-
drawing pen, we should be able to transmit some
fairly useful requests to METAFONT.

Circle-drawing pen conventions: (These are
METAFONT near-circles and super-ellipses)

A rectangle drawn with the circle pen is con-
verted to the ellipse bounded by the rectangle.

0 A single line segment defines a circle - leftmost
point in print coordinates is the center, right-
most point is on the circumference. (Don't
count on your CAD package not to flip lines

end-for-end. Saying "first point is center"
didn't work at all well.)

0 Alternatively (thanks to Bill Hawes for this
idea), use a square box to specify a square
ellipse, which is, of course, a circle.

0 A triangle (which is a Cpoint path with be-
ginning and end superimposed) is used to
represent an arc- point 1 = point 4 = center
of arc. Pick the shorter of the first and last
sides; this will be the radius. The arc is
drawn counterclockwise around the circle, from
shorter side toward longer side.

Spline pen conventions: A splined path consists
of 3 N + 1 points, defining Bezier curves, four points
per segment, with the center two points of each
segment being control points. (It may take a bit
of practice to develop the knack of defining a curve
by its control points, if your CAD program doesn't
display the curve.)

Pen type and path type are defined so that
they can be paired up in any combination; you can,
for example, draw a green ellipse, and METAFONT
will use filldraw to add the ellipse to the picture;
or draw a red circle and METAFONT will erase that
circular area of the drawing.

This is a bizarre-looking way to enter data!
What you see on the screen has very little relation-
ship to the METAPLOT picture you are creating. It

helps to use brown (invisible to METAPLOT) to draw
a temporary copy of a line-segmented ellipse or arc
as a visual indication of the figure symbolized by the
rectangle or triangle you're sending to METAPLOT.

To keep plot files small, erase the brown temporary

copies before writing out the plot for META. (I
haven't told you about brown. After trying out
the red/green/blue lines, we added pen 5 (brown)
for lines that will be invisible to METAFONT except
for computing rnin and max x and y -good for
bounding boxes and construction lines. And we

added pen 6 (purple) for half-weight lines and pen
7 (orange) for half-weight filldraw.)

Figure 2 demonstrates the use of graphical
escape sequences to fool Aegis Draw into generating
an assortment of things that are "impossible" to do
with Aegis Draw.

Now one last thing would be really useful,
and that is a way to graphically specify typesetting
commands with the CAD software, and have META-
FONT pass the typesetting requests along to
for final realization. OK, let's see . . . to be a

legal splined curve, a path must consist of 3N + 1

points. A rectangle is a 5-point path, so it can't
be a spline. We'll specify the position of a typeset

TUGboat, Volume 10 (1989), No. 2

Figure 2. "Self Portrait"
Demonstration of circles, arcs, and splines.

label by drawing a brown rectangle with the spline
pen. We can start at the lower left corner for
left-justified text, start at the lower right corner
for right-justified text, and start at one of the top
corners for text centered in the box.

We have METAFONT compute the corner co-
ordinates for each text box (in true inches on the
printed page, down and across from the upper left
hand corner of the plot), and write a TEX typeset-
ting command to the METAFONT log file, complete
with position information and a label number to
print on the first draft. After the user sees the first
QX draft of the plot, he can replace label numbers
with the appropriate text and move labels by ad-
justing x and y coordinates in the rn file, without
incurring the overhead of running METRFONT a
second time.

While we're on the subject of typesetting, I
should mention that complete typesetting informa-
tion for each mosaic of plot characters has been
included in the typeface itself, in the form of
\f ontdimen parameters (thanks to Tom Rokicki for
nagging me to do this). METAFONT writes the one-
line macro call that reassembles the plot mosaic,
along with the rest of the typesetting information,
in the METAFONT log file. After METAFONT has
created your plot type face, extract the typesetting
commands from the METAFONT log file and insert
them in your QX file at the point where you want
the picture printed, and you're done.

Using little invisible typesetting boxes, I did
the typesetting for Figure 3 at least ten times as

fast as I could have done it with pencil and ruler.
What a relief!

(Note for dingbat enthusiasts: the \f ontdimen
parameters now include line weight in printer coor-
dinates, so that fancy METAPLOT characters can be
joined with 7L-p-X rules of the right thickness.)

VGtoMF: A Universal Vector Graphics
Interface?

According to what I've told you so far, the Aegis
Draw program on the Amiga and a mysterious
FORTRAN program are the only programs in the
world that can generate command files for the
META plotter. If you look at the sample plot
listing, you can see that it would not be very
difficult to convert HPGL commands to META
format using nothing more than a text editor: but
this is hardly an elegant solution!

The trick to making METAPLOT portable to
all systems is to have a nice simple easily ported
C program that reads plotter configuration files
describing 1) the syntax of your existing plot file
and 2) the command syntax of the plotter you want
to convert to. This is intended to convert from
something else to META, but in theory it ought to
be able to convert from any plotter to any other
plotter.

y e , \
center of

Figure 3. A typical engineering drawing, using
METAPLOT typesetting boxes to position labels.

TUGboat, Volume 10 (1989), No. 2 185

There are a couple of traps here that I should
warn you about. Remember the 4095+ limit on
numeric values in METRFONT? Given that coordi-
nates in HPGL are usually written as integers, this
creates a rather narrow range of plot coordinates
where the plot program is not losing accuracy and
METAPLOT is not blowing up with illegally large
numbers in its transforms. A related issue is that,
in the present version of METAPLOT at least, the x
and y dimensions of a picture, measured in printer
steps, may not exceed 4095. This is not a problem
at low resolutions, but it would limit picture size on
a 2000 dpi printer to just over two inches.

Furthermore, mCAD, my favorite shareware
graphics program on the Amiga, needs a little
help in fixing up its x-to-y aspect ratio. And,
as I discovered in preparing the drawings for this
article, if you wish to plot at high resolutions,
you had better be prepared to center your plot
directly over the x, y origin, again to prevent
numeric overflow of transforms. Things would be
much more comfortable if coordinates were decimal
numbers pre-scaled to reasonable limits: say x and
y coordinates ranging from about -1000.000 to
about +1000.000.

The HPGL language permits a path to be
represented by a single draw command followed by
a list of x, y pairs-yet another syntactic variation
that the conversion program must be able to handle.

A quick look at some HPGL output from the
Macintosh version of VersaCAD revealed that it was
using CI (circle) commands as well as the move,
draw, pen color, and line type commands we were
expecting. OK, we'll add CI to the list of required
commands.

It's becoming apparent that VGtoMF has to be
more than the simple string-substitution editor I
originally set out to write! Required functions are:

Command string substitution
Aspect ratio correction

0 Coordinate transformation
Translation
Scaling

0 Special work-arounds

It's just about working now, with code to take
account of all the quirks I know about, but it's clear
that for every new CAD program someone wants
to use with METAPLOT, we can plan on having to
tweak up the code in VGtoMF to handle a new set of

Of course, with what we've already said about
Generic CADD, the graphic escape sequences for
curves and fills would have to work with just colors
(they have 256 of them), since CADD does not use
"Line type" commands. I'm beginning to see that

my "graphic escape sequences" are simply a way to
implement a set of PostScript graphics commands
for a CAD program that does not understand
PostScript. Since generic CADD does understand
PostScript, it would make sense to read the Post-
Script file directly. It's not much of a design change
to enhance the VGtoMF design to handle a small set
of PostScript commands, specified (along with the
vector graphics commands) in the configuration file.

What should this PostScript command set
include?

I've discussed this at some length with Scott
van der Linden, who handles the technical support
part of the Generic CADD bulletin board on BIX;
I've also studied PostScript output from several
other commercial CAD programs. Here are the

PostScript features supported by Generic CADD:
0 Arcs
0 Circles

Bezier curves (4 points per segment)
Lines

0 Ellipses
0 Fills (not supported by Macintosh CADD

Levell)
0 Conversion of colors to greyscales (not sup-

ported by Macintosh CADD Levell)

This is pretty close to the list supported by
Gold Disk's Professional DRAW on the Amiga.
(Professional DRAW also allows the user to import
bit-mapped drawings, but METAPLOT will ignore
them.)

What has to be added to the list of META
commands to support this list? Not much! It
looks to me like all we need is to add an "ellipse"
command and a "fill" command, and generalize the
line type command a little bit.

Ellipse. Suggested ellipse command:

e l k 1 , r2 , theta) ;

where ri is the length of the semi-major axis, r 2

is the length of the semi-minor axis, and the ta is
the angle of the semi-major axis measured counter-
clockwise from the positive x axis.

Line type. The syntax of the HPGL line type

idiosyncrasies. And, even though I am attempting is:

to write VGtoMF in simple straightforward C code, LT pat-no C ,pat-lenl

it will take a bit of work to get it to compile and where pat-no (0. .6) specifies a dot/dash pattern
run whenever we try it on a new system. and pat-len specifies a scale factor for the dashes.

186 TUGboat, Volume 10 (1989), No. 2

A pattern number 7 (line erase) would be handy.
I could add an eighth pattern number indicating
Bezier curves, but I'd rather not - this would
preclude the possibility of specifying a smooth
dashed line. Instead, let's add a third parameter
"path-spec", which is 0 for straight joins (the
default) and 1 for Bezier curves (4 points per
segment). This permits future extensions like path
type 2 (free join), 3 (bounded join), and 4 (tense
join). I like it! Here's how the It command in
META language looks after the change:

It (pat-no ,pat- len ,path-spec) ;

Fill types. Earlier we rejected the HPGL "FT"
command as merely part of a special-purpose pie-
chart and bar-graph complex. Let's resurrect it and
look at it:

FT [type C ,spacing [, angle1 I1
where "type" can be 1 (solid; bidirectional), 2 (solid;
unidirectional), 3 (parallel lines), 4 (cross-hatch), or
5 (ignored).

To include black and white PostScript fills,
we need to add type 6 (gray scale) and a fourth
parameter (percent) to specify the percent black, so
the META command looks like this:

f t (type, spacing, angle ,percent) ;

"Area erase" is "draw" with fill-type 6 and 0% fill;
solid fill could be "draw" with fill type 6 and 100%
fill, or possibly just fill type 1 or 2. The Post-
Script files I've looked at implement "f il ldraw"
by breaking it down into separate fill and draw
commands: this lets you draw a solid outline with
a dot fill.

More generally, it would be nice to draw a
sample and say "Fill area with this pattern."

Text. This part is deliberately left vague. HPGL
does text by specifying direction (DI) and size (SI)

e l (r 1 , r 2 , t he t a) ; %draw e l l i p s e
Line spec i f ica t ion:

lt (pat-no ,pat-len,path-spec) ;
sp(co1or);

F i l l spec i f ica t ion:
f t (type, spacing, angle ,percent) ;

Standard Graphics subsets for PostScript. I
would like to propose a nomenclature for talking
about PostScript graphics. I steered clear of Post-
Script for months because the choices seemed to be
either 1) no PostScript or 2) writing a full-featured
Post Script interpreter.

In fact, METAPLOT includes a well-defined set of
PostScript functions, even though it does not call
them PostScript. Let's have some formally-defined
subsets of PostScript for Graphics!

METAPLOT is capable of doing "Subset 1 Post-
Script", which consists of the set of functions
supported by Generic CADD Level1 for the Macin-
tosh. (Arcs, circles, Bezier curves, lines, and ellipses
in black and white only; fills not supported.)

The META language defined above will support
a "Subset 2 PostScriptl'-same as Subset 1, but add
gray scale fill capabilities.

To make it support "Subset 3 PostScript" which
has the option of color as well as gray scale fills, we
may need to add a "color" parameter to f t ; in other
words, fill color and outline color for a filled area
are typically two different things, and specifying
line color does not affect fill color. "Subset 3
PostScript" corresponds to Generic CADD1s IBM
Level3 product, and also, I believe to Gold Draw's
Professional DRAW program for the Amiga.

METAPLOT will probably support "Subset 2"
PostScript eventually, but there are no plans to
support "Subset 3" PostScript (colored fills).

Future Directions
in separate commands and then issuing a label (LB)

The chief items on the menu are
command. It will take some juggling to defme a

1) Formalized METAPLOT support for reading and
syntax incorporating METAPLOT1s typesetting boxes,

writing "Subset 1 PostScript" . We should soon
HPGL1s stick letters, and PostScript typesetting

be able to translate any vector graphics file to
commands (if any - the entry-level CAD programs

PostScript, using an enhanced VGtoMF with the
do not seem to do PostScript typesetting.)

appropriate configuration tables.
META commands for Pos tscr ip t Graphics. 2) Making METAPLOT work for new users and new
Leaving text for a future article, here is the list CAD programs on new systems. It may take
of META commands augmented with the tools for some work to get VGtoMF to compile with
doing Postscript graphics: non-Amiga C compilers; the METAFONT and

Pen motion: QjX macros have so far run perfectly on every

PU(X,Y) ; %move system we've tried.
pd(x,y) ; %draw On page 306 of this issue of TUGboat is a
c i (r > ; %draw c i r c l e METAPLOT order form. Be sure to specify diskette
aa(x,y, t he t a) ; %draw a r c size and format in your order! I've tried to set

TUGboat, Volume 10 (1989), No. 2 187

the price low enough that it won't be a barrier
for any of you who wish to join this adventure
into the unknown. I look forward to a challenging
group effort to see just how many systems we can
get METAPLOT to work on; and I'm excited about
the prospect of illustrations bursting into bloom
in rn documents all over the world. I'll try to
keep the TUGboat readership up to date on future
developments.

Afterward

As we go to press, I've just received my copies of
the ANSI Graphical Kernel System and Computer
Graphics Metafile standards. Look at the foregoing
paper as a historical treatise on "How Pat Wilcox
attained enlightenment on the reasoning behind the
inner workings of the Computer Graphics Metafile
standard." The standard defines a set of graphical
objects very similar to my HPGL-derived list. Two
changes are needed: add "elliptical arcs" to my
list, and add support for Bezier cubic splines to
the CGM standard (splines would be supported as
Generalized Drawing Primitives). Add to "Future
Directions": incorporate CGM support into the
VGtoMF program.

References

1. Encarnaqiio, J., R. Schuster, and E. Voge,
eds., Product Data Interfaces in CAD/CAM
Applications: Design, Implementation and Ex-
periences. Springer-Verlag, Berlin Heidelberg
New York Tokyo, 1986.

2. Childs, Bart, Alan Stolleis, and Don Berryman,
"A Portable Graphics Inclusion." TUGboat,
Vol. 10, No. 1, pp. 44-46, April, 1989.

3. Johnson, Nelson, AutoCAD: The Complete Ref-
erence. Osborne McGraw-Hill, Berkeley, CA,
1989.

4. Harrison, Michael A., "News from the V i m
Project." TUGboat, Vol. 10, No. 1, pp. 11-14,
April, 1989.

5. Rogers, David F., "Computer Graphics and
TEX -A Challenge." TUGboat, Vol. 10, No.
1, pp. 39-44, April, 1989.

6. Kinch, Richard J . "TurboMETAFONT: A New
Port in C for UNIX and MS-DOS." TUGboat,
Vol. 10, No. 1, pp. 23-24, April, 1989.

7. Tobin, Georgia K. M., The Elements of META-
FONT Style. Preliminary Version, 4 August
1985.

Acknowledgments

Tomas Rokicki gets a large part of the credit for
METAPLOT -first, for his outstanding implementa-
tion of rn and METAFONT on the Amiga, and
second, for being a constant source of inspiration,
informatiorf, bug fixes, and reassurance as I pushed
his software to its outer limits and beyond.

Thanks to my office neighbors at OCLC, Geor-
gia K.M. Tobin and Rick Tobin, for teaching me
about TEX and METAFONT, by a very successful
policy of benign neglect coupled with coming in-
stantly to the rescue when I got in trouble. Georgia's
instruction manual The Elements of Metafont Style
[7] was the start of my addiction to METRFONT.

Many thanks also to all the friends and ac-
quaintances who have cheerfully helped out when
descended upon by an apparition bearing computer
diskettes - "Here, let's see if this will run on your
system. Show me your instruction manuals. Can
I watch all your graphics programs run? Now can
you dump the data files for me? Send me some

Postscript!" Some of these long-suffering helpers

are (again) the Tobins, who first tried METAPLOT

with Personal and showed me MacDRAW 11;
Bill Hawes (the famed wizard of ARexx on the
Arniga); Tim Mooney (the author of mCAD and In-
troCAD for the Amiga); Dave Haas of Dartmouth's
Northstar Project, who ran METAPLOT for me on the
Unix system at Dartmouth and is gearing up to be
the number one Atari ST beta test site; and Andrea
Ardito and Jack Somerville at Foremost Computer
Systems, Inc., who opened my eyes to a whole world
of Macintosh wonders in a lightning late-night office
tour, and dumped their VersaCAD plot files for me.
Thanks to Willy Langeveld who sent me Postscript
files from VLT, and, most recently, to Scott van
der Linden, who has answered a steady stream of
questions about Generic CADD for the IBM PC
and Macintosh, and has convinced me that they are
Doing Things Right.

And, of course, I need to thank John Wilcox,
who is putting up with all this nonsense when I
really should be working on his program documen-
tation.

o Patricia P. Wilcox
The Coolspring Banjo Works
6617 Home Road
Delaware, Ohio 43015

TUGboat, Volume 10 (1989), No. 2

Output Devices

TjijX Output Devices

Don Hosek

Ordinarily this column includes an exhaustive listing
of names and addresses for sources of output device
drivers, along with several pages of charts showing
what is available. The installment in this issue is
much shorter, as you see. There are two reasons for
this: the information contained in the charts and the
list of sources is being installed in a database and is
temporarily in a relatively unprocessable state, and
also, there has been no news worth mentioning since
the last issue appeared.

Let me therefore take this opportunity to de-
scribe the proposed new policy for this column. Ef-
fective immediately, the complete list and charts
will appear in only issue number 1 of the volume
year. The remaining issues will contain only u p
dates. Your comments on this proposal are invited;
please send them to both the author and the Edi-
tor, whose addresses can be found in the address list
starting on page 145.

Report from the D V I Driver
Standards Committee

Tom Reid
Don Hosek

The first few months of 1989 have shown a healthy
increase in the D V I driver standards discussion. For
those people with network access, much has been
done to provide for the dissemination of the infor-
mation which has come through our hands.

The group has a LISTSERV discussion group,
DRIV-L, which is the primary means of communi-
cation between its members. The list is set up so
that anyone who wants to contribute ideas may do
so by sending mail to DRIV-LQTAMVMI (Bitnet) or
DRIV-LQTAMVMI . TAMU. EDU (Internet). These notes
will be automatically distributed to the membership
of the group.

Archives of past discussions as well as pa-
pers on the topic and the current versions of stan-
dards documentation, programs, and macros are

stored on the Clarkson archive in the dvi-standard
group. Individuals with FTP access may obtain
the files from sun.soe .clarkson.edu in the di-
rectory pub/dvi-standard. Those without FTP
access may still obtain the files via e-mail us-
ing the same mechanism as is used by the
U r n style collection, substituting dvi-standard
for la tex-s ty le where appropriate. For exam-
ple, to obtain the file driv-l.log8809 and a
list of other files, one might send a message
to archive-serverQsun.soe.clarkson.edu which
looks like:

path fschwartz%hmcvax.bitnet@clw.clarkson.edu

get dvi-standard driv-l.log8809
index dvi-standard

By the TUG meeting in August, we hope to have
much of the proposed standard documented and
available from the archive.

Bitnet users may also obtain log files from
ListservQtamvml by sending the command

get d r i v - 1 log yymm

to ListservQtamvml where yy is the last two digits
of the year and mm is the month, expressed as a two
digit number. For example, to obtain the log from
September, 1988, one would send the command ge t
driv-1 log8809 to Listserv. Listserv commands
should be sent either as the first line of a single-line
mail message or as an interactive message (TELL on
CMS, SEND on VMS).

For those without network access, the files may
be obtained on a floppy disk from John Radel for his
usual fees (see the article, "Free" 7l&X software for
IBM PCs," page 202, in this issue for information
on obtaining these files).

The remainder of this article outlines some pre-
liminary results of the committee's work. Persons
interested in implementing portions of this standard
should check the Clarkson archive or contact Robert
MCGaffey, address on page 145, to obtain the most
recent information on the standard.

5 \ spec ia l commands

The committee has decided that the \ spec ia l com-
mands defined to date will be labeled as "experi-
mental" and later classified as "production" after
they've undergone sf icient testing to justify the
reclassification. Experimental \ spec ia l commands
are distinguished by the prefix X-.

Further work on the precise syntactical rules for
\ spec ia l are under development.

5.1 Interface

One of the early decisions of the committee was that
\ spec ia l will be treated as a primitive command

TUGboat, Volume 10 (1989), No. 2 189

which the end user should never need to type. In-
stead, \special should be accessed through a high
level macro set. This has the additional advan-
tage that users at beta test sites will usually not
be affected by changes to the syntax or names of
\ spec ia l commands. This is important since when
a \ spec ia l changes status from "experimental" to
LLproduction", its name will change as noted above.

The committee is developing macros for both
plain TEX and I4m to interface with the develop
ing standard. At the present time, only preliminary
versions of these macros have been written, but a
full macro set for both plain 'l&X and I4m should
be be available by the publication time of this arti-
cle.

5.2 Scope

\ spec ia l commands have been broken down into
six classes depending on what portion of the D V I

output they would affect.

Global These \ spec ia l commands affect the en-
tire document. Examples of this class of
\ spec ia l include commands for selecting du-
plex printing or setting the printing orientation
(portrait, landscape, etc.).

Page These \ spec ia l commands affect only the
page on which they are printed. Examples of
this class include requests for feeding of special
paper from an auxiliary tray (e.g., for a cover
sheet) or a single-page change in orientation.

Box These \ spec ia l commands affect a block of
output that is enclosed in a EX box (and thus
is, by necessity, on a single page). For example,
a command to rotate a block of text would fall
under this class.

Delimited These \ spec ia l commands are those
that affect a block of output which is not nec-
essarily enclosed by a 'l&X box or contained
entirely on a single page. For example, a
\ spec ia l command to set color would fall into
this class.

Output generating These \ spec ia l commands
are those which generate self-contained output
of some sort. For example, the X-vec \ spec ia l
of Section 5.3 falls into this class.

Attribute setting These \ spec ia l commands
modify the next output generating command
which appears on the current page. If no output
generating command follows an output modify-
ing command, the command is ignored and the
D V I driver program should issue a warning. An
example of this class of commands would be
the X-linewidth \ spec ia l described in Sec-
tion 5.3.

The remainder of this section will consist of addi-
tional notes on those classes of \special commands
which need additional comment.

Global specials

Global specials, it has been decided, will be re-
quired to appear on the first page of the docu-
ment. They will either be identified with a prefix
(X-global:), delimited by a pair of \ spec ia l com-
mands (X-begin-globals . . . X-end-globals) or
some similar scheme.

One issue that has not been decided is whether
the first page containing the global \ spec ia l com-
mands should be the first page of text or a special
page on its own. Having global options specified as
part of the actual first page of text minimizes the
impact on existing drivers. However, it does present
some problems with existing macro packages in re-
gard to ensuring that the options are output at the
right place. This problem stems from the fact that
the \ spec ia l commands used to convey the options
to the drivers are normally placed in the body of
the document. Macro packages which place headline
text or entirely separate title pages prior to writing
the first part of the "body" of the document will
cause text to appear in the D V I file before the global
options. Headline text may or may not have any
impact upon the global options, but separate title
pages will prevent the global options from being on
the first page of the D V I file. To get around this
problem, the mechanism used for passing global in-
formation will need to LLcooperate" with the output
routine within the macro package.

Requiring an entirely separate page at the start
of the D V I file avoids the need for special interaction
with the output routines of various macro packages.
Instead of placing \ spec ia l commands in the body
of the first page, a separate macro is used which is-
sues a separate \shipout containing the \ spec i a l
commands. This approach makes things easier for
programs which sort or otherwise reorganize a D V I

file since no culling of global options from the first
text page is necessary. However, the separate page
technique has an undesired effect: it produces a
blank page on existing drivers which do not under-
stand the options page.

Box specials

A box \ spec ia l command, since it will always be
entirely typeset on a single page, will be enclosed in
a box (\hbox or \vbox). In the D V I output,
box structure is reflected by surrounding push and
pop commands. For example, the TEX commands:

normal

190 TUGboat, Volume 10 (1989), No. 2

\hboxC\special(abc) special)
text

generate the following DVI code:

"normaltt

push
right
xxx "abc"
"special"

POP
right
"text

A DVI driver can exploit this for a command such as
X-rotate by maintaining on the DVI stack, values
for items such as rotation-angle.

Delimited specials

The committee has not found an effective way
to deal with open block \special commands yet.
They will probably need to be issued in coopera-
tion with the output routine, to insure that every
delimited command is broken down into matching
pairs of \special commands on each page within
its bounds.

This approach is necessary for two reasons:

If pages are reordered for any reason (e.g., re-
verse ordering for laser printers which stack out-
put face up) the driver should not need to have
to scan the entire file to insure that it does not
inadvertently break up a pair of \special com-
mands producing a delimited command.

0 Without special care being taken, a delimited
command which spans pages may inadvertently
affect page headers and footers which are type-
set between the beginning and ending blocks.

5.3 Graphics commands

Three techniques for including graphics have been
discussed. These are:

1. Make graphics entirely with rn primitives.

2. Use METAFONT to build a graphic as a font.

3. Allow the driver to include a device-specific
graphic.

Graphics by 7&X

Handling graphics entirely with rn macros and
primitives which use dots or characters from a spe-
cial graphics font is a technique which has been in
use for some time. The Urn picture environment
and work in this way with the former assem-
bling characters from a graphic font and the latter
using closely spaced dots.

In TUGboat 10(1),' David F. Rogers proposed
a series of TEX macros to provide plotting primi-
tives; these macros would generally be used by
input generated by some graphics package. The
macros which were proposed created graphics by
closely spacing dots along each line in the same man-
ner as =.

The problem posed by creating graphics in this
manner is that must store all of the graphic ele-
ments in memory at once for an entire page, possibly
exceeding 'I)$% capacity.

To calculate the memory needs, the technique
for positioning each dot was specified as:

\kern\DX \raise\Y \hboxC\DOT)%

where \DX is a dimension register giving the dis-
placement in the "x" direction from the previous
point and \Y is a dimension register giving the dis-
placement in the "y" direction from the reference
point of the graph. \DOT defines the plotting sym-
bol and \DX accounts for the width of this symbol.

In memory, saves \kern\DX in a kern node,
the raised hbox in an hlist node, and the plotting
symbol in a char-node. These take two words, seven
words, and one word of memory, respectively, for a
total of ten words per dot. A normal-size imple-
mentation of TJ?J with 64k-words of memory al-
lows about 6000 dots to be positioned before it runs
out of memory (assuming that no other macros are
loaded and neglecting other text on the page). Spac-
ing the dots at 100 per inch, this gives about 60
inches, which is not sufficient for many graphs.

To enhance the capacity of this graphics tech-
nique, we decided to use a \special to add a vector
drawing capability to TEX and DVI drivers and use
the \special instead of closely-spaced dots. This
changes the command sequence to:

\kern\DX \raise\Y

\hboxI\special(X-vec \number\XC

\space \number\YC))%

where \XC and \YC are dimension registers giving
the components of the vector. Component values
in scaled points are likely to be six-digit numbers
with an additional minus sign for negative numbers.
Thus, an average length for the \special string is
likely to be around 18 characters. In memory, a
\special is saved in a two-word whatsit node which
points to the \special string. Thus the total mem-
ory needs, counting the kern and hlist nodes, will av-
erage 29 words per vector which allows roughly 2000
vectors. This may be sufficient for many graphs, but
falls somewhat short for complex three-dimensional

This article also appeared in w a x 89(7).

TUGboat, Volume 10 (1989), No. 2

surface plots. (One sample 3D surface plot consisted
of 13,000 vectors.)

Two \special commands have been defined for
graphics of this sort (and specialized commands for
more complicated graphic elements will be defined
in the future). The commands defined are:

Xlinewidth n Specify that the following vector is
to be drawn with a line width of n D V I units
(scaled points for Q X) . Vectors are normally
1 point in width. If no vector follows the
X-linewidth \special on this page, the com-
mand is ignored and the D V I driver program
should issue a warning.

X-vec Ax Ay Draw a diagonal line from the cur-
rent point to the point which is offset by Ax
and Ay from the current point. Ax and Ay are
specified in terms of D V I units.

Graphics by METAFONT

A different approach to graphics inclusion is to use
METAFONT to produce the graphic as a character of
a font and position it using QX' s normal character
positioning capabilities. The advantage of this tech-
nique is that the graphic is in a format which many
drivers will already accept.

METAPLOT by Pat Wilcox2 is one example of
a package which takes this approach.

However, the technique has a number of draw-
backs: Graphic fonts are resolution-dependent; a
separate graphic font is needed for different reso-
lution devices. METAFONT records changes in pixel
values across a scan line when it builds a character.
Thus, the memory needs depend upon the complex-
ity of the graphic in addition to the size and resolu-
tion of the device. To circumvent this limitation, it
is necessary to break the whole graphic into smaller
pieces. It is important to ensure that the heights
and widths of each piece are integral numbers of
pixels to allow them to be reassembled without the
alignment problems which occur for letters within
words.

Including device-dependent files

With this approach, the D V I driver processes a spe-
cial Graphics Description File (GDF) which, among
other things, indicates the names and formats of s e p
arate graphic files in device-dependent format. A
driver searches this list to find a file in a format a p
propriate for the device it supports. This allows a
greatly simplified graphic files to be defined for pre-

See page 179 of this issue of TUGboat for infor-
mation about this package; see also the A m i g a m
notes of March 12, 1989 or MAG 3(3).

viewing purposes while a detailed, higher resolution
version is used when the D V I file is printed.

GDF files are processed both by and by the
D V I driver. QX \inputs the file and executes code
at the start of the file. This code sets some dimen-
sion and box registers giving the size of the graphic
then terminates with an \endinput to return con-
trol to the macro which did the \input. The portion
of the GDF file following the \endinput is processed
by the driver.

The driver section of the file consists of a se-
ries of keywords which identify lines that apply to a
particular graphics format, rotation, etc. The driver
scans these lines searching for a format which it un-
derstands. Depending on the driver and the graph-
ics format, additional lines may have to be searched
for other attributes such as rotation. Eventually, the
name of the graphics file to be included will be found
and the driver will incorporate it into the output file.

In "A portable graphics inclusion" (TUG-
boat 10(1)), Bart Childs, Alan Stolleis, and Don
Berryman suggested another scheme for using
\special to include device-dependent graphics files.

6 Additional reference material

In addition to the works mentioned in the Editor's
note at the end of our last report, the following may
also be of interest:

0 Guntermann, Klaus and Joachim Schrod.
"High quality D V I drivers". Available from
the Clarkson archive as the file schrod-

guntermam1 . tex.
a Hosek, Don. "Proposed D V I \special com-

mand standard". Available from the Clarkson
archive as the file hosekl .tex.

In addition, anyone interested in implementing any
portion of the developing standard should read
the logs available from the Clarkson archive or
ListservQtamvml.

Tom Reid
Computing Services Center
Texas A&M University
College Station, TX 77843
Bitnet: X066TRBTAMVMl

Don Hosek

3916 E h o o d

Stickney, IL 60402

Internet: u33297@uicw. uic . edu
Bitnet: u33297@uicw
Bitnet: dhosek@ymir
UUNet: dhoseka

jarthur.claremont.edu

JANET:u33297~uicw.uic.edu@

uk.ac.earn-relay

TUGboat, Volume 10 (1989), No. 2

Resources

Announcing (belatedly) -MAG

Don Hosek
University of Illinois at Chicago

After being chided for not publicizing my electronic
"magazine" enough, I have decided to make a formal
announcement of its availability to the 'J&X cornmu-
nity at large.

What is =MAG?

W M A G is available free of charge to anyone reach-
able by electronic mail and is published approxi-
mately every two months. The subject material
generally falls somewhere between the somewhat
chaotic (but still useful) correspondence of 'QXHAX
and U K W , and the printed matter in TUGboat
and QXline. Some previous articles have included
an early version of Dominik Wujastyk's article on
fonts from TUB 9#2; an overview of the differ-
ent font files used by 'QX, METAFONT, and device
drivers; macros for commutative diagrams and sim-
ple chemical equations and many other topics. One
issue was dedicated to the issue of non-English 'QX.

How do I subscribe?

You can only subscribe if you have access to one
of the electronic mail networks and can send mail
to Bitnet (I have neither the time nor resources
to mail hardcopy issues to those without network
access). To subscribe, one should send the follow-
ing one line message to 1istservQpucc . b i t n e t or
listservQpucc.princeton.edu:

SUBS TEXMAG-L your full name

If you have problems doing this, send a note to
U33297Quicvm. u i c . edu asking to be added to the
list (this address sends mail to me, not a server, so
phrase it for human reading.

There are also several "regional" redistribu-
tions. CDNnet subscribers may subscribe by send-
ing a note asking for a subscription to W M A G
to l is t-requestQubc. csnet. Janet subscribers
should request subscriptions from Peter Abbott,
AbbottpQUk.Ac.Aston.

Janet users may obtain back issues from the As-
ton 'QX repository (for details, contact Peter Ab-
bott, e-mail address above). DECnetISPAN users
may obtain back issues from the European (con-
tact Massimo Calvani, f i s icaQast rpd . infn . i t) or
American (contact Ed Bell, 7388 : :be l l) DECnet
T)?J repositories.

Others with network access should send a mes-
sage to archive-serverQsun.soe.clarkson.edu
with the first line being path followed by an address
from Clarkson to you, and then a line

ge t texmag texmag.v.nn

for each back issue desired where v is the volume
number and nn the issue number. The line index
texmag will give a list of back issues available.

A typical mail request may resemble:

index t exmag
ge t texmag texmag.l.08

How do I submit articles to TEXMAG?

I was hoping you would ask. Articles are accepted
on all aspects of T)?J, M'QX, and METAFONT from
specific information on interfacing graphics packages
with particular DVI drivers to general information
on macro writing to product reviews to whatever
else strikes your fancy. A general rule of thumb to
use in deciding whether something would make a
suitable W M A G article is to assume that it would!

W M A G has two special columns for shorter
submissions as well: "The Toolbox" is a forum for
presenting short useful macros, and "T)?J Myster-
ies and Puzzles" presents interesting and unusual
typesetting problems for possible solutions by the
W M A G readership (these questions are also for-
warded to the WHAX and U K m groups in hopes
of getting as many responses as possible). The pur-
pose of both of these columns is to attempt to pro-
vide exposition of problem solving m n i q u e s , so
when submitting macros for either of these, please
try to explain how and why you did what you did.

o Don Hosek
3916 Elmwood
Stickney, IL 60402
Internet: u33297@uicvm.uic. edu
Bitnet: u33297@uicw

Where can I get back issues?

Users with FTP access to the internet may re-
trieve back issues of 'QXMAG from the directory
pub/texmag on sun.soe.clarkson.edu.

TUGboat, Volume 10 (1989), No. 2

m i n e

Malcolm W Clark

m i n e now terms itself 'a newsletter of the rn
community'. When it began in 1985, it described
itself as a newsletter for Q X users in the UK and
Ireland. The w - w o r l d has changed even in the
last four years.

In 1984, I attended the historic TUG meeting at
Stanford where announced that Q X had been
finalised, and that no more work was to be done
on it, with the exception of bug fixes. At the same
meeting I saw w demonstrated on the Sun, under
a windowing environment, where input text and a
preview could be viewed side by side. I returned
to the Old World determined to be a missionary.
TQX was alive in Britain, but I felt that we had to
try to identify one another, and started to build a
mailing list from the TUGboat listings (an arduous
task, since even to this day there are no regional
subdivisions provided1). Encouraged in my fool-
hardiness by others I decided to start a newsletter,
based on that mailing list. From the outset, m i n e
has been free. Obviously somebody has paid for the
raw materials and the postage, but we just don't
enquire too deeply about that.

The newsletter format has been fairly consis-
tent, and frankly, pretty mundane. Because of a
fundamental restriction to easily obtainable raw ma-
terials (A4 paper), I use double columning, with a
basic 10 point typeface. I have yet to find a really
robust set of double columning macros. The first
editions were set using m 8 0 (a slightly augmented
m 7 8) running on a CDC machine under NOS, and
with an Autologic APS-p5 phototypesetter for out-
put device. The pages were pasted up from a sort of
galley. I also included material prepared by oth-
ers from a variety of devices (embarassingly, this
also included a typewriter). Since then production
has switched f is t to M i c r o w and a LaserWriter,
and now uses Textures on a Mac Plus (again with
a LaserWriter). The quantity of paste up has di-
minished to almost nothing (but not for ideological
reasons -I still feel that paste up is often the best
way to tackle problems).

What goes into m i n e ? As all editors will re-
alise, what goes into most newsletters is a mixture
of what you are prepared to write yourself and what
you can extract from your friends. If you sit and

Editor's note: Clearly Malcolm had not seen
this year's membership list when he wrote this. A
listing by country and city has been added, by p o p
ular demand.

wait for articles to arrive, you sit and wait a long
time. I feel that Z&Wine has been well supported,
even if I do write far too much of it still. I try not to
edit very much, but it is always necessary to re-word
(and sometimes re-write) in order to make articles
fit into pages. Sorry. The next issue of w i n e ,
number 9, will have a table of contents for all the
previous ones. I try to include areas which are not
strictly W w a r e (where m w a r e includes U r n ,
d@m, METAFONT, etc.), like SGML, POST-
SCRIPT matters, reports of relevant meetings (like
those of the British Computer Society's Electronic
Publishing Group, the SGML Users Group, TUG,
and anything similar). Software and book reviews
are becoming more frequent. I even managed to per-
suade one brave soul to review The =book. There
is a fair amount of very mainstream W n i c a l stuff
which would not be too out of place in TUGboat.
Barbara Beeton and I have discussed the possibil-
ity of reprinting some W i n e articles in TUGboat.
I have recently increased the amount of plagiarism
by using material which has appeared over the elec-
tronic networks, or which goes into other newletters.

m i n e tries to maintain a degree of informal-
ity - at least that's my excuse for the typos. Many
of its readers do not have access to electronic net-
works, and, to my chagrin, the majority are not even
TUG members. I believe that it is very important
to get out into the community of 'little people'-
the ones who do not work in organisations where
there are lots of fellow W i e s ; with the successful
porting of T)jX to personal machines, the possibili-
ties of isolation have increased. I would like to think
that T@dine was addressing that situation (without
ignoring the other parts of the community).

As the newsletter grew (in bulk), its mailing
list also grew, especially outside the UK and Ire-
land. This was the main reason for changing the
'subtitle' so that the newsletter merely described it-
slef in more general, non-nationalistic terms. This

however represents a problem. Mailing costs for the
minority outside the British Isles now dominate the
costs. I try to arrange redistribution centres. TUG
has agreed to provide a subsidy. Some of the small
surplus from last year's m 8 8 conference has also
helped to offset costs.

What next? I once said that the newsletter
would never be electronic. Without exactly eat-
ing my words, future editions (and some past ones)
will be included in the Aston Archive. This
may mean that the newsletter can be printed else-
where (although there wiil be problems where graph-
ics are included). It is not intended to remove
the need for printed paper copies. m i n e is set

194 TUGboat, Volume 10 (1989), No. 2

using m - t h e layout may not be exciting, but
it is part of the newsletter. I would like to see
it come out more regularly (even if not more fre-
quently). And I'd like to see more people volunteer
articles. You can submit articles electronically - to
texlineQvaxa.cc.imperial.ac.uk

if you have JANET access
mwcQdoc.ac.uk

if you have UNIX/UUCP access
But if you must send your request to be added to
the mailing list by this means (together with your
article of course), please, please, pretty please, give
me your street address. Remember that m i n e is
produced on paper, and that paper is not so easily
transmitted electronically (yet). I really don't like
typing stuff in myself. It is awfully boring and error-
prone. Floppy disks travel remarkably well- that's
a hint. Send them to:

Malcolm Clark
Imperial College Computer Centre
Exhibition Road
London SW7 2BP
UK

That way, you are guaranteed a place on the mailing
list.

There are still two major impediments to using
mail for accessing the archive:

0 Character tables at Gateways

0 Limits on the size of mail messages.

The mail server will be amended to enable large
files to be sent in smaller units to avoid the second
problem but as yet there is no satisfactory way of
eliminating the character translation problem.

Access from JANET sites to the archive is
relatively simple and painless. The FTP facil-
ities that are provided can be illustrated by a
simple example. (I shall use the VAX/VMS no-
tation, but there are corresponding formats for
UNIX, VM/CMS, NOS/VE etc). A user called
orinocco is registered on a system with the
name uk . ac . wimbledon . common. To extract files
from the archive, orinocco signs on to his sys-
tem and types the command transfer. The re-
quired parameters are input filename, output file-
name, remote username, remote username, pass-
word. If we assume orinocco wishes to fetch the
file [tex-archive] OOreadme . txt, the sequence is

transfer

%-Input filename?

uk. ac. aston. tex: : [tex-archive] OOreadme. txt

%-Output filename? archive.list

%-Remote username? public

%-Remote username password? public

UK- and the Aston Archive

Peter Abbott
Aston University UK

At the time of writing this report (May 1989) the
reorganisation of the archive is in full swing. Since
U K W is now available in a number of archives
it is safer to say read those for the most uptodate
information.

The archivists, listed in TUGboat Vol. 10 no. 1,
have been extremely active and there now exists con-
siderable supporting documentation which allows
users to navigate there way around the archive as
well as giving details of the required elements for
building a version of TeX for the target system.
MAC users are now catered for in that O m (de-
scribed on page 202) is available in HQX format

which is mailable from the archive. MS DOS sys-
tems have likewise been catered for with mailable
versions of the relevant PC software.

The problem of stream-lf files has, hopefully,
been overcome and access to ALL items in the
archive via mail should now be possible.

Transfer nnnnn has been queued.

Sometime later the file is available on the sys-
tem at uk . ac . wimbledon. common. Failure to find or
transfer the file and other error messages are notified
via the normal VAX/VMS mail system.

The Aston mail server is a batch job which
runs on a VAX 8650 processor under the VAX/VMS
operating system. Sometimes genuine mail disap-
pears for one reason or another, so if no reply is re-
ceived after a suitable period you are recommended
to try again. It is impossible to give estimates of the
turnaround time for any individual user; the server
runs once per hour and the mail messages are queued
for transmission. The mail software makes a max-
imum of 30 attempts to send a message (10 at 10
minute intervals, 10 at 1 hourly intervals and 10 at 4
hourly intervals). This rather extended period is de-
signed to overcome short-term network failures and
for systems which are switched off for short periods
of time or overnight. The cluster system at Aston is
normally available 24 hours a day, seven days a week
with the occasional booked systems maintenance on

TUGboat, Volume 10 (1989), No. 2

a Wednesday morning and twice yearly maintenance
checks by DEC.

Instructions on how to extract files from the
archive are contained in a help file, and this file is
available by sending a mail message to

UK addresses on JANET are big-endian format and
most users 'on the other side of a gateway' will need
to specify it as texserver9t ex. aston. ac . uk. The
subject line in the incoming mail message is ignored,
as is any text, until a line starting with --- (three
minus or hyphen characters in columns 1 to 3); any
text on that line is also ignored. The next line is the
name9return address in UK format and the third
line is the word help (in UPPER, lower or MiXeD
case). For example:

--- (any t e x t on t h i s l i n e i s ignored)
nameaaddress
help

The best rule to observe in quoting nameQaddress
is to use the format:

JANET sites

name@uk.ac.site.system

Sites via earn-relay (Internet, Earn)

name%little-endian%big-endian@earn-relay

0 Internet sites may be able to use

name%little-endian%big-endian@nsfnet-relay

0 Sites via uk.ac.uk (UUCP)

name%little-endian%big-endian@uk.ac.ukc

Anyone who has problems getting mail back
is welcome to send me (abbot tphk . ac . aston) the
message that they have tried and I will forward it
to

with a copy to the originator showing the
name9address format that is required. I do not
guarantee to be able to solve every query but will
do my best.

o Peter Abbott
Computing Services
Aston University
Aston Triangle
Birmingham B4 7ET, England
Internet: pabbottm

nss.cs.ucl.ac.uk

The DECUS l)i~X Collection

M. Edward Nieland

7 Introduction

The DECUS rn Collection is a collection of freely
distributable files of T@ and T@ware for com-
puters found in DEC (Digital Equipment Corpo-
ration) sites. The collection is made available by
the DECUS Language and Tools SIG (Special In-
terest Group) Public Domain Working Group. It is
available from DECUS Library and through DECUS
LUGS (Local User Groups).

The collection currently covers three operating
systems: VMS, UNIX, and MS-DOS. The collec-
tion is distributed in VMS BACKUP format (one
6250 BPI tape, one TK-50, or two 1600 BPI tapes).
The collection contains a ready-to-run set up for the
VMS operating system.

The collection includes executables, fonts, style
files, and source. The version date of the current
collection is February 1989.

8 What is available?

The DECUS lJjX collection is one of the largest col-
lections of T@ware available in the United States.
It contains over 54 megabytes of TEX material.

Included are:

'I)$ 2.95

0 Ul&X 2.09

0 S~flJijX 2.09

0 METAFONT 1.7

0 m s i s 2.11.5

 BIB^ .99c

A M - r n

WEB

0 METAFONT Tools (GFtoPK, PXLtoPK,
GFTODVI, etc.)

0 UlJjX Style Collection

0 Utah DVI Driver Collection

0 GLOTEX

0 I D X W

0 l&XTYL

0 DVItoLN03

0 LN03DVI

0 DVI2PS

0 DVITOVDU 3.0

0 PSPRINT 3.0

0 Adrian Clark's Edit interface to VMS rn
0 Fonts designed for a LN03

TUGboat, Volume 10 (1989), No. 2

0 Halftone Fonts

0 SPELL (VMS Spelling checker that
understands QX and I 4 W)

0 DVIDIS (Previewer for VAXStations)

0 R N O t o W

0 SCREENVIEW

0 PSIPQX

0 Templates for LSE

0 PSFIG

0 TGRIND

T R 2 W

The MS-DOS material is included in ARC files:

DOSTEX

0 SBQX

CDVI (previewer)

DVIVGA (previewer)

DVIEW (previewer)

0 Fonts

The following UNIX material is included in
compressed TAR files:

WEB2C

0 COMMONQX

0 S2I4TJ3x

PIC2FIG

PSFIG

0 MFWARE

I P W

0 D E W

FIG-FS

0 BIBW-IN-C

TIB

0 TRANSFIG

W I D X

0 MAKEINDEX

The sources to TEXX and VXDVI previewers for
XI1 are also included.

9 How do I get a copy?

The DECUS l)$ Collection can be obtained from
the DECUS Library for a minimal charge (cost to
cover expense). The order number is V-SP-58. To
order contact:

The DECUS Program Library
219 Boston Post Road BP02
Marlboro, MA 01752-1850

Phone: 508 480-3418

The DECUS WCollection is also available
via the DECUS National LUG Organization
Tape Copy Project. The Tape is made available
to DECUS LUGS at no charge (you provide the
tape). Contact your local LUG to see about
getting a copy of the tape. If you don't know
how to contact your LUG, contact DECUS at
(508) 480-3446 to find out.

10 Additions to the collection

Additions to the DECUS Collection are
accepted and encouraged. Submissions and
suggestions for submissions can be sent to the
collection editor:

M. Edward (Ted) Nieland
Systems Research Laboratories, 1nc.
2800 Indian Ripple Road
Dayton, OH 45440-3696

Internet: tnielandQaamr1. af .mil
Phone: (513) 255-8846

Contents of Archive Server

as of 1 M a y 1989

Michael DeCorte

Due to the size of the archive, from now on the
first issue of the year will contain the complete list
of files and the following issues will only contain the
new and updated files.

As always, submissions are encouraged. If you
do submit a file please include at the top of the file:
your name; your email address; your real address;
the date. Also please make certain that there are
no lines in the file longer than 80 characters as some
mailers will truncate them. Mail should be sent to

mrdQsun.soe.clarkson.edu

archive-managementQsun.soe.clarkson.edu

For Internet users: how to ftp

An example session is shown below. Users should
realize that ftp syntax varies from host to host. Your
syntax may be different. The syntax presented here
is that of Unix ftp. Comments are in parentheses.
The exact example is for retrieving files from the
I P W Archive; the syntax is similar for the other
archives, only the directories differ. The directory
for each archive is given in its description.

TUGboat, Volume 10 (1989), No. 2

Non-Internet users: how to retrieve by mail

To retrieve files or help documentation, send mail
to archiver-serverQsun.soe.clarkson.edu with
the body of the mail message containing the com-
mand help or index or send and the command
path. The send command must be followed by

the name of the archive and then the files you
want. The path command must be followed by a
path from Clarkson to you in domain style format.
You should realize that Clarkson does not have
a uucp connection; therefore you must send it to
an Internet or Bitnet host that does have a uucp
connection. Therefore uunet !host ! user is guaran-
teed to bounce, but host ! userQuunet . uu. net will
work. For example, this user should send

To: archive-serverQsun.soe.clarkson.edu
Subject :

path host!userQuunet.uu.net

send latex-style Readme Index

send latex-style resume.sty

Unfortunately it is not at this time possible for
mail users to request files larger than 100k. They
are only available with ftp.

Traffic on the network servers and gateways
has been very high recently, and in order to provide
improved service, there have been some volunteers
to maintain local "slave" repositories of the LXQX
style collection. There is usually a geographic or
network restriction requested, since the idea is to
cut down traffic, not add to it. The following areas
will be covered by the volunteers listed.

Bitnet users: Texas A&M maintains a
list-server and file-server which is already
handling (with TEX-L) much of the Bitnet
distribution of W h a x . An inquiry via
listserv will retrieve a list of all W-related
files:
tell listserv at t a m 1 get tex f ilelist

rn UK users: Aston University maintains a rn
archive covering all aspects of 'I)$, IKI$$K,
METAFONT, and ancillary software. U K W
(like W h a x) digests are distributed from
Aston. For users with Colour book software,
FTP access is available; for all users, mail
access is available. Send enquires in the first
instance to inf o-texQuk. ac . aston (via
internet use pabbottQnss . cs . ucl . ac . uk).
Italian users: Marisa Luvisetto maintains
a SPANIDECNET depository. He has
software for redistribution such as the
MX'@CStyle Archive, Beebe's driver family,

W h a x , WMAG, U K W magazines,
dvitovdu, psprint, texsis. For more
information on what is available and how
to get it, please send a mail message to
39947::luvisetto or 39003::fisica.
American users can also contact Ed Bell at
7388: :bell. Marisa Luvisetto's internet
address is fisicaQastrpd.infn.it.

rn Canadian users: A shadow copy of the
U w Style Archive is kept on
neat. ai . ut oronto. ca, and is updated
automatically from the master source.
It can be accessed via anonymous FTP
(128.100.1 .65). Mail access is also possible
by mailing to inf oQai . utoronto . ca or
utai ! info. For more details about mail
access, send a message to that address with a
message body that reads

request : info

topic : help

request : latex-style

topic: info

Additional volunteers should contact me.

Sample FTP session for Internet users

% ftp sun.soe.clarkson.edu
...

user: anonymous

password: <any non-null string>

ftp> cd pubhatex-style

ftp> 1s

...
ftp> get Index

...
ftp> quit

(a.k.a. 128.153.12.3)

(general blurb)

(where the files are)

(to see what is there)

(lots of output)

(more blurb)

198 TUGboat, Volume 10 (1989), No. 2

Distr ibution for IBM PC and clone users

There are two sources.

David W. Hopper
446 Main Street
Toronto, Ontario
Canada M4C 4Y2

has IPw style files only. David has in been in
a state of flux for a little while and would like to
apologize for any delays. If you have not received
requested files from him you should get in contact
with him. You should send:

1. either one 1.44 MB 3.5 inch diskette, one 1.2 MB
diskette or four 360 KB diskettes, blank and
formatted;

2. indication of the format required;
3. a self-addressed mailer; and
4. a $5.00 donation per set of files, to cover postage

and equipment wear & tear. (If you live outside
North America, airmail delivery will probably
require more postage. You should probably
contact David for details.)

5. No phone calls or personal visits please.

Jon Radel
P. 0. Box 2276
Reston, VA 22090

has I4w style files and other material including

. For a list of what is available and other
information send a SASE.

A M - W Sources

This directory contains the T@ source needed
to build A M S W , and is a duplicate directory
of tex.amstex on Score. Files are located in
pub/amstex for ftp users. Mail users should request
files from the amstex archive.

BIB= Sources

This directory is a duplicate of tex.bibtex on
Score, and contains the BIB^ style files and the
WEB files needed to build BIBT@. Files are located
in pub/bibtex for ftp users. Mail users should
request files from the bibtex archive.

CM Fonts

This directory contains the METAFONT files needed
to build the CM fonts, and is a duplicate of tex. cm
on Score. Files are located in pub/cm-fonts for
ftp users. Mail users should request files from the
cm-f onts archive.

DVI Driver S tandards

This directory contains digests from the DVI
Driver standards committee. Files are located
in pub/dvi-standard for ftp users. Mail users
should request files from the dvi-st andard archive.
Files are named driver. YY . MM where YY is the year
of the issue, MM is the month. There are also articles
about DVI standards here.

I4m Sources

This directory is a duplicate of tex. latex on Score,
and contains the 7$$ files needed to build IM&X.
Files are located in pub/lamport for ftp users. Mail
users should request files from the lamport archive.

METAFONT Sources

This directory contains the WEB files needed to build
METRFONT. It is a duplicate of tex.mf on Score.
Files are located in pub/& for ftp users. Mail users
should request files from the m f archive.

TjiJX Documentat ion

This directory contains documentation on w. It
is a duplicate of tex . doc on Score. Files are located
in pub/lamport for ftp users. Mail users should

request files from the lamport archive.

QJX Inputs

This directory contains the rn files needed to
build plain m. It is a duplicate of tex. inputs
on Score. Files are located in pub/tex-inputs for
ftp users. Mail users should request files from the
tex-inputs archive.

rn Sources

This directory is a duplicate of tex .web on Score,
and contains the WEB files needed to build m.
Files are located in pub/tex-source for ftp users.
Mail users should request files from the tex-source
archive.

7QX Tests

The directory contains the files needed to test rn
using the triptest. It is a duplicate directory
of tex.tests on Score. Files are located in
pub/tex-tests for ftp users. Mail users should
request files from the tex-tests archive.

TjiJXhax Digests

This directory contains all of the back issues of
T@hax. Files are named texhax . YY. NNN where YY
is the year of the issue and NNN is the issue number.

TUGboat, Volume 10 (1989), No. 2 199

Files are located in pub/texhax for ftp users. Mail
users should request files from the texhax archive.

WMAG Digests

This directory contains all of the back issues of
QXMAG. Files are named texmag .V .NN where V

is the volume number and NN is the issue number.
Files are located in pub/texmag for ftp users. Mail
users should request files from the texmag archive.

Transfig Collection

This directory contains the C source for Transfig;
a program that converts Fig output to other forms
such as w. Files are located in pub/transf ig
for ftp users. Mail users should request files from
the transf ig archive.

TUGboat Files

This directory contains files related to TUGboat
and is a duplicate of tex.tugboat on Score. Files
are located in pub/tugboat for ftp users. Mail users
should request files from the tugboat archive.

U K W Digests

This directory contains all the back issues of
UKQX. Files are named uktex .YY .NNN where
YY is the year of the issue and NNN is the issue
number. Files are located in pub/uktex for ftp
users. Mail users should request files from the
uktex archive.

-4M-m
This directory contains style files specific to AMS
QX users. Files are located in pub/amstex-style
for ftp users. Mail users should request files from
the amstex-style archive.

mssymb . sty the definitions for the symbols
in the two "extra symbols" fonts
created at the AMS

This directory contains files that are specific to
version 0.99 of BIBQX. Many of these files are to
be used with files in the I P W Collection. Files are
located in pub/bibtex-style for ftp users. Mail
users should request files from the bibtex-st yle
archive.

named. bst for use with ijcai89. sty

BIBQX 0.98 Collection

This directory contains files that are specific to
version 0.98 of BIBQX. Many of these files are
to be used with files in the IPQX Collection.

Files are located in pub/bibtex-style-0.98 for
ftp users. Mail users should request files from the
bibtex-style-0.98 archive.

btxbst .doc A master file for BibTeX styles
with standard styles and some new
ones.

Kl&X Style Files

This directory contains files that are specific to
I P W . Most of these are style files but some of them
are programs. Some of the files support BIBQX
style files that are in the BIBQX Collection or
the BIBQX 0.98 Collection. Files are located in
pub/latex-style for ftp users. Mail users should
request files from the latex-style archive.

agugrl-sample.tex

AGU Geophysical Research Letters
style

agujgr-sample. tex

AGU Journal of Geophysical
Research style

cd.sty Commutative diagram macros
cd-doc.tex

breakcites.sty

allows citations to break across
lines

bsf . sty provide access to bold san serif
fonts in IPQX

deproc.readme

deproc .sty DECUS proceedings style and
documentation

eepicl1b.shar

a picture environment that used
tpic specials

fancyheadings.sty

modify the headers and footers

f ullpage . sty get more out of a page

german. sty style file for German

hackalloc . sty
make allocation local for I P W

i j cai89. sty Conference style for IJCAI-89
i j cai89. tex

jeep. sty useful modifications of the article
jeep .tex style

ltugbot . sty for articles to tugboat

mitpress . sty a simple MIT Press format

m f .sty make METAFONT logos at all sizes

named. sty for use with named. bst

nat sci . sty natural sciences style (BIBQX file
in bibtex-style-0.98)

TUGboat, Volume 10 (1989), No. 2

pagef oots. sty

puts footnotes at the bottom of
each page

parskip. sty sets parindent to 0 and puts some
glue into parskip to aid page
breaks

portland. sty environments to switch between
portrait mode and landscape mode

refman. sty document style for reference
manuals similar to the PostScript
manual

res .sty a format for doing resumes by
Michael DeCorte

resume. sty a format for doing resumes by
Stephen Gildea

svlncs . sty a document style for articles in
books printed in the Springer-
Verlag LNCS series

verbatimfiles .sty

include a file in a verbatim mode

TjiJC Fonts

This directory contains the METAFONT files for
user contributed fonts. Files are located in
pubhex-fonts for ftp users. Mail users should
request files from the tex-f onts archive.

apl . shar APL fonts and related macros

t engwar. shar the fonts used by Tolkien in Lord
of the Rings

vu j ast yk . txh description of a lot of different
fonts

greek1 . shar for papers in Greek
greek:!. shar

hershey .pas Hershey fonts
hershey. txh

acwtosc .pas

hershey-test.tex

orient .mf

xhershey . shar
Hershey script fonts and a
program to convert vector fonts to
METAFONT

ccr5 .mf the fonts and macros for Concrete
ccr6 .mf Mat hematics
ccr7. mf

ccr8 .mf

ccr9 .mf

ccrl0 .mf

cccscl0.mf

ccmil0 .mf

ccsl10 .mf

cctil0.d

ccslc9 .mf
gkpmac . t ex
ocr-a. mf OCR-A fonts by Tor Lillqvist

ocr-ai .mf

ocr-aii .mf

ocr-aiii .mf

ocr-aiv.mf

cmpica.mf CM Pica by Don Hosek
cmpicab .mf

cmpicati .mf

pica.&

pcpunct .mf

b-circle .mf John Sauter's reparameterized
b-cmb.mf Computer Modern. To create an

b-cmbsy . mf arbitrary CM font is to create a file

b-cmbx .mf with the following two lines:

b-cmbxsl.mf design-size:=SIZE;

b-cmbxti.mf input b-FONT

b-cmcsc .mf This will produce the typeface
b-cmdunh .mf FONT with design size SIZE. for
b-cmex.mf example, if FONT is cmr and SIZE is
b-cmff .mf 11, you will get cmrll.
b-cmfi .mf

b-cmfib .mf

b-cminch.mf

b-cmitt .mf

b-cmmi .mf

b-cmmib .mf

b-cmr.mf

b-cmsl .mf

b-cmsltt.mf

b-cmss .mf

b-cmssbx.mf

b-cmssdc.mf

b-cmssi .mf

b-cmssq.mf

b-cmssqi .mf

b-cmsy .mf

b-cmtcsc .mf

b-cmtex . mf
b-cmt i . mf
b-cmtt .mf

b-cmu . mf
b-cmvtt .mf

b-lasy .mf

b-lasyb .mf

b-line . mf
b-linew . mf
c-circle.mf

c-cmbx .mf

c-cmff .mf

c-cmmi .mf

c-cmr.mf

TUGboat, Volume 10 (1989), No. 2

c-cmss .mf

c-cmssbx.mf

c-cmssq.mf

c-cmsy . m f

c-cmt i . m f

c-cmtt .mf

c-line .mf

c-sigma.mf

bold2math .mf

barcodes .mf to generate barcodes

milstd . tex for logic diagrams
milstd.mf

TEX Programs

This directory contains programs that are of general
interest to TEX users in general. Files are located in
pub/tex-programs for ftp users. Mail users should
request files from the tex-programs archive.

dvidoc.patch-sun2

diffs for sun2 running Sun OS 3.4

dvidoc.shar3

a DVI to character device filter for
Unix BSD systems

fig2epicllc.shar

converts fig code to epic or
eepic files

schemetex.sh

simple support for literate
programming in Lisp. A Unix filter
that translates s c h e m e w source
into U w source

TEX
This directory contains style files for plain m.
Files are located in pub/tex-style for ftp users.
Mail users should request files from the tex-style
archive.

declare. tex macros to allocate local registers

ithyphen. tex hyphen.tex for Italian

mssymb. tex the definitions for the symbols
in the two "extra symbols" fonts
created at the AMS

scorecard. tex

prints a baseball scorecard for one
team

texpictex.tex

tpic \special changes to F'pZQx

Site Reports

Data General site report

Bart Childs

We have now installed T@ 2.98 and the rest of
the changes that have been made to the sources
at Stanford since the first of the year. As usual,
change the revision number, tangle, compile, . . .

The new Data General printers are a consid-
erable improvement over the previous ones. The
new ones based upon the Canon engine do not
have arbitrarily small limits for downloaded fonts.
This driver should work well for the vanilla Canon
printer.

We are in the process of rewriting these drivers
in CWEB. It will be interesting to perform some
timings to see if we can get an improved throughput.
These drivers are descendants of dvitype.

-

Prime 50 Series Site Report

John M. Crawford

We've recently updated our T@ distribution tape to
keep up with the latest revisions of software coming
from Stanford and friends. This includes updates
to TEX, METAFONT, utility programs, and META-

FONT sources, as well as a rebuild of some of the
METAFONT fonts. The U m and AMS-QX source
files have been updated. Further updates to this
software can be quickly incorporated onto our tape,
as our Internet network facilities allow us quick,
easy access to the various software repositories.

Updated versions of various device drivers have
also been incorporated into our new tape spins,
thanks to contributions by some of our friendly off-
site Q-5 and Primos users. We now also have avail-
able a version of !QX with greatly expanded memory
arrays, by locally incorporating Bart Child's 64 Bit

work into our Q X port.

o Michael DeCorte
2300 Naudain St. "H"
Philadelphia, PA 19146
md@sun.soe.Clarkson.edu

Bitnet: md@clutx

TUGboat, Volume 10 (1989), No. 2

Typesetting
on Personal Computers

"Free" 'l$jX Software for IBM PCs

Jon Radel

Since there have recently been several confusing
mentions of the disk copying service I supply to the
TJ$ community, I would like to take this oppor-
tunity to clarify matters a bit and call attention
to my service for those people who missed those
mentions. I make copies of a variety of material
of use for running TEX on an IBM PC or clone.
The charge is nominal -to cover my expenses in
gathering the material - if you supply the floppies
and a return mailer. I can also supply the disks if
you prefer to simply send money. I have, at the
moment, two ports of TEX itself, one of METAFONT,

Nelson Beebe's DVI drivers as well as some other
drivers and previewers, the IPW-style collection,
back issues of W h a x and MAG, and a variety
of other interesting material. I make an effort to
carry the most recent version of programs, but I
can make no guarantees as I am in part dependent
on the authors to let me know about new versions.

I would prefer that you send all mail about
this software to me at Jon Radel, P. 0. Box 2276,
Reston, VA 22090. To get the details on ordering,
and the current list of what I have, please send a
self-addressed envelope. Attach 45 cents postage in
the U.S. Outside the U.S., send International Reply
Coupons, 2 for Canada and Mexico, 4 for elsewhere,
or, if more convenient for you, US12.25.

Incidentally, if you have created any software
of use to someone using lJjX on an IBM PC, I
would be most interested in hearing about it if you
are willing to give me permission to distribute it.

o Jon Radel
P. 0. Box 2276
Reston, VA 22090
jonradelQlicecream.princeton.edu

Public Domain for the Mac

Andrew Trevorrow

O m 1.0 is a public domain version of rn for
the Macintosh. It aims to provide a standard
7$,X environment that can be easily extended or
customized. People with access to on some
other computer should feel right at home using
O w , particularly those who use PSPRINT and
DVItoVDU on a VAX/VMS or UNIX mainframe.

A brief description

Here's a quick look at O m ' s major features:

The complete distribution requires ten BOOK
disks. Five of these are full of PK files
(for a 300dpi write-black laser printer such as
the Apple Laserwriter). Another two disks
contain the entire source code. O m is
written in Modula-2 under MPW (Macintosh
Programmer's Workshop).
The O m application includes rn (actually
INITEX so users can create their own format
files), a DVI page previewer and a Postscript
driver that can send output to the current
printer or to a text file.
The three most popular formats are supplied:
Plain, I P W and A M - W .
0- reads standard TFM and PK files and
reads and writes standard DVI files.
The previewer can cope with just about any
DVI file you're ever likely to create, including
those generated by another system. Have

you ever wondered what trip.dvi (the DVI
file created by Knuth's trip test) looks like?
The application includes a Help menu which
you can easily extend or modify.
A configuration file is read when starting up and
controls much of O m ' s default behaviour.
This simple text file can be edited to suit
your particular requirements. Some of the
parameters you can specify include the printer
resolution, the paper dimensions, a list of the
formats that appear in the 'I$jX menu, and a
list of all TFM file names for printer-resident
Postscript fonts.
A 22-page user guide is supplied, including its
IPQX source. By the time you read this article
I should also have finished a system guide
aimed at programmers who'd like to modify

ORES.

not all good news however. There is still plenty
of room for improvement:

TUGboat, Volume 10 (1989), No. 2

There is no integrated text editor. O m is
distributed with CEdit, a public domain DA
editor written by Leonard Rosenthol.
0- requires a Postscript printer.
\special handling is fairly unsophisticated.
0- allows the inclusion of a PostScript file
along with optional code prefixed to the file.
There is currently no support for previewing
PICT or EPSF files.
Previewing DVI pages is not as fast as I'd like,
particularly on a Mac Plus.

Future development of O m is likely but will
occur at a fairly sedate pace unless I can find people
prepared to help with the programming or provide
financial support. Send your bug reports, comments
and offers of help to the address shown at the end
of this article.

W h e r e t o get 0-

The following people have volunteered to help
distribute O m . Please get in touch with the
person nearest you. By the time you read this
article it is likely that O m will also be available
electronically from various Mac archive sites. People
without access to email should try their local Mac
user group.

In Australia and New Zealand:

addieBrhea.trl.02 Ron Addie, Melbourne
keady@madvax.uwa.oz Grant Keady, Perth
rks105@phys6. anu. oz Russell Standish, Canberra
cccO32u@aucc434i. aukuni. ac .nz R. Fulton, Auck.

In the USA:

c3arBzaphod.uchicago. edu Walter Carlip, Chicago
tnielandBaamrl.af.mil Ted Nieland, Dayton
spencerBcis .ohio-state. edu S. Spencer, Columbus

In the UK and Europe:

abbottpBaston.ac.uk Peter Abbott, UK
texlineQvaxa. cc . ic . ac . uk Malcolm Clark, UK
nikunenBcc . helsinki . f i Martti Nikunen, Helsinki

I'd like to hear from people interested in distributing
O m in other countries. Here's how to get in
touch:

Andrew Trevorrow
Kathleen Lumley College
North Adelaide, SA, 5006, Australia

Telephone: (08) 267 1060
Email: atrevorrowQg . ua . oz (ACSnet)

Tutorials

\ s t r i n g and \csname

Stephan v. Bechtolsheim

This article discusses \ s t r i n g and \csname to
convert back and forth between strings and tokens.
To control loading macro source files in a convenient
way, I will show an application of \csname. I
will also discuss cross referencing which relies on
\csname.

Converting Tokens t o Strings, \ s t r i ng

" \ s t r ing <token>" causes l)$ to read the to-
ken <token> following \ s t r i n g without expansion.
Subsequently <token> is replaced by a string r e p
resenting it. Let me start with some examples.

1. C\tt \s tr ing\hskip) prints \hskip.
2. (\ t t \ s t r i ng$) prints $.

3. (\ t t \ s t r i ng \$) prints \$.

4. (\ t t \ s t r ingC) prints (.
5. (\ t t \ s t r ing)) prints 3.

Also note:
1. The escape character printed in the previous

examples is the backslash. Any other charac-
ter could be printed by assigning a different
character code to \escapechar. The default is
obviously \escapechar = ' \\, which assigns
the character code of the backslash. If you
change \escapechar to a negative value, then
no escape character is printed:
\escapechar = -1 \s t r ing\xx prints xx.

2. There is an important difference between 'xx'
entered as an ordinary string and 'xx' gen-
erated using \ s t r i n g as just shown. All
characters generated by \ s t r i n g have the cat-
egory code 12 ("other"), whereas 'x' ordinarily
has category code 11 ("letter").

3. Observe the use of the typewriter font (\ t t) .
If you use the roman font and simply write
\ s t r ing\hskip the output reads "hskip and
not \hskip, as expected. The reason for this is
that the roman font contains an opening double
quote in the position where the typewriter font
contains a backslash.

4. \ s t r i n g converts only the token following it
into a string. For instance, to print two
consecutive $$ you have to repeat \ s t r i n g and
enter C\t t \s t r ing$\str ing$). If you enter
only C\t t \s t r ing$$) the first dollar sign is

TUGboat, Volume 10 (1989), No. 2

printed due to \string, the second one causes
'QX to enter math mode.
An important application of \string is to
write control sequences to a file using \write.
Any control sequence which should be written
to a file (instead of being expanded) must be
prefixed by \string. \noexpand can also be
used.

Converting Strings into Tokens,
\csname . . . \endcsname

General Discussion. The \csname instruction
is, in a certain sense, the inverse operation of
\string. It converts a sequence of characters into
one token. Observe that I said "characters" and
not "letters." Using \csname allows you to build
names for tokens that contain nonletter characters
such as digits. The ordinary way to write control
sequences restricts the user to control words (the
escape character followed by any number of letters,
but letters only) and control symbols (the escape
character followed by one and only one nonletter
character).

The \csname control sequence is applied as
follows. After \ csname, list the characters naming
the token. You also may use macros, but only
those which expand to characters. The sequence
of characters forming the name of the token is
terminated by \endcsname.

Here is an example. To name the token
"\?-a*l7 .g" write

\csname ?-a*l7. g\endcsname

In the rest of this article, please allow a certain
looseness with respect to notation. Ordinarily, if
you see a piece of T)i$ source like \?-a*l7 .g, you
would interpret this as \? followed by 7 single
character tokens. In this article, it stands for one
single token.

Depending upon the context of the above
example, may try to expand the token named
and will have to be able to find a corresponding
macro definition (or any other type of definition).
Here is how one can define such a token.

\expandafter\def
\csname ?-a*l7.g\endcsnameU

Replacement text of macro.

3
The \expandafter suppresses the \def temporarily
to allow 'l&X to compute the name of the token
\?-a*17.g. Then \def is re-inserted in front of
this token. The macro definition now proceeds as
any other macro definition. If \expandafter were

omitted, 'I)$ would define a macro with the name
\csname.

As mentioned before it is legal to call a macro
inside a \csname . . . \endcsname sequence as long
as the macro expands to characters only. Counter-
registers can also be used:

This example is equivalent to forming the same
token using. \csname ZZ-4-ABC\endcsname.

I will later discuss two applications of \csname.
One will define a macro \InputD to load macro
source files, and the other uses \csname for cross-
referencing macros.

\csname and \relax. Assuming that n o preced-
ing definition for \xx is given, when ?jEX executes
the following code:

You may be surprised to see that the first line does
not generate an LLundefined control sequence" error,
whereas the second line does. The reason is that
undefined tokens generated by \csname are made
equivalent to \relax by m. The above code
fragment is therefore equivalent to:

On the other hand, in the following examples:

\def\xxCThis is fun)

\csname xx\endcsname

\xx

\expandafter\def\csname xx\endcsnameC%

This is fun%

3
\csname xx\endcsname

\xx

"This is fun" is printed four times.
In other words, if a token named using \csname

is undefined, it is equivalent to \relax. This fact

will be used in definition of \InputD (next section).

\InputD: Loading Macros Conveniently

The Problem. I personally like to divide my
macro sources into many small macro source files.
I load only those macro source files that I really
need. Here is a problem frequently encountered in
this context:

1. Assume that at the top of a main source file,
main.tex, you load macro file A.tex. This

TUGboat, Volume 10 (1989), No. 2 205

macro file in turn uses macros from another
macro source file B . t ex.

2. Assume in addition that you load macro source
file C. tex in main. tex, and that C. tex also
uses macros from B . tex.

If you load both A. tex and C. tex in your main
source file, and both A. tex and C . t ex load B . t ex
using \input, then, of course, B. tex will be loaded
twice, which is undesirable.

Using \InputD. I will now explain how to de-
fine a macro \InputD having one argument, the
name of a file, which loads the file only if the
file was not loaded before. In other words, in
A. tex and C . tex you request B . tex to be loaded
via \InputDCB. tex). Only the very first time is
\InputDCB . tex) equivalent to \input B . tex; sub-
sequent times, \InputDCB. tex) does nothing (ac-
tually, in the macro definition below, a message is
generated saying that B. tex was not loaded again).
The macro \InputD does all the bookkeeping.

Note that you must always use this macro to
load macro source files in order to get the effects
described here. After using the ordinary \input
B . tex (bypassing the bookkeeping of \InputD), 'TEX
has no record of the fact that B.tex was already
loaded, and a later occurrence of \InputDCB.tex)
will cause l&X to load B.tex again if this is the
first call of \InputD with argument B. tex.

The Workings of \InputD. When this macro is
called, its argument, a file name, will be used to
form a token as follows. A prefix, InputD-, and
the file name will be concatenated. For instance,
\InputD(B.tex) causes l&X to form the token
\InputD-B. tex. A test is then performed to
determine whether this token is already defined.
If it is (which will mean the file B .tex is already
loaded), nothing is done. On the other hand, if this
token is undefined (this is true only the very first
time \InputD is called with argument B . tex), the
macro will define token \InputD-B.tex and load
file B . tex. Any subsequent call \InputDCB . tex)
will find the token InputD-B.tex defined. The
actual definition of this token is irrelevant. The
macro \InputD simply defines the token to expand
to nothing (i.e., the replacement text is empty).

I think that using this macro offers a very
flexible and powerful approach to maintaining lots
of macro source files. There is no longer a need
to do any bookkeeping of which source files have
been loaded: if you need a macro source file, load
it using \InputD. Source files will be loaded only if
they have not been loaded before.

The Definition of \InputD. The definition of
the \InputD macro is amazingly simple. Note that
\ifx absorbs without expansion the two tokens
following it, and then compares the two tokens.
\expandafter is used first to compute the token
InputD-B . t ex (assuming the argument is B . tex),
and then the \ifx compares this token with \relax.
As noted before, if the token is undefined, it is
equivalent to \relax.

\def\InputD #I<%
\expandaf ter\if x

\csname InputD-#l\endcsname
\relax

% Equivalent to \relax: not
% defined before ! Define now.
\expandafter\def

\csname InputD-#l%
\endcsnameO%

% Read in macro source file.
\input #1

\else

% Loaded already.
% Print message.
\message<\string\InputD :

file 11#111 was loaded

before. 1%
\f i

1

Cross-Referencing Macros

The following discussion is more complicated than
the previous application for \csname. This is a

brief sketch only (see my book "T)$ in Practice"
for further information).

The User Interface. Let me fist explain how
you can use the cross-reference macros which I will
present later. The following should be familiar
to every user of L4m, the main difference being
that I use macros which begin with capital letters.
To identify document entities such as chapters,
sections, figures, etc., labels are used. Such labels

consist of arbitrary characters like f-structure for
a figure describing the structure of some piece of
equipment.

The user has the following three macros at
her/his disposal (all three have one parameter, a
label) :

1. \Label is used to define a label. For instance,
\LabelCf -structure) labels the figure men-
tioned above, associating a symbolic reference
("f -structurev) with an appropriate numeric
reference (say, "3.5").

TUGboat, Volume 10 (1989), No. 2

\Ref expands to the figure number of the figure
whose label is given as an argument. If you
want to print some text like "see Fig. 3.5,"
then you would not enter %ee Fig. -3.5,"
because you would have to change this text
if the figure number changes (for instance, to
3.6, because you have inserted another figure
before this figure). Instead you enter "see
Fig. '\Ref (f -structure>," and let QX do
the work.
\PageRef expands to the page number of the
figure labeled by the name you provide. Again
this page number will automatically change, if
the figure migrates to a different page due to
modifications of the text. Your input might
read "p . "\PageRef Cf -structure>" and print
"p. 67'' if that is the page where the figure with
the specified label is placed.

Retrieving the Cross-Reference Information.
The cross-reference information is read in at the
very beginning of a job (before any "real" text
processing is started) from a label file. In the case
of W ' , this label information is stored in .aux
files. We will soon discuss how this information was
written to the label file in the first place.

Such label files consist of calls to a macro
\NewLabel. This macro has three arguments: label
name, number of the entity and page number of the
entity. So in the above case one call contained in
this label file reads as follows:

\NewLabelCf -structure>C3.5)C67)

\NewLabel, when called, will in turn define two
macros, one called \REF-f -structure, which ex-
pands to the number of this figure, and one called
\PAGEREF-f -structure, which expands to the page
number. Here is the definition of \NewLabel.

\def\NewLabel #1#2#3C%
\expand& t er\def

\csname REF-#l\endcsname(#2>%
\expandafter\def

\csname PAGEREF-#l\endcsnameC#3)%

1

\Ref and \PageRef simply retrieve what \NewLabel
has stored:

\def \Ref #lC\csname REF-#l\endcsname)
\def \PageRef #I(%

\csname PAGEREF-#l\endcsname)

Note that a definition of \Ref or \PageRef would
normally be augmented by an \ i f x test along the
lines of the definition of \InputD to print a warning
message in the case of an undefined label.

Generating the Label File. From what we dis-

cussed so far you know that the label file is read in
at the very beginning of a TEX run. Therefore all
cross-references printed in the text are based on the
information of the previous run. They do not take
into account any changes occurring to those labels
due to changes in the text during the current run.
The same file name is used in the current run both
for reading the old label file and for writing new
label information in the new version of the label
file.

In the definition of \Label below it is assumed
that \TheFigureNumber produces the current figure
number. This macro has one parameter which is
the name of the label. \Labelstream is assumed to
be the stream for writing the label file.

\def\WriteLab{\write\LabelStream)

\def \Label #1C%
\edef\LabelTemp(%

\noexpand\string
\noexpand\NewLabel

(#l)C\TheFigureNumber>>
\expandafter\expandafter\expandafter

\WriteLab\expandafter(%
\LabelTempC\the\pageno>>%

>
Features Not Discussed. I only tried to sketch

here how cross-referencing macros can be imple-
mented. The above macros are far from complete.
The following details were ignored.

Opening and closing the label file. Reading in
the label file in the very beginning.
Printing a warning message if two figures are
accidentally labeled by the same label.
Using labels to label other entities like chapters,
sections, tables, etc.
Printing a warning message if label definitions
as generated during the current run d i e r from
label definitions of the previous run, resulting
in possibly wrong cross-references and requiring
processing a document for a second time.

Concluding Remarks

This article was derived from my book "QX in
Practice" (the original title was "Another Look at
w). The book will be published by Springer in
October of this year.

o Stephan v. Bechtolsheim
Integrated Computer Software, Inc.
2119 Old Oak Drive
West Lafayette, IN 47906
svb8cs.purdue.edu

TUGboat, Volume 10 (1989), No. 2

Macros

DDA Methods in '&jX

David Salomon

Several macros are presented here that use DDA
methods to generate lines, circles, and ellipses.
They are all based on the idea that a curve can be
drawn in by moving a dot in small steps and
repeatedly typesetting it. This idea was originally
suggested by Hendrickson [I] for straight lines, and

extended by Cameron [2] for wiggly lines. I4W
users also have line and circle macros available, but
those are limited to certain slopes and diameters.

The macros presented here generate lines, cir-
cles, and ellipses, using DDA (Digital Differential
Analyzer) methods. DDA is a general name for
methods that generate geometric shapes using sim-
ple arithmetic operations, and integers. No mul-
tiplication, division, square root, or floating-point
numbers are used. Typically, a DDA method works
by moving along the curve in small steps, calculating
the coordinates of the next point (xi+l, yi+l) either
as simple functions of the current point (xi, y,),
or using a parametric representation of the curve.
Thus either xi+l = f(x,, yi) and yi+l = g(xi, yi); or

(2, Y) = f (4).
The first macro uses the Quadrantal DDA

method [3] to produce straight lines of any slope.
The second macro is a W implementation of the
Octantal DDA method [3], which is somewhat more
involved but produces finer lines. The third macro
implements Bresenham's algorithm [4] for circles;
and the last two macros, for ellipses, are based
on the parametric equation of these curves. In
most of the cases above, the precise shape of the
curve depends on the size of the basic step, which
is the value of the \dimen variable \step. It is
recommended to k s t experiment with the macros
using \step=lpt, just to see how the dot is moved
for any given curve. For production purposes,
however, it is better to set \step=.25pt, which
produces a small enough step size such that, in a
300 dpi output, curves look pretty smooth. For
higher resolution outputs, the step size should be
made even smaller. Unfortunately, making the step
size too small, or generating long curves, may result
in the dreaded (and, alas, familiar) message:

! TeX capacity exceeded,

sorry [main memory size=655361.

The ellipse macros have another potential prob-
lem. Large ellipses may cause an arithmetic
overflow message, due to m ' s limited capacity.

The Quadrantal DDA Method

Macro \qua& typesets a slanted line by using the
quadrantal DDA method. It works in any mode
and does not move the reference point.

The macro has 2 parameters, Ax and Ay,
which are the horizontal and vertical projections
of the line, respectively. Since the line starts at
the current reference point, the two parameters can
also be viewed as the coordinates of the endpoint
of the line (relative to the reference point). The
parameters can be specified in any valid ll5
dimension, so expansions such as

\qua& -13pt 5in

\qua& 25pc -5mm

\qua& 3cc 3dd

are all valid. Note the percent signs '%' at the end
of certain macro lines. They are important because

converts an end of line to a space, but we don't
want such spaces to get typeset (try eliminating
some of the '%' to see what happens).

To understand the principle of the quadrantal
DDA method, consider the case where both Ax and
Ay are positive. The line should go up and to the
right from the current reference point. The method
works by typesetting a dot at the reference point,
then moving it, by the basic step, either up or to
the right (but not in both directions), typesetting
it again, and looping, until the dot has been moved
a distance of Ax in the x direction, and a distance
of Ay in the y direction.

Figure 1 shows two such lines, one almost
horizontal and the other, at 45". Each dot has been
magnified to a small box. Note how the principle,
of moving either to the right or up, creates the line
as a number of overlapping segments. This causes
the line to appear thicker than it should be. If
either Aa: or Ay is negative, the dot has to be
moved to the left or down. Our algorithm thus
has four parts - macro \doloopA is used if Ax 2 0
and Ay 2 0 (0" 5 slope 5 90°, the first quadrant);
\doloopB is used if Ax < 0 and Ay 2 0 (90" <
slope 5 180°, the second quadrant); and so on.

The decision in what direction to move is based
on the value of the \count variable \diff. \dif f

is initially set to -0.5Ax and is either decremented
by Ax (if a decision is made to move the dot up), or
incremented by Ay (if the dot is to be moved to the
right). By the time the dot gets all the way to the
end point of the line, the ratio between the number

208 TUGboat, Volume 10 (1989), No. 2

of times it has been moved up and the number of
times it has been moved to the right is AylAx,
which is the slope of the line. The algorithm for the
first quadrant is therefore:

x := 0; y := 0; diff := -Ax/2;
repeat

plot(x, Y);
if dzff > 0

y := y + 1; dzff := diff - Ax;
else

x := x + 1; diff := diff + Ay;

until x = Ax & y = Ay;

A simple example is a line with Ax = 6 and Ay = 2.
The algorithm above iterates 9 times as summarized
in the table.

dzff
step x y before after

1 0 0 -3 -3+2

For more information on this method, see
reference [3].

Macro \qua& uses the 4 macros \doloopA,
. . . , \doloopD. However, only one of them is ex-
panded, depending on the slope of the desired line.
Macro \point typesets a dot by placing it in a box

of zero dimensions (see page 389 of [5]). Macro
\point and a number of registers are used by both
the quadrantal and octantal methods; a user creat-
ing a file of macros for either method must include
the following code.

i.\newdimen\delta \newdimen\deltay

2. \newcount\dif f

3.\newdimen\xstep \newdimen\ystep

4. \newdimen\step

5. \newif \if more

6. %
7.\def\point#l#2(% keep this percent sign!

8. \vbox toOpt<\kern-#2

9. \hbox toOpt€\kern#l. \hss)\vss)%

lo. \if vmode\nointerlineskip\f i)

Exercise 1: Look carefully at the way macro
\point generates boxes. What is the depth of those
boxes?

Close to horizontal 4 5 O

Quadrantal DDA

Close to horizontal 4 5 O

Octantal DDA

Figure 1. Details of Quadrantal a n d
Octantal Lines

Note that \nointerlineskips are inserted
between the dots when Q$ is in vertical mode.
This avoids the interline glue which otherwise is
automatically generated. As a result, macro \quadr
does not move the reference point and, after each
expansion, the user should decide whether to move
it, and by how much.

i.\def\quadr#l #2 I% keep this % sign!
2. \deltax=#l \deltay=#2

3.\xstep=Opt \ystep=Opt

4. \if dim\deltax<Opt

5. \ifdim\deltay<Opt \doloopC

6. \else \doloopB \fi

7. \else

8. \ifdim\deltay<Opt \doloopD

9. \else \doloopA \fi

lo. \f i) % end of macro quadr
11. \def \doloopA(%

12. \ifdim\deltax>\deltay \diff =-\delta

13. \else \dif f =\deltay \f i
14. \divide\diff by 2

TUGboat, Volume 10 (1989), No. 2 209

15. \loop

16. \if num\dif f >O

17. \advance\ystep by \step

18. \advance\dif f by-\delta

19. \else

20. \advance\xstep by \step

21. \advance\diff by \deltay

22. \f i

23. \pointC\xstepH\ystep3%

24. \moref alse

25.\ifdim\xstep<\deltax \moretrue\fi

zs.\ifdim\ystep<\deltay \moretrue\fi

27. \ifmore\repeat)

28. % end of loop for 1st quadrant
29. %
30. \def \doloopBC%

31. \if dim-\delta>\deltay \diff =\delta

32. \else \dif f =\deltay \f i
33. \divide\diff by 2

69. \if dim\deltax>-\deltay \dif f =-\delta
70. \else \dif f =-\deltay \f i
71. \divide\diff by 2

72. \loop

73. \ifnum\dif f >O
74. \advance\ystep by-\step

75. \advance\dif f by-\delta

76. \else

77. \advance\xstep by \step

78. \advance\diff by-\deltay

79. \f i

80. \pointC\xstep)C\ystep)%

81. \moref alse

82. \if dim\xstep<\deltax \moretrue\f i

83. \if dim\ystep>\deltay \moretrue\f i

84. \ifmore\repeat)

85. % end of loop for 4th quadrant

T h e Octantal DDA Method
34. \loop

35. \ifnum\diff >O Macro \octnt typesets a slanted line using octantal

36. \advance\ystep by \step DDA, a method very similar to quadrantal DDA.

37. \advance\diff by \delta The main difference is the way the dot is moved

38. \else between repeated typesettings. If the line is close

39. \advance\xstep by-\step to horizontal (its slope is between 0" and 45") the

40. \advance\dif f by \deltay dot is moved either to the right, or diagonally (up

41. \f i and to the right). If the line is close to vertical

42. \pointC\xstep)C\ystep3% (Ay > Ax or the slope is between 45" and 90°),

43. \moref alse the dot is moved either up or diagonally. If either

44.\ifdim\xstep>\deltax \moretrue\fi Ax or Ay is negative, the directions are changed

45.\ifdim\ystep<\deltay \moretrue\fi accordingly.
46. \if more\repeat) Fig. 1 shows the way lines appear in this

47. % end of loop for 2nd quadrant method. The line that is close to horizontal is made

48. % of several non-overlapping segments; the 45" line

49. \def \doloopCC% consists of dots laid diagonally. These lines are finer

50. \ifdim-\delta,-\deltay idiff =\delta than the quadrantal lines since they consist of fewer

51. \else \dif f =-\deltay \f i dots.

52. \divide\diff by 2 Because of the rules above, the algorithm

53. \loop should distinguish eight orientations of the lines,

54. \if num\dif f >O or eight ranges of the slope (hence the name

55. \advance\ystep by-\step octantal). The main macro, \octnt, does exactly
56. \advance\diff by \delta that. However, the range 0"-45" (octant 1) is
57. \else similar to the range 315"-360" (octant 8), so they

58. \advance\xstep by-\step are both handled by macro \loopA. Octants 2, 3

59. \advance\diff by-\deltay (45"-90°, 90"-135') are handled by macro \loopB,
so. \f i and so on. We thus end up with just four loop

61. \pointC\xstep)I\ystep3% macros, instead of eight. Dots are typeset by the

62. \moref alse same macro, \point, used for lines drawn by the

63.\ifdim\xstep>\deltax \moretrue\fi quadrantal method.

a.\ifdim\ystep>\deltay \moretrue\fi x := 0; y := 0; diff := -Ax/2;
65. \if more\repeat) repeat
66. % end of loop for 3rd quadrant plot(x, y);
67. % if diff > 0
68. \def \doloopD<% y : = y + l ; x : = x + l ;

TUGboat, Volume 10 (1989), No. 2

x:=O; y:=R; d:=3-2R;

while x<y &
plot8 (x,y) ;
if d>O m

d: =d+4 (x-y) +lo;

y: =y-1;

ehe
d:=d+4x+6;

x: =x+l;

endwhile
if X=Y ~JEQ plot8 (xry) ;

end;

Final F'rogram Loop over one octant

Figure 2. Bresenham's Algorithm for a Circle

d i f f := d i f f - Ax + Au; 15. \else \loopC \fi -- V" " ,

else
x := x + 1; diff := diff + Ay;

until x := Ax;

And we illustrate the method with the previous
example; a line with Ax = 6 and Ay = 2. This
time the algorithm iterates only 7 times, producing
a finer line.

diff
step x y before after

1 0 0 - 3 -3 + 2
2 1 0 -1 - 1 + 2
3 2 0 1 1 - 6 + 2
4 3 1 -3 -3 + 2
5 4 1 -1 - 1 + 2
6 5 1 1 - 1 - 6 + 2
7 6 2 - 3

l.\newdimen\Absx \newdimen\Absy

2.\newdimen\Xstep \newdimen\Ystep

3. %
4.\def\octnt#l #2 C% keep this percent sign
5. \deltax=#l \deltay=#2

6. \xstep=Opt \ystep=Opt

7. \if dim\deltax<Opt \Absx=-\deltax

8. \else \Absx=\deltax \fi

9. \if dim\deltay<Opt \Absy=-\deltay

lo. \else \Absy=\deltay \f i

11. \if dim\deltax<Opt

12. \if dim\deltay<Opt

13. \Xstep=-\step \Ystep=-\step

14. \if dim\Absx>\Absy \loopD

16. % octants 5 (loopD) & 6 (loopC)

17. \else

18. \Xstep=-\step \Ystep=\step

19. \ifdim\Absx>\Absy \loopD

20. \else \loopB \fi

21. % octants 4 (loopD) & 3 (loopB)

22. \fi

23. \else

24. \if dim\deltay<Opt

25. \Xstep=\step \Ystep=-\step

26. \ifdim\Absx>\Absy \loopA

27. \else \loopC \fi

28. % octants 8 (loopA) & 7 (loopC)

29. \else

30. \Xstep=\step \Ystep=\step

31. \if dim\Absx>\Absy \loopA

32. \else \loopB \fi

33. % octants I (loopA) & 2 (loopB)

34. \f i

35. \f i) % end of macro \octnt
36. %
37.\def\stepxC\advance\xstep by \Xstep

38. \advance\diff by \Absy)

39.\def\stepyC\advance\ystep by \Ystep

40. \advance\dif f by-\Absx)

41. %
42. \def \loopAC% loop for octants 1 & 8

43. \dif f =-\Absx \divide\dif f by 2

44. \loop

45. \if num\dif f >O

46. \stepx \stepy

47. \else \stepx

TUGboat, Volume 10 (1989), No. 2 211

48. \f i

49. \pointC\xstep)C\ystep>%

so. \moref alse

51. \if dim\xstep<\deltax \moretrue\f i

52. \ifmore\repeat)

53. % end of loop for octants 1 & 8

54. %
55. \def \loopBC% loop for octants 2 & 3

56. \dif f =\Absy \divide\dif f by 2

57.\ifdim\Absx=\Absy \diff=O \fi

58. \loop

59. \if num\dif f >O

60. \stepy

61. \else \stepx \stepy

62. \f i

63. \pointC\xstep)(\ystep)%

64. \moref alse

65. \if dim\ystep<\deltay \moretrue\f i

66. \ifmore\repeat)

67. % end of loop for octants 2 & 3

68. %
69. \def \loopCC% loop for octants 6 O 7

7o.\diff=\Absy \divide\diff by 2

71. \if dim\Absx=\Absy \dif f =O \f i

72. \loop

73. \if num\dif f >O

74. \stepy

75. \else \stepx \stepy

76. \f i

77. \pointC\xstep)I\ystep)%

78. \moref alse

79. \if dim\ystep>\deltay \moretrue\f i

80. \ifmore\repeat)

81. % end of loop for octants 6 & 7

82. %
83. \def \loopDC% loop for octants 4 & 5

84.\diff=-\Absx \divide\diff by 2

85. \loop

86. \if num\dif f >O

87. \stepx \stepy

88. \else \stepx

89. \f i

90. \pointC\xstepH\ystepH

91. \moref alse

92. \if dim\xstep>\deltax \moretrue\f i

93. \if more\repeat)

94. % end of loop for octants 4 & 5

Note that \loopA (octants 1 and 8) repeats
while the x-coordinate of the dot is < Ax. \loopD
(octants 4 and 5, where x and Ax are negative),
however, repeats while x > Ax. This works since in
those octants the line is closer to horizontal. \loopB

and \loopC, where lines are close to vertical, are
similar but compare y and Ay.

The Bresenham-Michener DDA Method
for Circles

Because of the high symmetry of a circle, it is a
particularly easy figure to draw (See [6] for a number
of circle drawing methods). The method used here
is efficient since it uses only integers and requires
only addition, subtraction, and a multiplication by
4. When this method is implemented as a computer
program, the multiplication by 4 is usually replaced
by a shift. rn, however, cannot shift numbers.
The method is described here in two stages. First
the basic idea (see algorithm in Fig. 2) is outlined;
next, the rn implementation is explained.

The basic idea is to draw a circle of radius R,
centered around the origin, by starting at the top
of the circle (point (0, R)) and moving, in small
steps, along one octant of the circle. Because of
the symmetry of a circle, each time a point (x, y)
is calculated on one octant, seven more points-
on the seven other octants-can be calculated,
which correspond to the original point. They are:

(-x, Y), (x, -91, (-9 -Y), (9, XI, (-9, XI, (Y, --XI,
and (-y, -x). The algorithm is a simple loop
that starts at point (x, y) = (0, R) and continues
while x < y (i.e., over one octant). Each time
through the loop, the current point (plus the seven
corresponding points) is typeset, and the algorithm
moves to the next point by incrementing the x
coordinate by \step and, from time to time, also
decrementing the y coordinate (by the same \step).
Variable \step has to be assigned a value before
\circle is expanded.

The only decision that has to be made in
each iteration is whether or not to decrement the
y coordinate. This decision involves the auxiliary
\dimen variable \d whose sign determines the action
taken. If \d is non-negative then y is decremented.
Each time through the loop \d is updated. The
details of updating \d can be found in references [4,
61 or can be obtained by writing to this author.

The rn implementation presented here builds
the circle centered on the reference point. The
reference point itself is not moved and, after each
expansion of the macro, the user may want to move
it explicitly, using appropriate skip commands.
Macro \circle is a simple \loop construct that
expands a plot macro to plot the current point
(actually, eight points), and then calculates the
coordinates of the next point. Like the macro
\point used to plot slanted lines, macro \plot
typesets a dot enclosed in boxes of zero dimensions

TUGboat, Volume 10 (1989), No. 2

(this is why the reference point is not affected),
and in vertical mode, inserts \nointerl ineskip
between boxes to eliminate unwanted interline glue.
Again note the percent signs '%' at the end of certain
source lines. They are important and have been
mentioned earlier.

Drawing Ellipses

The ellipse macros below accept, as parameters, the
semimajor and the semiminor ellipse axes, measured
in pt. The first macro generates a canonical ellipse
(centered on the reference point with a horizontal
major axis); the second one generates an ellipse
tilted clockwise 8 degrees.

Bresenham's method can be generalized to an
ellipse (Try to do it! This is exercise 2.), but this
does not give good results because of the symmetry
of the ellipse, which is not as high as that of a circle.
In the case of a circle, it is enough to calculate
one octant and copy it over to the other seven. In

(a coscp, b sin cp)

PL

Figure 3. Ellipses

the case of an ellipse, one quadrant, at least, has
to be calculated. Bresenham's method is based on
looping in equal steps of x, and this produces good
results in the first octant, since that octant has
a small slope and does not deviate much from a
horizontal line. Looping in equal steps of x over
a quadrant, however, produces dots that are too
widely spaced at the end of the quadrant (Fig. 3a),
where the ellipse has a large slope.

The method used here to draw an ellipse is
well known [7, 81 and is based on the parametric
representation of the ellipse:

x=acos4 ; y=bsinb. q5=0 ... 360" (1)

where a is the semimajor axis and b, the semiminor
one (Fig. 3b). The parameter 4 is varied (in small
steps of d4), over a quarter of the ellipse, from point
(a,O), (4 = 0), to point (O,b), (q5 = 90").

An important property of the algorithm is that
varying 4 in fixed steps of d4 moves the dot along
the ellipse in steps that cover variable perimeter
sizes. Initially, around point (a,O), the step size is
small, which is appropriate for that region, where
the ellipse has a large slope. As we move along
the quadrant toward the final point (O,b), the

TUGboat, Volume 10 (1989), No. 2

step size covers larger perimeter increments, again
appropriate for this region, where the slope gets
smaller.

To demonstrate this property, we derive the
differential of Eq. 1.

dx=-asin4d4; dy=bcos4d4.

For the initial steps, where 4 is close to zero,
dy x b d4 and dx is close to zero. Toward the end,
where 4 is close to 90°, ldxl x ad4 and dy = 0.
The perimeter increment is thus initially close to
bd4 and gets larger as it approaches ad$. Also,
the ratio between the initial and final perimeter
increments is approximately bla, which is the ratio
of the two axes of the ellipse. If a = b, the perimeter
increment is fixed, which is appropriate for a circle.

Our method uses the elementary trigonometric
identities:

sin(x + y) = sin x cos y + cos x sin y;

cos(x + y) = cos x cos y - sin x sin y.
(2)

Using Eq. 1, we start with 4 = 0 and get:

xo=acosO=a; yo=bsinO=O.
XI = acos(d4); yl = bsin(d4).
2 2 = a cos(2 d4); y2 = b sin(2 d4).

And, in general

x,=acos(idq5)=axAi; y i=bsin(id+)=bxBi .

The DDA nature of the algorithm stems from the
fact that we can eliminate the need for calculating
sin(i d4), cos(i d4) for every value of i. Using Eq. 2,
it is possible to express both Ai, Bi as functions

of A,-1, Bi-1 with the result that only sin(d+),
cos(d4) need be known.

Ai = cos(i d4) = cos((i - 2)d$ + 2d4)

using Eq. 2 yields

A, = cos((i - 2)d4) cos(2d4)

- sin((i - 2)d4) sin(2d4);

using Eq. 2 again

A, = cos((i - 2)d$)[cos2 (d4) - sin2(d$)]

- 2 sin((i - 2)d4) sin(d4) cos(d$);

adding and subtracting the same term

A, = cos((i - 2)d$) cos2(d4)

- sin((i - 2)d$) sin(d4) cos(d4)

- sin((i - 2)d4) cos(d4) sin(d4)

- cos((i - 2)d4) sin2 (d4)

= Ai-1 COS(~+) - Bi-1 sin(d$).

And, similarly,

Bi = Bi-1 C O S (~ ~) + Aj-1 sin(d4).

The initial values are A. = cos 0 = 1, Bo = sin 0 =

0. Our algorithm can now be expressed as:

A := 1; B := 0; C := cos(d4); S := sin(d4);
x := a; y := 0;
loop

plot (x, y) plus three symmetric points
T := A x C - B x S ;
B : = B x C + A x S ;
A := T;
x := axA; y := bxB;.

while z > 0;

This algorithm involves multiplications, and
is therefore considerably slower than Bresenham's,
but then a circle is just a special case of an
ellipse. Needless to say, the ellipse macro below
can be used to generate circles. The macro is a

rn implementation of the rules above, with two
exceptions:

1. In principle, the user should supply a value
for d4 and the macro should calculate sin(d4)
and cos(d4). However, since those calculations
involve fractions, they have to be done, in TEX,
with scaled numbers, which is time consuming.
As a result, three pairs of sin(d4) and cos(d4)
are built into the macro, corresponding to d+
values of 2~1120, 2~1240 and 2~1480. Those
values were selected experimentally, to produce
smooth ellipses on a 300 dpi output. On higher
resolution output devices, smaller values should
be tried, which may result in finer curves. The
first pair generates an ellipse by typesetting
120 dots (actually, generating 30 dots and
duplicating each 4 times), the second typesets
240 dots and the third, 480. The macro selects
one of those pairs, depending on the size of the
ellipse.

2. can easily operate on integers but our
problem involves real numbers. Such problems
are handled in QX in one of two ways. The first
is to use dimen variables, which can have non-
integer values; the second makes use of scaled
integers. Our macro uses the second choice
and scales all numbers by a \scalefactor of
10000.

The following registers and macro are common to
both ordinary and tilted ellipses. Once again, note
the similarity of \plotu to the earlier \point and
\plot macros.

i.\newcount\a \newcount\A
2.\newcount\b \newcount\B \newcount\T
3.\newcount\c \newcount\C

TUGboat, Volume 10 (1989), No. 2

4. \newcount\s \newcount\S \newcount\t

5.\newcount\x \newcount\y

6.\newcount\scalefactor \scalefactor=1OOOO

7. \newdimen\unit

s.\unit=lpt \divide\unit by \scalefactor

9. %
lo. \def \plotu#l#2{%

11. \vbox toOpt(\kernM\unit

12. \hbox toOpt{\kern#l\unit . \hss)\vss)%
13. \ifvmode\nointerlineskip\fi)

The macro for the ellipse.

i.\def\ellipse#l #2 {%
2. \A=l0000 \B=O

3. \ifnum#l>#2 \a=#l \b=#2

4. \else \a=#;! \b=#l \fi

5. % d\phi is determined according to the
6. % value of the semimajor axis 'a'.
7. \ifnum\a<l5

8. \S=523 \C=9986 % sin & cos of 360/120,
9. % correspond to 30 increments of d\phi
lo. \else

11. \ifnum\a<40 %over one quarter

12. \S=262 \C=9997 %For large ellipses,
13. % here are 60 increments
14. \else

15. \S=131 \C=9999 % and, for the largest
16. % ones, 120 increments
17. \f i \f i

18. %
19. \x=\a \multiply\x by \scalefactor \y=O

20. \loop

21. \plotfour

22. \T=\B \multiply\T by\S

23. \t=\A \multiply\t by\C \advance\t by-\T
24. \T=\A \multiply\T by\S

2s. \multiply\B by\C \advance\B by\T

26. \divide\B by \scalef actor

27.\A=\t \divide\A by \scalefactor

28. \x=\a \multiply\x by\A

2s. \y=\b \multiply\y by\B

30. \ifnum\x>O \repeat)

31. %
32. \def \plotf our(%

33. \pl0tui\x3I\y3\plotuC-\x3~\y)%
34. \plotu(\x3~-\y3\plotuI-\x3~-\y33

Next, we turn to a tilted ellipse, obtained
by rotating the canonical ellipse 8 degrees clock-
wise. Mathematically, rotating a 2D point (x, y) is
achieved by multiplying it by the rotation matrix

Thus the general ellipse point (a cos 4, b sin 4) is
transformed into

(acos$cos8-bsinbsin8, acos~s in0+bs in~cos8) .

and the expressions x := a x A, y := b x B, used
earlier for the coordinates of the next point now
become

x:= aAcos8- bBsin8 y := aAsin8fbBcosB.

The algorithm for the tilted ellipse differs from the
one

1.

2.

3.

for the canonical one in three more points:

Since a tilted ellipse is not symmetric with re-
spect to the coordinate axes, macro \Plotf our
cannot duplicate a point as easily as before. A
look at Fig. 3c shows that, for each point (x, y)
on one quadrant of the ellipse, point (-2, -y) is
on the diagonally opposite quadrant but points
(-x, y), (x, -y) are not on the ellipse. The
macro should therefore calculate one of these
points explicitly, using the expressions

u := aAcos8+ bBsin8;

w := aAsinB - bBcos8.

and plot points (u, w), (-21, -w).

The loop for the canonical ellipse is terminated
when x reaches zero. This again won't work for
the tilted ellipse, so the new macro \tellipse
uses a new count variable to loop 30, 60,
or 120 times, depending on the size of the
ellipse. In each iteration, the count variable is
decremented and compared to zero.

Because of the additional multiplications nec-
essary, numbers cannot be scaled as high as in " .
the previous macro. Trying to scale all num-
bers with a factor of 10000 causes arithmetic
overflow, so reduced scaling is used, resulting
in a less precise shape of the ellipse.

The algorithm thus is:

A := 1; B := 0; C := cos(d4); S := sin(d4);
% : = a cos8; u : = x ;
y := a sine; w := y;
count := 30, 60, or 120
loop

plot ($7 Y), (-2, -Y), ('1~9 w), (-'1~7 --w)
T : = A x C - B x S ;
B : = B x C + A x S ;
A := T;
LA:=a .A; L B : = b . B ;

(with a reduced scale factor)
x := LAcosO - LBsin8;
y := LAsin8 + LBcos8;
u := LAcos8 + LBsin8;
w := LAsinB - LBcos8;
count := c a n t - 1

TUGboat, Volume 10 (1989), No. 2 215

while count > 0;

and the macro is:

1. \newcount\dphi

z.\newcount\u \newcount\w

3. \newcount \ST \newcount\CT

4.\newcount\LA \newcount\LB

5. %
s.\def\tellipse#l #2 #3 #4 C%
7. \A=10000 \B=O

8. \d=#3pc \ST=\d

9. \divide\ST by 786 %since lpc=786432sp
lo. \d=#4pc \CT=\d \divide\CT by 786
11. \ifnum#l>#2 \a=#l \b=#2

12. \else \a=#2 \b=#l \fi

13.X d\phi is determined according to the

14. % value of the semimajor axis a.
15. \ifnum\a<l5

16. \S=523 \C=9986 \dphi=31

17. % sin, cos of 360/120, for 30
18. % increments of d\phi
19. \else \ifnum\a<40 % over one quarter.
20. \S=262 \C=9997 \dphi=61

21. % For large ellipses, here are 60
22. % increments
23. \else

24. \S=131 \C=9999 \dphi=l21

25. % For the largest ones, 120
26. % increments
27. \fi \fi

28. %
29. \x=\a \multiply\x by\CT

30. \multiply\x by 10 \u=\x

31. \y=\a \multiply\y by\ST

32. \multiply\y by 10 \w=\y

33. \loop
34. \Plotf our

35. \T=\B \multiply\T by\S

36. \t=\A \multiply\t by\C

37. \advance\t by-\T

38. \T=\A \multiply\T by\S

39. \multiply\B by\C

40. \advance\B by\T

41. \divide\B by \scalef actor

42. \A=\t \divide\A by \scalef actor
43. %
44. \LA=\A \multiply\LA by\a

45. \divide\LA by 100

46. \LB=\B \multiply\LB by\b
47. \divide\LB by 100

48. %
49. \x=\LA \multiply\x by\CT \u=\x

50. \T=\LB \multiply\T by\ST

51. \advance\x by-\T \divide\x by 10

52. \advance\u by \T \divide\u by 10

53. \y=\LA \multiply\y by\ST \w=\y

54. \T=\LB \multiply\T by\CT

55. \advance\y by \T \divide\y by 10

56. \advance\w by-\T \divide\w by 10

57. \advance\dphi by-I

58. \if num\dphi>O \repeat)

59. %
60. \def \Plotf our(%

61. \plotuC\x)(\y)\plotu<\u)C\w)%
62. \ p l ~ t ~ { - \ x) < - \ y) \ p l ~ t ~ (- \ ~) C - \ w))

This method is considerably slower than the
ones for lines and circles because of the multipli-
cations involved. It tur& out that, even though
not all the multiplications can be eliminated, the
method can be made a little more efficient. Refer-
ence [9] shows how to modify it to include only four
muliplications (and four additions) per iteration.
The algorithm is:

CT := cos8; S T := sine;
C D P := cos dq5; S D P := sin dq5;
A := C D P + S D P x S T x CT x (a/b - bla);
B := -SDP ((bx ST)' + (ax CT)') / (ax b);

C := S D P ((~xcT) ' + (axST)') / (ax b);
D := C D P + S D P x S T x C T x (b/a - alb);
D := D - (CX B) /A;
C := CIA;
x := axCT; y := a x S T ;
count := 30, 60, or 120;
loop

plot (x, v), (-2, -y), (u, w), (-u, -w)
x : = x x A + y x B ;
y : = x x C + y x D ;
count := count - 1

while count > 0;

The reader is encouraged to implement this in T@C

Appendix

The methods described here give reasonably good
output on a typical 300dpi printer. Sometimes,
however, high quality output is a must. Here is
an idea which produces better looking results. It
is, unfortunately, slow and is more liable to exceed
W ' s capacity.

All the examples above generate the lines and
curves by typesetting a period. The period has a
small size but is not small enough for high quality
results. Using a period from a smaller size font does
not help much. It turns out that the width of a
period in font cmrlO is 2.77779pt whereas in font
cmr5 it is 2.01392pt, almost the same size.

TUGboat, Volume 10 (1989), No. 2

To get dots of smaller sizes, we therefore
suggest typesetting a rule (specifically, a \vrule)
instead of a dot. The height and width of a rule can
easily be controlled and our experiments show that
a rule of dimensions 0. l p t , combined with a step
size of the same dimension, produces fine, smooth
lines on a 300dpi laser printer. The only change
necessary is to replace the dot with a \vrule in
macro \point as shown below.

\def \vrC\vrule height . l p t width. l p t 3
\def \point#l#2(% keep t h i s percent s ign!

\vbox toopt (\ ke rn42
\hbox to0pt~\kern#l\vr\hss)\vss3%

\ i f vmode\nointerlineskip\f i 3
\f i

3

Answers t o Exercises

1. Zero, since the depth of a dot is zero. This is easy
to verify by \setboxO=\hboxC .>, \showthe\dpO

2. Generalizing Bresenham's method for ellipses is
straightforward and produces:

x:=O; y : = a ;
D := (a/b)2; d := 2 0 + 1 - 2a;
while x < y d o

ploWx, Y);
i f d < O

d := d + D(4x +6);
else

d : = d + 4 D (x - y) + 6 D + 4 ;
y := y - 1;

x := x + 1;
end while;
if x = y t h e n plot8(x, y);
end;

References

Hendrickson, A., Some Diagonal Line Hacks,
TUGboat 6(2)83-86, (July 1985).
Cameron, A. G. W., Wiggly lines, TUGboat
6(3)155-156, (Nov. 1985).
Artwick, B., Computer Graphics, Prentice-Hall,
Englewood Cliffs, NJ.: 1985.
Bresenham, J. E., A Linear Algorithm for Incre-
mental Display of Circular Arcs, Cornm. ACM
20(2)100-106(Feb. 1977).
Knuth, D. E., The m b o o k , Addison-Wesley,
Reading, MA.: 1983.
Blinn, J. F., How Many Ways Can You Draw
a Circle?, IEEE Comp. Graphics & Applic.
7(8)39-44(Aug. 1987).
Hearn, D., & J. P. Baker, Computer Graphics,
Prentice-Hall, Englewood Cliffs, NJ.: 1986.

8. Rogers, D. F., & J. A. Adams, Mathemsti-
cal Elements for Computer Graphics, 2nd ed.,
McGraw-Hill, New York, NY.: 1989.

9. Smith, L. B., Drawing Ellipses with a Fixed
Number of Points, The Computer J., 14(1)81-
86, Feb. 1971.

Tests

Question: What is the difference between these two
identical twins?

Answer: The one on the left was done with
\s tep=lpt ; the one on the right, with \s tep=. 5pt

Compare the two diamonds. It is easy to tell which
parts are done with quadrantal and which, with
octantal DDA.

o David Salomon
California State University,

Northridge
Computer Science Department
School of Engineering and

Computer Science
18111 Nordhoff Street
Northridge, CA 91330
bccscdxs@csunb.csun.edu

Editor's note: The methods described in this ar-
ticle might be applicable to a graphics system of
the kind sought by David Rogers in his challenge of
TUGboat 10#1 (p. 39).

Editor's note: In these macros, the names used
by several p l a i n control sequences (\b, \B, \c, \d,
\S, \t, \u) have been reassigned with \newdimen.
Beware that these names will remain associated
with dimension registers even if \begingroup . . .
\endgroup is used in an attempt to localize their
effects.

TUGboat, Volume 10 (1989), No. 2

Printing Vietnamese characters by

adding diacritical marks via

Brother Eric Vogel FSC

Introduction

The technique described here uses QX to produce
the diacritical marks for the various vowels needed
for Vietnamese. The marks used are: accent grave,
accent acute, tilde, question mark and dot (below).
New vowels are introduced using the above by
placing a hat (above a or e) or breve accent (above
a) or by attaching a "beard" (using the breve
accent) to o and u. The macros for these definitions
are listed below in Table 3.

These macros were developed using PC m;
they will work equally well with any other QX.
Other facilities described here, however, are specific
to PC and to PC-Write.

Method of producing text with diacritical
marks attached

The author of the Vietnamese text enters the text
without the marks. The author then edits the
text by placing the cursor on the letter needing a
diacritical mark and striking a key sequence that
produces the mark(s). What appears on the screen
is the command for QX to reproduce the correct
marks upon printing. For example to produce

the Vietnamese word ~i~ the author starts with
Mag on the screen and the cursor under the a.
The author then presses control-k. On the screen
appears \gu, followed by the original a and g. When

the document is w e d , M& is printed.

Special attention needed to be paid to produc-
ing the diacritical mark of a question mark over
letters as the Vietnamese mark does not have a dot
under the rest of the question mark. This was ac-
complished by using METAFONT to generate a new ?
in the font vfont. Two files are needed and must be
copied into appropriate subdirectories of PCT)$:
vf ont . tfm, which is copied into the subdirectory
\textfms, and vf ont .pk, which is copied into the
subdirectory \pixel\dpi300. The following code
was used in naming the definitions: a indicates
accent acute; g indicates accent grave; t indicates
tilde; q indicates question mark; d indicates dot
(under the vowel); h indicates hat; combinations of
the above indicate more than one accent: e.g. ah

indicates accent acute over hat. The accents that
include a "beard" attached to either o or u all have
a b in their code. ob indicates an o with a beard; ub
indicates a u with a beard; b can be combined with
the other accents given above: e.g. ba indicates a
beard and an accent acute. The capitals for U and
0 have special commands (necessitated by the lack
of keys on the keyboard). These take advantage of
the special two stroke capabilities of PC-Write and
are addressed by using control-c followed by a letter.
The coding of the commands consists in using co
to indicate a capital 0 and cu to indicate a capital
U (with, of course b for beard) and the possibility
of another letter for other accents. For example,
"\cuba9' indicates a capital U, with a beard, with
accent acute. Because the author ran out of keys
to be redefined using the above method before he
ran out of needed keys, two additional keys were
redefined: (D and # as shown below.

Definitions used by QjX

The accents are produced by placing the correct
command (i.e. definition) in front of the letter to
which one wishes to attach the accent. Because
of the additional space needed for o-beard and
u-beard, these commands (definitions) contain the
needed o or u (0 or U); hence if one has text to
which accents are being added, it is necessary to
delete the o or u (0 or U) which is in the text. The
author has used PC-Write (Shareware) to define
the introduction of these commands using either
the control key, the shift key or control-c with an
additional letter. Table 2 displays the letters as
accented by this program as well as what one types
using the editor of PC-Write and what is displayed
on the screen. To define these control sequences it is
necessary to add to the ed. def file of PC-Write the
command !viet .ext in order that the editor can
access the file v ie t . ext which is given in Table 1.

Obtaining the files

Upon your request, the author will send you a disk
with four files: vdef q and v i e t . ext and the two
fonts for printing: vf ont . t f m and vf ont . pk. The
first contains all the macros used to produce the
definitions of the diacritical marks via QX. The
second is the file needed by PC-Write (to be placed
in the ed. def file of that software) to define the
control sequences which will produce the correct
results. Of course the macros can be used with any
software that is capable of defining enough keys.
The two fonts for printing must be copied into the
correct subdirectories as was described above. (Any
donations gladly accepted.)

Brother Eric Vogel FSC
P. 0. Box 5150
Saint Mary's College
Moraga, Calif. 94575

218 TUGboat, Volume 10 (1989), No. 2

Table 1. Key redefining used by PC-Write. Parentheses not included. Found in file: viet.ext.

064:092,113,117,032 (Redefines @ key to be \qu, question over breve)
035:092,117,100,032 (Redefines # key to be \ud, breve over, dot under)
c:555, "CAPBEAR"; (Beginning of redefinition of keys via two strokes)
556,113, "\cob "; (Ctrl-C, q. Capital 0 with a beard)
556,119, "\cobg " ; (Ctrl-C, W. Capital 0 with a beard and accent grave)
556,101, "\coba "; (Ctrl-c, e. Capital 0 with a beard and accent acute)
556,114, "\cobt "; (Ctrl-c, r. Capital 0 with a beard and tilde)
556,116, "\cobq "; (Ctrl-c, t. Capital 0 with a beard and question mark)
556,121, "\cobd "; (Ctrl-c, y. Capital 0 with a beard and dot below)
556,097, "\cub "; (Ctrl-c, a. Capital U with a beard)
556,115, "\cubg "; (Ctrl-c, s. Capital U with a beard and accent grave)
556,100, "\cuba "; (Ctrl-c, d. Capital U with a beard and accent acute)
556,102, L'\cubt "; (Ctrl-c, f. Capital U with a beard and tilde)
556,103, "\cubq "; (Ctrl-c, g. Capital U with a beard and question mark)
556,104, "\cubd " (Ctrl-c, h. Capital U with a beard and dot below)
z: "\g " (Ctrl-z. Accent grave)
x: "\a " (Ctrl-x. Accent acute)
v: "\t " (Ctrl-v. Tilde)
b: "\q " (Ctrl-b. Question mark)
n: "\d " (Ctrl-n. Dot under letter)
m: "\tu " (Ctrl-m. Tilde over breve)
a: "\ub " (Ctrl-m. Lower case u with a beard)
s: "\bg u\s " (Ctrl-s. u with a beard and accent grave)
d: "\ba u\s " (Ctrl-d. u with a beard and accent acute)
f: "\bt u\s " (Ctrl-f. u with a beard and tilde)
g: "\bq u\s " (Ctrl-g. u with a beard and question mark)
h: "\bd u\s " (Ctrl-h. u with a beard and dot below)
j: "\u " (Ctrl-j. Accent breve)
k: "\gu " (Ctrl-k. Accent grave over breve)
1: "\au " (Ctrl-1. Accent acute over breve)
q: "\ob " (Ctrl-q. Lower case o with a beard)
w: "\bg o\s " (Ctrl-w. o with beard and accent grave)
e: "\ba o\s " (Ctrl-e. o with beard and accent acute)
r: "\bt o\s " (Ctrl-r. o with beard and tilde)
t: "\bq o\s " (Ctrl-t. o with beard and question mark)
y: "\bd o\s " (Ctrl-y. o with a beard and dot below)
u: "\h " (Ctrl-u. Hat over letter)
i: "\gh "(Ctrl-i. Accent grave over hat)
o: "\ah " (Ctrl-o. Accent acute over hat)
p: "\th " (Ctrl-p. Tilde over hat)
[: "\qh " (Ctrl-[. Question mark over hat)
1: "\hd " (Ctrl-1. Hat over, dot under)

TUGboat, Volume 10 (1989), No. 2 219

Table 2. Table showing how diacritical marks appear, are produced and the commands that
appear on the screen

VOWEL GRAVE

TYPE

SCREEN

A A

a a
ctl-z

\g

B

TYPE ctl-u

SCREEN \h

A

&

TYPE ctl-j

SCREEN \u

TYPE

SCREEN

e
TYPE ctl-u
SCREEN \h

i

TYPE
SCREEN

A

a

ctl-i

\gh

h
a

ctl-k

\gu

B

B
ctl-z

\g

E

e

ctl-i

\gh

i

1

ctl-z

\g

ACUTE

A

B

ctl-x

\a

A

a

ctl-0

\ah

A
"
a

ctl-1

\au

E

6
ctl-x

\a

i
e

ctl-0
\ah

i
1

ctl-x

\a

TILDE

ii
-
a

ctl-v

\t

-
A
-
a

ctl-p

\th

rr
- "
a

ctl-m

\tu

E
-
e

ctl-v

\t

-
I3
-
e

ctl-p
\th

I
-
1

ctl-v

\t

QUEST.

a
7
a

ctl-b

\s

K
?
a

ctl-[

\qh

X
2
a

shift-2

\su

E
7
e
ctl-b

\q

H
?
e

ctl-[

\sh

9
.7
1

ctl-b

\q

DOT

A

a
ctl-n

\d

6

a
ctl-]

\hd

-3

a
shift-3

\ud

E
e
ctl-n

\d

2

ctl-]
\hd

T
!

ctl-n

\d

TUGboat, Volume 10 (1989), No. 2

TYPE
SCREEN

TYPE
SCREEN

TYPE
SCREEN

TYPE

SCREEN

TYPE

SCREEN

TYPE

SCREEN

TYPE

SCREEN

0

0

0

6

ctl-u

\h

u
u

0'

ctl-q

\ob

u'

ctl-a

\ub

0.

ctl-c q *
\cob

U-

ctl-c a *
\cub

0

b

ctl-z

\g

6
0

ctl-i

\gh

u
h

ctl-z

\g

&

ctl-w *
\bg o\s

ir

ctl-s *
\bg u\s

6
ctl-c w *
\cobg

6
ctl-c s *
\cubg

0

6

ctl-x
\a

6
0

ctl-0

\ah

u
ii

ctl-x

\a

6

ctl-e *
\ba o\s

iy

ctl-d *
\ba u\s

6
ctl-c e *
\coba

6
ctl-c d *
\cuba

d
-
0

ctl-v
\t

6
-
0

ctl-p

\ th

0
-
u

ctl-v

\t

6,

ctl-r *
\bt o\s

ii

ctl-f *
\bt u\s

6
ctl-c r *
\cobt

6
ctl-c f *
\cubt

a
?
0

ctl-b

\s

a
?
0

ctl-[

\qh

6
?
u

ctl-b

\s

?
0'

ctl-t *
\bq o\s

?
u'

ctl-g *
\bq u\s

&
ctl-c t *
\cobq

&
ctl-c g *
\cubq

0

0

ctl-n

\d

a
9

ctl-]

\hd

'Ir

'J

ctl-n
\d

(Y

ctl-y *
\bd o\s

Y'

ctl-h *
\bd u\s

Q
ctl-c y *
\cobd

TF
ctl-c h *
\cubd

* indicates that the control sequence introduces its own letter and hence the letter present in the text
must be deleted.

TUGboat, Volume 10 (1989), No. 2 221

Table 3. Macros for definitions used. Found in file: vdefq.
\font \v=vf ont

\def \gC\ ' 1
\def \a{\' 1
\def \tC\')

\def \hC\")

\def \au~\leavevmode\raise .929ex\rlap{\kern. lem\accent"l3 1%
\raise.465ex\rlap{\kern.lem\accentt~15 1)

\def \hdC\leavevmode\raise .465ex\rlapC\kern. lem\accentf15E 1%
\louer.465ex\rlapC\kern.2em.))

\def \qC\leavevmode\raisel . 394ex\rlapC\kern. 2em\v ?))

\def\gu~\leave~ode\raise.929ex\rlapC\kern.lem\accento112 1%
\raise.465ex\rlap{\kern.lem\accent"15 1)

\def \tuC\leavevmode\raisei . 16lex\rlap{\kern. lem\accent"7E 1%
\raise.465ex\rlapC\kern.lem\a~cent~~l5 1)

\def \qu~\leavewode\raise1.858ex\rlapC\kern. 2em\v ?}%

\raise. 465ex\rlap{\kern. lem\accentot15 }}

\def\ud~\leavewode\raise.465ex\rlap(\kern.lem\accent"l5 1%
\lower. 465ex\rlap(\kern. 15em. 1)

\def \gh{\leavevmode\raisel .16lex\rlap<\kern. 15em\accent"12)%
\raise. 465ex\rlapC\kern. lem\accent"5E)}

\def \ahC\leavevmode\raisel .16lex\rlap<\kern. 05em\accent"l3 1%
\raise.465ex\rlap{\kern.lem\accent"5E 1)

\def \thC\leavevmode\raisel .16lex\rlap.(\kern. lem\accent"7E 1%
\raise.465ex\rlap{\kern.lem\accentt~5E))

\def \qh~\leavevmode\raise2.090ex\rlapC\kern. 2em\v ?}%

\raise.465ex\rlap(\kern.lem\accent"5E))

\def\ob~o\lower.6O4ex\hboxC\kern-.25em\accent"l5 1) % o with a beard
\def \ubCu\lower .604ex\hboxC\kern-. 25em\accentW15 1) % u with a beard
\def \si\hbox{\kern . 2em)) % adds two pts space
\def\bg#l{\'#l\b)

\def\ba#l(\'#l\b)

\def \bt#l{\'#l\b)

\def \bq#lC\q#l\b)

\def \bd#lC\d#l\b)

\def\bi\louer.604ex\hboxC\kern-.25em\accentw15))

\def\cobCO\b) % 0 with a beard
\def\cub(U\b) % U with a beard
\def \cobg~\leavewode\raise .698ex\rlapC\kern. 2em\accentWl2)\cob)

% 0-beard and accent grave

\def \coba~\leavevmode\raise .698ex\rlapC\kern. 2em\accent"13)\cob)

% 0-beard and accent acute
\def \cobt<\leavevmode\raise .698ex\rlap{\kern. 2em\accent "7E)\cob)

% 0-beard and title
\def \cobdi\leavewode\lower .465ex\rlap{\kern. 2em.)\cob)

% 0-beard and dot below
\def\cobq~\leave~ode\raise1.626ex\rlap~\kern.3em\v ?)\cob)

% 0-beard and question mark
\def \cubg{\leavevmode\raise .698ex\rlapC\kern. 2em\accenttt12)\cub)

% 0-beard and accent grave

\def \cuba{\leavevmode\raise .698ex\rlapC\kern. 2em\accentM 13)\cub)

% 0-beard and accent acute
\def \cubt<\leavevmode\raise .465ex\rlapC\kern. 15em\accent"7E }\cub)

% 0-beard and title
\def\cubq~\leave~ode\raisel.626ex\rlap~\kern.25em\v ?)\cub)

% U-beard and question mark
\def\cubd~\leavewode\lower.465ex\rlap{\kern.2em.)\cub)

% U-beard and dot below

222 TUGboat, Volume 10 (1989), No. 2

A new font selection scheme for
macro packages - t h e basic macros

Frank Mittelbach
Rainer Schijpf
Johannes Gutenberg Universitat Maim

Abstract

We have implemented a new font selection scheme for ' and its macro packages. This scheme allows font
family, series, shape, and size to be specified independently. Additionally, it is not necessary to preload all
math fonts.

Contents

1 Introduction 222

2 T h e User Interface 222
. 2.1 Selection of a new font 223

. 2.2 Changing the math version 223

3 Setting up a new format 223
3.1 Defining a new family/series/shape

combination 223
. 3.2 Preloading fonts 224

. 3.3 Defining math groups. 224

4 Concept of the implementation 225

1 Introduction

4.1 Handling the font tables
4.2 Fonts for math
4.3 Special considerations

5 Preliminary macros

6 Macros for setting u p the tables

7 Selecting a new font
7.1 Macros for the user
7.2 Macros for loading fonts

8 Assigning math fonts t o versions

In traditional typesetting one distinguishes four pa-
rameters to describe a font: the font family (e.g.
computer modern), the font series (e.g. roman or
sansserif), the font shape (e.g. normal or bold), and
the font size. This distinction is not always unique:
take for example the slanted typeface I P W uses.
This can be seen as the sloped shape of series ro-
man or as the normal shape of series sloped.

Recently several people have asked how to use
such a scheme in LNQX. Unfortunately the current
implementation of UTEX'S font selection scheme
does not allow incorporation of this concept.

When typesetting math formulas, one usually
needs many more fonts than for ordinary text. In
the 'book Donald Knuth says:

All characters that are typeset in math mode
belong to one of sixteen families of fonts1,
numbered internally from 0 to 15.

The use of the word family in this context is unfor-
tunate; it conflicts with the font families we are talk-
ing about. To avoid confusion we will always speak

Emphasis by DEK

of font families from the typesetter's point of view.
For math we speak of math groups each connected to
three fonts called the \ textfont , the \scriptfont ,
and the \ scr ip tscr ip t f ont. From the user's point
of view, math formulas consist of characters coming
from specific math alphabets (e.g. those selected by
\cal) and of symbols (e.g. \sum) selected by a spe-
cial control sequence and scattered over a number of
fonts.

All fonts that can be used together in one
math formula form a version. Versions can only be
switched outside math formulas. Standard I P W
provides two versions: normal and bold.

2 T h e User Interface

The commands described in the next subsections are
primitives used to build up more powerful interfaces.
But they are all user accessible. We used these com-
mands to construct two interfaces for I P ' : one is
mimicking the old font selection (e.g. \bf is used
to switch to the font cmbx. .), the other one im-
plements an orthogonal font selection scheme (here

TUGboat, Volume 10 (1989), No. 2

\bf means: change the current shape and select
a new font but leave family, series and size un-
touched.) Details can be found in the article "The
new font family selection - User Interface to stan-
dard UT&S'.

2.1 Selection of a new font

Selecting a new font is done in two independent
steps. First you have to change the values for fam-
ily, series, shape and/or size and then execute a
macro which uses the new values to select the de-
sired font. If you don't use this macro the font will
not be changed.

The first step is done with the macros \family,
\ ser ies , \shape and \size. For example, if you
want to switch to the 'sansserif' series you have
to say \series(sansserif 3. Except for \s ize,
all those macros have one argument, namely, the
desired family, series or shape, respectively. The
macro \s ize is somewhat special because we de-
cided that it would be better to force the user to
specify a new size and a \baselineskip together
for this size, so the macro has two arguments.

All four macros will silently accept their argu-
ments. Warning messages are generated in the sec-
ond step when the actual font selection is carried
out.

To select a (new) font one has to call the
\selectf ont macro. This macro looks up the cur-
rent family, series, shape and size, possibly changed
by one of the above mentioned commands, and
switches to this font, provided the selected combi-
nation of family, series and shape is known to the
system. If it is unknown, a warning will be printed,
and up to three new trials are made to find a substi-
tute. This is done by changing to \def aultQshape,
then to \defaultQseries and as a last resort to
\def ault@f amily. At least this combination must
have been defined, otherwise we will find ourselves
in an endless loop.2

It may still be, however, that the size requested
is not specified in the table. This will lead to an er-
ror, and the font given by \def aultQerrf ont will be
selected. All four defaults are given private names
(names containing an Q) to emphasize that their val-
ues should be changed only by the "local wizards".

The selection scheme described above may seem
unnecessarily complicated. But consider the follow-

ing example: you are now reading a sentence typeset
in the cmrlO font, that is family 'computer mod-
ern', series 'roman', shape 'normal' and site '10'.
If we want to switch to 'typewriter italic' we say
\series(typevri ter) \shape(italic) and then
\selectfont. To avoid the call to \selectfont
we would have to embed it in the definition of
\series, etc. But this means that either cmttlO or
cmit 10 would be unnecessarily selected (and prob-
ably loaded).

As mentioned before, these commands are
primitive; they should be used to define higher level
commands for a special application. For example
UTEX'S \bf command can be defined as

\def \bf {\seriesIroman)%

\shape{boldext)%

\selectfont)

to work in the same way as before in I b m . 3 As an
alternative, the definition might be

\def\bf{\shape{boldext)\selectfont)

which will change to the 'bold extended' shape in
the current family, series and size.

2.2 Changing the math version

\mathversion switches to another math version,

e.g-,

\mathversion{bold)

will switch to version 'bold' provided that it is
defined. This command can be used only out-
side of math formulas. As an example we give
the definitions of Standard UT@Ss \boldmath and
\unboldmath macros in terms of \mathversion. For
this we must assume that two versions 'cmnormal'
and 'cmbold' are already defined.4

\def \boldmath{\Bnomath\boldmath

\mathversionIcmbold}~

\def \unboldmath{\Qnomath\unboldmath

\mathversion{cmnormal))

3 Setting up a new format

3.1 Defining a new family/series/shape com-
bination

Assume that you want to define the combination
family 'computer modern', series 'concrete', shape
'italic'. In the present case we have to write

\newBfontshape{cm){concrete){italic)C%

<5>lccr5%

This can be fixed easily but we are not sure if it's worth the effort. The defaults shouldn't be changed
by an ordinary user job, and it's not necessary to provide code to check a format file.

Actually this definition behaves differently when used in math mode, because then no bold face is
selected. We will see a correct definition later.

The \@nomath command used here issues a warning if these commands are used in math mode.

224 TUGboat, Volume 10 (1989)' No. 2

The general form of the specification in the fourth
argument of \newQf ontshape is

<(size)>(external font n a m e)

You are totally free in what you write between the
<> to denote the size.

If you look closely at the example given above
you'll notice that the first three lines (for sizes 5, 6,
and 7) seem to be wrong: they start with a 1 and the
external font names are incorrect. This is a special
feature of the font selection code that allows font
substitution. The numbers in front of the external
font name mean:

0 No effect. Same as no number at all.

1 Issue a warning that the requested fam-
ily/series/shape combination is not available in
this size and use the font given instead.

2 Issue a warning that the requested family/series
does not contain the requested shape and use
the font given instead.

Additionally, for every family/series combina-
tion there exists a so-called 'extra7 macro that is
used to set parameters, etc. common to all shapes
and sizes, e.g. inhibiting hyphenation for typewriter
fonts. Its argument is the internal font name.

3.2 Preloading fonts

The macro \preloadQsizes provides an easy way to
specify fonts that should be preloaded when d u m p
ing a format file. It is used as follows:

\preloadQsizesC(family)3C(series)H(shape) 3
C (l is t of s i zes))

where the elements of (l is t of sizes) are delimited by
commas. Note that it makes no difference for your
documents whether you preload a font or load it
on demand. In the latter case, however, processing
documents takes more time.

3.3 Defining m a t h groups

To specify fonts for math, other primitive commands
are provided. They all have Q characters in their

names; i.e. they will not normally be accessible to
the user, but will be when making format files or
style files.

Math fonts can be divided in two classes: fonts
that are accessed via \mathchardef and those that
are selected only via a (m a t h alphabet ident i f ier) .

As we already mentioned, all math fonts
come in groups of \ textfont , \ sc r ip t font , and
\ s c r ip t sc r ip t f ont. A new math group is defined
by the command

\newhathgroup(math group number)

(m a t h group number) is a control sequence that is
assigned a number that from now on will denote
this group. It is also possible to use an explicit
number, i.e. a sequence of digits, instead of this
control sequence to stand for this group. How-
ever, the first alternative is generally superior since
\newhathgroup always assigns a previously unused
number to this control sequence. The second alter-
native is normally used for groups 0, 1, 2, and 3
which have a special meaning to T)jX.

To specify the fonts of this group, the com-
mands \def inebathgroup (for the f i s t class) and
\def inehatha lphabet (for the second class) are
available.

Take for example one of the cmsy.. fonts,
i.e. the standard math symbol fonts in the com-
puter modern family. (They also contain the cal-
ligraphic alphabet.) This font must be loaded prior
to its use because of the \mathchardef commands
in p l a in . tex. To achieve this we write

\definebathgroup {cmnormal)2%

{cm){mathsymbol}{normal}

This can be read as: define the group number 2
in the 'cmnormal' version to consist of fonts with
family 'cm', series 'mathsymbol', and shape normal.
The actual sizes for \ textfont , \ sc r ip t font , and
\ s c r ip t sc r ip t fon t will be determined when the '

group is selected.
If you want to access such a math group also

via a (m a t h alphabet identifier) you must define this
control sequence to switch to the corresponding in-
ternal group (n u m b e r) , viz.

\def (m a t h alphabet identifier)(%
\group(number))

Returning to our example: to define \ c a l to select
the calligraphic alphabet (A, 23) in a formula one
has to add the definition

\def\cal{\group2 }

If we want to declare a group that is ac-
cessed always by a (m a t h alphabet ident i f ier) the
\def ineQmathalphabet macro should be used.
Since the corresponding fonts are not accessed

TUGboat, Volume 10 (1989), No, 2

by \mathchardef commands, there is no need
to preload them. Loading can be done by the
(ma th alphabet identifier).

The macro \def inehathalphabet is simi-
lar to \definebathgroup. If one uses a macro
\sfmath to select sansserif letters in a formula one
has to make a declaration like

\def inehathalphabet (cmnormal)\sf math
(ma th group number)Icm)Csansserif Hnormal)

Here \sfmath is the new (ma th alphabet identifier).
The (ma th group number) that must previously be
defined using \newhathgroup.

The text size in math formulas is always deter-
mined to be the size of the text outside. The sizes for
subscripts, etc., i.e. the script and the scriptscript
size, must be specified additionally.

The macro \def ineha ths izes is made for this
purpose. It takes three arguments: a text size, the
corresponding script size and scriptscript size, e.g.

\def ine@mathsizesC10}{7}{5}

defines the script and scriptscript sizes for a text set
in size '10' to be '7' and '5', resp.

When a size change occurs, not only the current
font must be switched but also all math fonts which
can be selected via special symbols. On the other
hand, it may be that math fonts are only available
or only used in certain sizes. For the other sizes
we do not need to switch the whole set of math
fonts.5 To specify this we provide the command
\def inehomathsize that takes only the text size
and inhibits math font switching for this size.

If there is more than one version provided then
you better define all groups for every version. Other-
wise switching the version (by using \mathversion)
will not reset these groups properly. E.g., in the
I 4 m implementation we therefore have a line

\def ine@mathgroup(crnbold}2%

{cm){mathsymbol}{bold}

It goes without saying that the family/series/shape
combination must have been defined previously by
a \newQf ontshape command.

4 Concept of the implementation

4.1 Handling the font tables

The first problem we had to solve was how to handle
such a huge number of fonts. To implement the four
dimensional grid of fonts we maintain an association
l i t 6 (i.e. a list of pairs) with elements (size, exter-
nal font name) for every combination of font fam-
ily/series/shape. We do not redefine the font chang-

ing commands: these commands select the correct
font by looking into the association list correspond-
ing to the current font family/series/shape combi-
nation. This association list is hidden in a macro.
Its precise form is as follows: For every (s i ze) we
have a string of the form

<(size)> (external font name)

This strings are simply concatenated to form one
long string of characters. In this way all necessary
information is available. But this solution would
take up far too much of w ' s valuable main mem-
ory. Therefore we use a trick, the same trick that is
used in plain QX's \newhelp macro: we enclose the
list of characters by \csname. . . \endcsname making
one macro name out of it. This uses up only one to-
ken in m ' s main memory (and some string memory
but this is comparatively cheap).

As an example take the normal shape of series
roman in the computer modern family, i.e. the crnr
fonts. We define a macro \cm/roman/normal whose
replacement text contains a single token containing
all necessary information in its name. This macro
itself is undefined.

The first \expandafter is needed because the
macro name consists of / characters and we use
\csname ... \endcsname to build them into the
macro name. We then use \edef so that the
second \csname.. . \endcsname combination is ex-
panded at definition time. Finally we need the
\expandafter\noexpand trick to ensure that the re-
sulting (undefined) macro is not expanded.

4.2 Fonts for math

To set up fonts for math one has to set up several
assignments of the form

Think of a special size used only in titles with no formulas at all.
Lisp hackers note!

TUGboat, Volume 10 (1989), No. 2

(math font assignment) (number)=(font)

where (math font assignment) is one of \ tex t font ,
\ s c r ip t f ont, or \ s c r ip t sc r ip t fon t , (number) is
a number associated with the particular font group
(or family in the terminology used by DEK), and
(font) the internal name of the font to be selected.
The assignments have to be changed when the over-
all size changes or when a new math version is re-
quested by the user.

There are several ways to implement this: one
can for example build a macro name from the re-
quested version and the current size (i.e. \f @size).
The replacement text would then contain all nec-
essary assignments. In a way the old font selec-
tion scheme of IPW uses this method by defining
macros like \xpt, etc.

We decided to use another approach: Since the
current size (\f @size) is always known we make all
necessary assignments by means of one macro to be
called for every version, viz.

\getanddef ine@f onts(number) (font shape),

where (number) has the same meaning as be-
fore, and (font shape) denotes a macro name like
\cm/mathsymbol/normal which can be used to get
the necessary fonts names by appending the desired
size. For every text size there exists a script and
a scriptscript size. Our method for getting it will
be seen in a minute (depending on your speed of
reading).

On first sight this seems to be a lot slower than
the other method because \getanddefine@fonts
takes time to put all the information together.7 But
tests have shown that this is not true: we can neglect
this extra time.

The above math font assignments must be
done for all fonts containing characters accessed
via \mathchardef because l$X will complain if
these fonts are not properly defined when these
symbols are used. (The alternative to convert all
\mathchardef's into macro calls that test if the font
is available seems to be too inefficient but this should
be investigated further.)

For math alphabets the situation is different.
These are selected by means of the correspond-
ing (math alphabet identifier) (i.e. \cal) so that the
fonts can be loaded on demand.8 Hence in the ver-
sion macros, for these font groups we have lines of
the form

\def (math alphabet identzfier)C%
\select@group(math alphabet identifier)

The old song: Time vs. space!

(number) (font shape)}%

(number) and (font shape) have the same meaning
as before; (math alphabet identifier) is available to
the user to select the math alphabet. The actual
math font assignments are carried out by the macro
\select@group which is called only if the user se-
lects the alphabet inside a formula. In this way,
fonts not used in a certain document are not loaded,
thereby saving space and time.

For every math alphabet, there must obviously
exist at least one version. But it is perfectly legal
that certain alphabets are available only in certain
versions. Therefore we need a way to warn the user
if he selects a version of an alphabet that does not
exist.

If a math alphabet does not exist in a certain
version the corresponding part of the version macro
will look like

\def (math alphabet identifier)(%
\no@versionQwarning(version)

(math alphabet identifier))%

which leads to a warning message if the alphabet is
selected in this version.

A minute ago we promised to tell how we
obtain the script and scriptscript sizes for a
given text size. For every size and math group,
you need a \ textfont , a \ scr ip t font , and a
\ s c r ip t sc r ip t fon t . The math fonts have to be
switched for every size change. Since the math
group assignments have to be in effect when the cur-
rent math formula ends we make them all global.
But then the old assignments must be restored at
the end of the current group. This is done by in-
serting a macro call with the \aftergroup prim-
itive. The current text size is always available
to this macro in the expansion of \f@size. The
corresponding script size and scriptscriptsize (spec-
Xed via \define@mathsizes), however, must be
recorded somewhere. We use the following scheme
for this: for every size s we define a macro \S@s (e.g.
for size XX we define \S@XX) that globally defines two
macros \ s f@size and \ ss f@size to expand to the
corresponding script size and scriptscript size. With
the help of these macros the right sizes can be ex-
tracted easily. Take for example size 'lo', with script
size '7' and scriptscript size '5'. The corresponding
macro looks like

However, the example of \ca l is a bad one because the fonts containing this alphabet must be preloaded
anyway. Those fonts also contain the bulk of math symbols accessed via \mathchardef.

TUGboat, Volume 10 (1989), No. 2

4.3 Special considerations

There are two special cases we must

take care of. Both have to do with size
changes within an alignment. Why is this
special? The first problem appears when
the size change occurs in the last column
of an alignment. The token saved by the
\aftergroup primitive will be inserted

just after the \cr has been read. More

5 Preliminary macros

precisely: after the end of the alignment
template. But here only \noalign or the
end of the alignment is allowed, every-
thing else starts a new column. There is
a simple fix for this: in the template of
the alignment the hash mark (#) denot-
ing the last column must be wrapped in
a group. The same problem shows up if
a size change occurs inside a \noalign.

As always we begin by identifying the latest version of this file on the VDU and in
the log file.

\imediate\write\sixt@@n{File: 'fam.tex'

\f ileversion \space <\f iledate> (FMI and RmS)}
\imediate\write\sixt@@n{English Documentation

<\docdate> (RmS and FMI)}

Following are a number of macros that will be used later.

We define \@spaces to be an abbreviation for five space tokens.

\def \@spaces~\space\space\space\space\space}

This is also defined in latex.tex, but this code cautiously does not assume that any
macros are defined elsewhere (except those in plain. tex).

The \@gobble macro is used to get rid of its argument.

\def\@gobble#lC)

The \@empty macro expands to nothing and is used to test for empty replacement
texts.

\def \@empty0

The \@height, \@depth and \Qwidth macros are made to conserve token memory.

\def \@height{height)

\def\@depth{depth)

\def\@width{width)

We need a macro that prints a warning message. We write to output stream 16 which
means that the message will appear both in the transcript file and on the terminal.

\def \f ont@warning#l~\immediate \write \sixt@@n {Warning: #1.}}

\@nomath is used by all macros that should not be used in math mode.

\def\@nomath#l{\relax\ifmode \font@warning{Don't use \string#l in

math mode}\f i)

The macro \no@version@warning is called whenever the user requests a math alphabet
that is not available in the current version. The first argument is the name of the
version (as a sequence of characters), the second is the control sequence that identifies
the math alphabet. The \relax at the beginning is necessary to prevent 'l&X from
scanning too far in certain situations.

\def \no@version@warning#l#2{\rel~ \ifmode

\font@warning{No '#I' version for math alphabet identifier

\string#2)\fi}

228 TUGboat, Volume 10 (1989), No. 2

\new@mathgroup We have to redefine one plain macro: We must remove \outer from definition

\group of \newfam so that it can be used inside other macros. We also give a new name to
\newf am and \ f am to avoid verbal confusion (see the introdu~tion).~

\def \new@mathgroup{\alloc@8\group\chardef \sixt@@n}

\let\group\f am

%\let\neufam\relax

%\let\f am\relax

6 Macros for setting up the tables

\new@f ontshape Since this kind of definition is needed several times we provide a macro \new@f ontshape

that does the work for us.

\extra@def The 'extra' macro is defined as follows.

We provide an abbreviation for this:

so that the above definition looks like

However, this is inefficient if there is nothing to do (i.e. if the third argument is empty),
so we provide a special test for this case. Here is the actual definition:

We store the argument #3 in a temporary macro \@ternpa. This must have one pa-
rameter since #1 is allowed in the third argument of \extraQdef (otherwise w will
not accept the definition).

\def\@tempa##l{#3)%

We compare \@ternpa with a macro with one argument and empty replacement text,
i.e. with \@gobble. If these two are the same, we \ l e t the 'extra' macro equal
\Qgobble.

\ifx \@tempa\@gobble

\expandafter\let\csname extra//#l/#2\endcsname\@gobble

Otherwise, we build a definition.

\else \expandaf ter\def \csname extra//#l/#2\endcsname##1<#3)\f i}

\preload@sizes AS we already explained, the macro \preload@sizes provides a convenient way to
specify fonts to be preloaded. It takes four arguments and its definition is as follows:

\def\preload@sizes#1#2#3#4C%

We define a macro \nextlo that grabs the next size and loads the corresponding font.
This is done by delimiting \next's only argument by the token , (comma).

\def\next##l,{%

For the same reason it seems advisable to \ l e t \ f am and \newf am equal to \relax,
but this is commented out to retain compatibility to existing style files.

lo We cannot use \@ternpa since it is needed in \pickup@f ont.

TUGboat, Volume 10 (1989), No. 2 229

The end of the list will be detected when there are no more elements, i.e. when \next's
argument is empty. The trick used here is explained in Appendix D of the T@book:
if the argument is empty, the \if will select the first clause and \let \next equal to
\relax. (We use the > character here since it cannot appear in font file names.)

\if >##I>

\let\next\relax

\else

Otherwise, we define \f ontQname appropriately and call \pickupQf ont to do the work.
Note that the requested family/series/shape combination must have been defined, or
you will get an error.

\edef \f ont@name(\csname#l/#2/#3/##l\endcsname)%

\pickup@f ont

\fi

Finally we call \next again to process the next size. If \next was \let equal to
\relax this will end the macro.

\next}%

We finish by reinserting the list of sizes after the \next macro and appending an
empty element so that the end of the list is recognized properly.

\next#4, ,)

\ifdefinehathfonts We need a switch to decide if we have to change math fonts. For this purpose we
provide \if def inehathf onts that can be set to true or false by the \SQ . . . macros,
depending on whether math fonts are provided for this size or not. The default is, of
course, to switch all fonts.

\newif\ifdefinehathfonts \definehathfontstrue

\def inehathsizes \def inehathsizes takes the text size, script size, and scriptscript size as arguments
and defines the right \SQ. . . macro. (\def inebathfontstrue might be omitted if
math fonts are to be defined for every size.)

\def\define@mathsizes#l#2#3(\expandafter \def

\csname S@#l\endcsname(\gdef \sf @size{#2)\gdef \ssf @size(#3}%

\def inehathfont strue})

\def ineQnomathsize \def ineQnomathsize takes only the text size as argument and defines \SQ.. . to not
change math fonts.

\def\define@nomathsize#l(\expandafter \let

\csname S@#l\endcsname \def inehathfontsf alse}

7 Selecting a new font

7.1 Macros for the user

\family As we said in the introduction, a font is described by four parameters. We first define
\series macros to specify the desired family, series, or shape. These are simply recorded in
\shape internal macros \f Qf wily, \f Qseries, and \f @shape, resp. We use \edef's so that

\f@f amily the arguments can also be macros.
\faseries \def \f amily#l{\edef \f @f amilyI#l})
\f @shape \def \series#i{\edef \f @series{#l}}

\def \shape#l{\edef \f @shape(#l))

\size We also define a macro that allows specification of a size. In this case, however, we
\f @size also need the value of \baselineskip. We cannot set \baselineskip immediately,

\setnew@baselineskip so it is recorded in the macro \setnewQbaselineskip. We use \edef here because
the second argument (#2) might be a macro.

\def\size#l#Pa

\edef\f@size(#l}%

\edef\setnew@baselineskip~\baselineskip #2\relax))

230 TUGboat, Volume 10 (1989), No. 2

\selectf ont The macro \selectf ont is called whenever a font change must take place.

\glb@currsize \def \selectf ant{%

Its first action is to determine if the new font has the same size as the previous one.
Here the macro \glbQcurrsize holds the current font size. Its expansion text may
also be empty which means that we do not know what the current size is. As its name
indicates, it is always set globally.

\ifx \glb@currsize \f@size

If the size is to be changed we must also change \baselineskip and a number of
other parameters. This is done by the macro \glbQsettings.

\else \glb@settings

Since these changes are done globally, we must ensure that the old values are re-
stored at the end of the current group. We use m ' s \aftergroup primitive to call
\glbQsett ings again just after the current group ends. And that's all of special code
for a size change.

\aftergroup\glb@settings \fi

We now generate the internal name of the font by concatenating family, series, shape,
and current size, with slashes as delimiters between them. This is much more readable
than standard U r n ' s \twfbf, etc.

\edef\font@name{%

\csname\f@family/\f@series/\f@shape/\f@size\endcsname)%

We call the macro \pickupQf ont which will load the font if necessary.

\pickup@font

Finally, we select the font. This finishes the macro \selectfont .

\mathversion \mathversion takes the math version name as argument, defines \mathQversion
\math@version appropriately and switches to the font selected, forcing a call to \glbQsettings if the

version is known to the system.

\def \mathversion#l{\expandaf ter\if x\csname #l\endscname\relax

\font@uaxning{The requested version '#I' is unknown)\else

\def \math@version{#l)\glb@settings\aftergroup\glb@settings\f i)

7.2 Macros for loading fonts

\pickup@f ont The macro \pickupQf ont which is used in \ se lec t f ont is very simple: if the font
name is undefined (i.e. not known yet) it calls \def ineQnewf ont to load it.

\def\pickup@font{%

\expandafter \ifx \fontenme \relax

\def ine@newf ont

\f i)

\split@name \pickupQfont assumes that \fonthame is set but it is sometimes called when
\f Qf amily, \ fQseries, \f Qshape, or \f Qsize may have the wrong settings (see, e.g.,
the definition of \getanddef ineQf oats). Therefore we need a macro to extract font
family, series, shape, and size from the font name. To this end we define \ sp l i thame
which takes the font name as a list of characters of \catcode 12 (without the back-
slash at the beginning) delimited by the special control sequence \Qnil . This is not
very complicated: we first ensure that / has the right \catcode

{\catcode'\/=l2

and define \splitQname so that it will define our private \fQfamily, \ fQser ies ,
\f Qshape, and \f Qsize macros.

\gdef \split@name#l/#2/#3/#4\@nilC\def \f @f amily{#l)%

TUGboat, Volume 10 (1989), No. 2

\def inehewfont Now we can tackle the problem of defining a new font.

\def\define@newfont{%

We have already mentioned that the token list that \splitQname will get as argument
must not start with a backslash. To reach this goal, we will set the \escapechar to
-1 so that the \ s t r i n g primitive will not generate an escape character. But then
we must save \escapechar's current value. We use count register \count@ for this
purpose.

\count@\escapechar

\escapechar\m@ne

Then we extract family, series, shape, and size from the font name. Note the four
\expandafters so that \fontQname is expanded first, then \ s t r ing , and finally
\splitOname.

\expandaf ter\expandaf ter\expandaf ter

\split@name\expandafter\string\fontBname\@nil

If the family/series/shape combination is not available (i.e. undefined), we call the
macro \wrongOf ontshape to take care of this case. Otherwise, \extractQf ont will
load the external font for us.

We are nearly finished and must only restore the \escapechar.

\wrongcDfontshape Before we come to the macro \extract@font , we have to take care of unknown fam-
ily/series/shape combinations. The general strategy is to issue a warning and to try
a default shape, then a default series, and finally a default family. If this last one
also fails, will go into an infinite loop. But if the defaults are incorrectly set, one
deserves nothing else!

We remember the desired family/series/shape combination which we will need in a
moment.

\edef\@tempa{\csname\fOfamily/\f@series/\f@shape\endcsname)%

Then we warn the user about the mess and set the shape to its default.

\font@warning{Font/shape '\atempa' unknown)%

\shape\default@shape

If the combination is not known, try the default series.

\expandaf ter\ifx\csname\f @f amily/\f @series/\f @shape\endcsname\relax

\series\default@series

If this is still undefined, try the default family. Otherwise give up.

\expandaf ter\if x\csname\f @f amily/\f @series/\f @shape\endcsname\relax

\f amily\def ault@f amily

\fi \fi

At this point a valid family/series/shape combination must have been found. We
inform the user about this fact.

\font@warning{Using '\f@family/\f@series/\f@shapeJ instead)%

TUGboat, Volume 10 (1989), No. 2

If we substitute a family/series/shape combination by the default, we don't want the
warning to be printed out whenever this (unknown) combination is used. Therefore
we globally \ l e t the macro corresponding to the desired combination equal to its sub-
stitution. This requires the use of four \expandafter7s since \csname.. . \endcsname
has to be expanded before \Qtempa (i.e. the requested combination), and this must
happen before the \ l e t is executed.

Now we can redefine \f ontQname accordingly.

\edef\font@name(\csname\f@family/\f~series/\f@shape/\f@size\endcsname~%

The last thing this macro does is to call \pickupQf ont again to load the font if it is
not defined yet. At this point this code will loop endlessly if the defaults are not well
defined.

\pickup@f ont }

\strip@pref ix In \extractQf ont we will need a way to recover the replacement text of a macro.
This is done by the primitive \meaning together with the macro \s t r ipQpref i x (for
the details see appendix D of the l&Xbook, p. 382).

\def \strip@pref ix#i>C)

\extract@font Here it comes: the macro solving all our problems (well, nearly all). What must
this macro do? This is explained best with an example. Assume that family is
'cml, series is 'sansserif', shape 'normal7, and size '12'. Assume further that this
combination is defined, i.e. there exists the macro \cm/sansserif /normal. (Otherwise
\extractQfont doesn't get called.) Its replacement text consists of one (undefined)
control sequence looking like

For reasonable styles one usually needs more sizes but this is sufEcient to get the
flavour. We will define a macro \extractQf ontinf o to find the external font name
('cmssl2') for us:

so that when it gets called via

I will contain all characters before <12>, #2 will be exactly cmssl2, and #3 will be
1 7 ~ m s s 17. The expansion is therefore

which is exactly what we want.

But this is only part of the whole story. It may be that the size requested does
not occur in the \cm/sansserif/normal macro. And the simple definition of
\extractQfontinfo we gave above does not allow us to specify the font substitu-
tion that we explained in 3.1.

Both problems are solved with the same trick: We define \extractQfontinfo as

follows:

\def\extract@fontinfo#l<12>#2#3<#4\Qnil(%

\global\f ont\cm/sansserif /normal/l2

\ifcase 0#2#3\relax\or

#3 \font@warningCSize 12 not available

TUGboat, Volume 10 (1989), No. 2

- using '#3' instead)\or

#3 \font@warning{Family/series/shape not available

- using '#3' instead)\else

\def aultaerrf ont \errmessage{Font not f ound)\f i)

How does this work? The first difference from the previous definition is that the
characters of the external font name are split between parameters #2 and #3, #2
receiving only the first character. If this first character is not a digit, the \ i f case will
get the 0 and select the first alternative. #2 and #3 are combined again and used as
a file name. If #2 is a digit then the expansion of \ i f case will combine the 0 and #2

to a number.ll Cases 1 and 2 select the second and third alternatives that use #3 as
the substitution font.

The default case is reserved for a size that cannot be found in the tables. We achieve
this by calling \extractQf ontinf o via

If the size ('12' in this case) appears in the \<lo>. . . macro everything works as
explained above, the only difference being that argument #4 of \extractQf ontinf o
additionally gets the <12>3 tokens. However, if the size is not found, everything up to
the final <l2> is in argument #I , #2 gets 3, and #3 and #4 are empty. Therefore the
\ i f case will select the default alternative and write an error message.

We have cheated a bit, of course. Normally digits and characters like /<> are not
allowed as part of control sequences. Additionally the macros are hidden inside
other control sequences so that we have to build \extractQfontinf o in several steps.
Putting everything together we define \extractQf ont as follows.

\def \extract@f ontC%

\Qtempa is made an abbreviation for the head of the definition of \extractQf ontinf o.

\def \@tempaC\def \extract@f ontinf o####l)%

Then we define \Qtempb so that it expands to <(size)>. We use this slightly compli-
cated construction to ensure that all characters have \catcode 12. This is needed for
the delimiter matching in macro expansion.

\edef \@tempbC<\expandafter\strip@pref ix\meaning\f @size>)%

Now we can define \extractQf ontinf o.

\expandafter\@tempa\@tempb##2##3<##4\@nil.[%

Remember that \f ontQname expands to the internal font name.

\global\expandaf ter\f ont \f ontanme

Here comes the \ i f case. For the benefit of the user, the warning messages are a bit
more eloquent.

\if case0##2##3\relax\or

##3

\f ont@warning(Font/shape '\f @f amily/\f @series/\f @shape '
in size \@tempb\space not available)%

\font@warningCUsing '##3' instead)\or

##3

\f ont@warning{Font/shape ' \f @f amily/\f @series/\f Bshape '
not available)%

\font@warningCUsing '##3' instead)\else

l1 Recall that 01 is a valid (number) for m.

TUGboat, Volume 10 (1989), No. 2

There are two points to be explained here: \def aultOerrhelp is the font to be selected
if the requested size is not found in the tables. \nof ontQhelp denotes a token register
that contains a help message for the user. Its definition is given below.

\default@errfont \errhelp\nofont@help

\errmessage{Font \expandaf ter

\string\font@name\space

not found)%

\f i)%

Now we must extract the font information from the family/series/shape macro. This
is done in two steps: first generate the macro name by \csname. . . \endcsname and
expand it to get its replacement text. Then use \ s t r ing to convert this text into a
sequence of character tokens with \catcode 12. We define \f ontQinf o to contain this
sequence followed by <(size)> (which is stored in \Otempb).

Now we call \extractOf ontinf o. Note the 3<\9nil tokens at the end.

\expandafter\extract@fontinfo\font@info 3<\Qnil

Finally we call the corresponding "extra" macro to finish things.

\csname extra//\f @f amily/\f @series \expandafter

\endcsname \font@name \relax)

The \ relax at the end needs to be explained. This is inserted to prevent from
scanning too far when it is executing the replacement text of the "extra" macro.

\nofont@help \nof ontOhelp is a token register containing a help message. It is defined using plain
m ' s \newhelp macro.

\newhelp\nofont@help

{You requested a font/series/shape/size combination that is

totally--Junknown. \space I have inserted a special font name
that will producea-Jinteresting effects in your output. \space

There are two cases in which'-Jthis error can occur:--J\space

\space 1) You used the \string\size\space macro to select

a size that is not available.-^J\space

\space 2) If you did not do that, go to your local 'wizard'

andaaJ \@spaces complain fiercely that the font

selection tables are corrupted! a-J%

(And do not worry about the missing escape characters in the

error--Jtraceback above!)"J)

8 Assigning math fonts to versions

\def inehathalphabet We begin with the definition of the macro \def heba tha lphabe t which is built to
append definitions specific to a new math alphabet to the replacement text of a version
macro. It takes six arguments: the math version name (as a string of characters),
a control sequence identifying the new math alphabet, the number of the new math
group (normally a control sequence defined via \countdef), and finally three strings
of characters denoting font family, series, and shape. If the shape parameter (#6) is
empty then the alphabet #2 is not available in version #I.

The first thing it does is to check if the name of the math version is already defined.
This is the case if there already exist other math alphabets in this version. We must
of course remember these definitions. To do so we save the contents of the macro in
the token register \toksQ.

\expandafter\if x\csname #l\endcsname\relax

TUGboat, Volume 10 (1989), No. 2

If there is no other math alphabet in this version, we simply store an empty token list
in this register.

\toks@C)%

Otherwise, we generate the control sequence denoting the macro using \csname.. .
\endcsname and store its replacement text in \toksQ. Note the three \expandaf t e r
primitives to achieve this.

Depending on the shape parameter (#6) we have different things to do. We save the
sequence of character tokens in a temporary control sequence.

\def\@tempa{#6)%

Now we globally redefine the version. Since the name of the version is given as a
sequence of characters we must again build a macro name out of it. We use an \xdef
so that the definition is expanded first.

This is necessary since we want to insert the contents of token register \toksQ.

Then we append the new definitions for the alphabet #I. The \noexpand is necessary
to insert the (math alphabet identifier) without expanding it.

We must now catch the case that the shape parameter #6 saved in \@ternpa is empty,
i.e. that the alphabet is not available in this version. We simply include a call to the
\noQversionQwarning defined earlier.

\ifx\@tempa\@empty

C\noexpand\no@version@uarning

\noexpand\math@vers ion

\noexpand#l)%

Otherwise, we include a call to \selectQgroup (see below) with the three arguments
(math alphabet identifier), (math group number), and font family/series/shape defini-
tion macro.

Now the macro switching to the version #I contains a definition for alphabet #2.

Finally we force a call to \glbQsett ings at the next time the fonts change by globally
redefining \glbQcurrsize.

\def ineamathgroup \def ineaa thgroup is similar to \def h e b a t h a l p h a b e t . This macro is never called
when processing a document, only during the font definition phase (e.g. by a style file
in VTEX or when dumping a format file). It is used for those math groups that are
used via \mathchardef primitives. Since we don't need a (math alphabet identifier)
to select those symbols, the macro takes only five arguments: the math version name
as a sequence of character tokens, the (math group number) as a control sequence (it
must already be allocated using \new@mathgroup) or as a digit (for groups 0 to 3, and
font family, series, and shape name (as a sequence of character tokens). The first part
is therefore completely analogous to the definition of \def inehatha lphabet .

TUGboat, Volume 10 (1989), No. 2

Since this code is never called by the user there is no need to issue a warning when
the (math group number) isn't allocated. However, the font tables must be defined
consistently!12 Instead of \selectQgroup it uses \getanddef ineQf onts which has
only two arguments: (math group number) and the font family/series/shape combi-
nation.

The tail is literally the same as in def inebathalphabet.

\getanddef ine(0f onts \getanddef ineQf onts has two arguments: the (math number number) and the fam-
ily/series/shape name as a control sequence.

\def\getanddefine@fonts#1#2{%

We append the current \f Osize to #2 to obtain the font name.13

\edef\font@nameC\csname \string#2/\f@size\endcsname}%

Then we call \pickupOfont to load it if necessary. We remember the internal name
as \textf ontQname.

\pickup@font \let\textfont@name\font@name

Same game for \scriptfont and \scriptscriptfont:

\edef \f ont@name{\csname \string#2/\sf @size\endcsnameyL
\pickup@font \let\scriptfont@name\font@name
\edef\font@nameC\csname \string#2/\ssf@size\endcsname)%
\pickup@font

Then we append the new \textfont.. . assignments to the \mathQfonts.

\edef\math@fonts{\mathQfonts

\textfont#l\textfont@name

\scriptfont#l\scriptfont@name

\scriptscriptfont#l\font@name)}

\select@group \selectQgroup has three arguments: the new (math alphabet identifier) (a control
sequence), the (math group number), and the family/series/shape definition macro
name. We first check if we are in math mode.

\def\select@group#l#2#3i\ifmmode

We do these things locally:

\bgroup

We set the math fonts for the family in question by calling \getanddef ineQf onts in
the correct environment.

\let\math@f onts\@empty \escapechar\m@ne
\getanddefine@fonts#2#3%

l2 Terrible harm will come to you if you don't do it right! A crowd of angry users
might come to stone you!

l3 One might ask why this expansion does not generate a macro name that starts
with an additional \ character. The solution is that \escapechar is set to -1 before
\getanddef ineQf onts is called.

TUGboat, Volume 10 (1989), No. 2

We globally select the math fonts. . .
\globaldef s\Qne \math@f onts

. . . and close the group to restore \globaldef s and \escapechar.

\egroup

As long as no size or version change occurs, the (ma th alphabet identifier) should
simply switch to the installed group instead of calling \selectQgroup unnecessarily.
So we globally redefine the first argument (the new (ma th alphabet identifier)) to
expand into a \group switch and then select this alphabet. Note that this redefinition
will be overwritten by the next call to a version macro.

\gdef #1{\group #2)#1%

If we are not in math mode nothing needs to be done.

\f il

\glb@settings The macro \glb@settings globally selects all math fonts for the current size. The
first thing it does is to open up a group.

\def \glbQsettings{\begingroup

This is done to keep the following changes local: set the \escapechar to - 1 and make
\mathQf onts to expand to nothing.

\escapechar \mane

\let\mathQfonts\@empty

Why do we \let \mathQfonts equal to \@empty at this point? When \glb@settings
gains control, a size change was requested and all previous font assignments need to
be replaced. Therefore the old values of the fonts are no longer needed. For every
group the new assignments are appended to \math@f onts. Now we set the script size
and scriptscript size.

\csname SQ\f Qsize\endcsname

This also sets the def inehathf onts switch. If it is true, we must switch the math
fonts. We execute the macro for the current math version. This sets \mathQf onts to
a list of \textf ont. . . assignments.

\ifdefine(pmathfonts \csname \mathaversion \endcsname \fi

Then we set \globaldef s to 1 so that all following changes are done globally.

\globaldef s\Qne

The math font assignments recorded in \math@f onts are executed, \glbQcurrsize is
set to the wanted \fasize, and the \baselineskip parameter is set accordingly by
the macro \setnew@baselineskip and then multiplied by \baselinestretch.

\mathQf onts

\let \glbQcurrsize \f Qsize

\setnewQbaselineskip

\baselineskip\baselinestretch\baselineskip

Then we set the \strutbox and \normalbaselineskip.

\setbox\strutbox\hbox{\v~le\Qheight.7\baselineskip

\@depth.3\baselineskip \Qwidth\z@)%

\normalbaselineskip\baselineskip

The macro ends by closing the group. This restores all parameters changed locally
(including \globaldef s!) to their previous values.

\endgroup)

\baselinestretch In \glb@settings we used \baselinestretch as a factor when assigning a value to
\baselineskip. We use 1 as a default (i.e. no stretch).

\def\baselinestretch11)

TUGboat, Volume 10 (1989), No. 2

Index

The italic numbers denote the pages where the corresponding entry is described, num-
bers underlined point to the definition, all others indicate the places where it is used.

Symbols

\@depth - 227, 237

\@empty . . . - 227, 235-237

\@gobble - 227, 228

\@height - 227, 237

\@nomath - 227

\@spaces - 227, 234

\@width - 227, 237

A
\af tergroup 230

D
\def ault@f amily . . . 223

\def a u l t b e r i e s . . . 223

\defaultashape 223

\def inehathalphabet
. . . . 224, 225, 234

\definehathgroup .
. . . . 224, 225, 235

\define@mathsizes .
. 225,229

\def ineQnewf ont . . . - 231

\defineQnomathsize .
. 225,229

I
\ i f def inehathfonts 229

N
\new@f ontshape 223,228

S
\scriptf ont 236
\scriptscriptfont . 236
\select@group . 226, 236
\selectfont . . . 223,230
\series 223, 229
\setnew@baselineskip

. 229 -
\shape 223,229
\s ize 223,229
\splithame - 230
\strip@prefix - 232

\strutbox 237

T
\textf ont 236

W
\wrong@f ontshape . . 231

o Frank Mittelbach
Rainer Schopf
Fachbereich Mathematik
Universitat Mainz
Staudinger Weg 9
D-6500 Maim
Federal Republic of Germany
Bitnet: schoepf (Pdmznat5l

TUGboat, Volume 10 (1989), No. 2

A Bar Chart in ~~
DezsG Nagy

Frequently, a bar chart type of presentation of re-
sults is very handy. However, if this requires outside
assistance, then it may become a time-consuming
operation. In the following, a simple scheme is pre-
sented, which allows one to make up such a chart
in a very short time. The picture environment in
UTEX is used. The procedure was developed origi-
nally as a result of keeping track of expenses related
to computing costs. Due to the simplicity of the pro-
gram, modifications for other applications are easy
to make.

The essence of the procedure is the m macro,
which, for each month, writes out the text for iden-
tification, then draws the various representations of
the data. The macro uses four parameters the last 3
of which are x-coordinates in a UTEX picture en-
vironment. See the chart on the following page for
an example. The parameters are:

This is the text for identification which could be
the name of the month, or any number. This
field is put to the left of the bars in a box, flush
right. As can be seen from the example for July,
font changing commands are possible.

This number is depicted by a solid bar 82 units
wide 2 mm high.

This number is the coordinate of the right end
of a line centered vertically on the solid bar
above.

This number is the coordinate of the right end
of an open box of height 2 mm.

All values of parameters 2-4 are horizontal displace-
ments from the origin of the enclosing picture en-
vironment. Thus, a value of 25 for parameter #2 will
produce a bar 25 mm long.

If a remark is needed at some position, this can
be done easily: the offset in the example is 100mm.

Brief Description

Counters yo and yl are assigned and initialised to
fix the positions of the starting boxes and horizon-
tal line drawn by m. The unit length is also set to
1 mm. The macro m draws the required boxes then
decreases the counters by 10 mm, i.e. gets ready for
the next bar. It must be noted here that, because
of this reset in the macro, if a remark is requred
for an entry, then it must be done before the bar is

drawn. The date, to be placed at the bottom of the
diagram, can be done easily as shown.

The final part of the program is to display some
explanation in a Legend box. Most of the steps
are self evident. The placement of the Legend box
depends on the data presented. The values -55 and
-128 are obtained by trial and error.

Following is a complete listing of the input.

\begin{center)

\beginIpicture)(l30,180)

\put (0,1651 C\makebox(O, 0) Ell %
(\huge\bf Computing costs))

\put(O,l50~C\makebox(O,O)CO))

\multiput(lO,l50)(lO,O)(lO){\addtocounter

~dr~~l000)\makebox (0,O) C\arabic{dr)))

\put(O,l48~~\line(l,O)~lOO))

\multiput (0,148) (lO,O)ClI~~\line(O,-i)(l~~

\m{Jan)I8.7)ClO. 8HIl. 4)

\mCFebH23.1)C24.8)0

\put (100, C\arabic{yl))) (\makebox (0,O) Cll%
<\em geoid))

\m{3H72.8){78.7){81.4)

\m{April)C52.5){6O)Cs6.9)

\put (100, {\arabic{yl))) {\makebox (0,O) Dl%
{\em Super '88))

\mCMayIC20. 3 H O H O)
\put (100, (\arabic(yl))) {\makebox (0,O) [l] %

TUGboat, Volume 10 (1989), No. 2

{\em Chapman Conf .I}
\mCJunH2.8H2.8Hll.l}

\mC\em July~C19.5)C31.1~~31.1~

\addtocounterCyo}C-20)

\put (O,~\arabicCyo}~)C\makebox(O,O)%

C\t oday}}

\begin(picture)(50,15)(-55,-128)

\put (3,7) (\makebox(O ,O) (Legend : 1)
\put (l3,6> C\f ramebox (30,2) C))

\put (l3,7) €\line (I ,O) C2211

\put (35,s) {\line (0, I) C21}

C\f ootnotesize

\put (13,11~C\makebox(O,O) Cll (compute}}

\put (31,4) <\makebox (0 ,O) Cdisc-space))

\put (43,11~C\makebox(O,O) Crl Cother}}}

\linethicknessC2.lmml

\put (l3,7) (\line (1 ,O) Cl5Il

\linethicknessClpt)

\put (-5,O) C\framebox(50,15) C))
\endCpicture}

o Dezsd Nagy
Geological Survey of Canada
1 Observatory Crescent
Ottawa KIA OY3, Ontario
Canada
613-995-5449

Computing costs

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
I I I I I I I

Jan lEtl

Feb

compute other
Legend : -7

disc-space

3 geoid

April -U I

May -
Jun U

July -
Super '88

Chapman Conf.

20 Jun 1989

TUGboat, Volume 10 (1989), No. 2

Producing On-line Information Files
with MT@

Hubert Part1
Technische Universitat Wien

Several such drivers are available, most of them
in the public domain. My favorite is Crudetype
by R. M. Damerell (Royal Holloway and Bed-
ford College, Egham, UK).

Printed Documents and
On-line Information Files

Computer users nowadays expect that all necessary
information about the computer is available in two
forms: as printed documents, and as on-line infor-
mation files.

0 The printed documents are usually bought at
the EDP center's book shop. They may be any-
thing from short leaflets to complete books, and
in any case they should be as beautiful and as
readable as possible. Thus, ', together with
one of its macro packages like U r n , and a laser
printer are the ideal means to generate them.

0 On-line information files are ASCII files stored
on the computer itself. Whilst working on the
computer, users can access them directly from
the terminals on their own desks. Typically,
the files are viewed on a terminal screen, or
searched for certain keywords with an editor,
or printed on a nearby cheap line printer.

For the authors and maintainers of the information
texts, it is highly desirable that the same input file
can be used to generate both the printed and the on-
line versions. How can this be achieved in a I P '
environment?

There are driver programs available that gen-
erate line printer or ASCII output from a DVI file,
but these are aimed at proof-reading and preview-
ing: They try hard to show how the text will even-
tually be broken into lines and pages in the final
printed document. Their results as such are usually
rieither beautiful nor readable.

What we need is something different: We want
the text to be set as beautiful and as readable as
is possible in a simple line-oriented ASCII file, and
with a layout that is best suited for the purpose of
viewing on a terminal and printing on a line printer
(e.g. 72 characters per line, 60 lines per page, blank
lines to separate sections, and so on). We don't care
about any relation to the line and page breaks of the
printed version.

Obviously, we need two things to achieve this:

We need a IP' style or style option that will
set our text such that the ASCII file will be as
readable and as beautiful as possible.
This will be dealt with in the present article.
We need an ASCII driver that will convert our
DVI file into an ASCII file.

My First At tempt

Here is my first attempt for such a document style
option file, which I called screen. sty.

It is intended for generating ASCII file versions
of non-mathematical texts, usually descriptions of
computer programs and similar information.

Ideally, it should work like this:

0 The printed manual is generated the usual way,
with and with a laser printer driver.

0 The on-line version is generated by using a copy
of the I P W input file, in which the option
screen is added at the end of the option list
in the \documentstyle command, and by feed-
ing the resulting DVI file into an ASCII driver
like Crudetype.

Real life, however, is a bit more complicated: I usu-
ally have to apply several manual changes to the
copied version of the I P W input file and also to the
generated output file. But even so, this is much eas-
ier than maintaining two completely different text
files for the printed and on-line versions.

In spite of these drawbacks, I am presenting
my humble first approach to the TUGBOAT reader-
ship- hoping that some readers can use my ideas,
and that some will provide me with their ideas of
how to do it better!

Now, let us have a look at the contents of my
screen. s t y file:

Fonts

Only one "font" is available on a line printer, and it
is a mono-spaced one. With m, this means that
the whole document should be set in the typewriter
font (\ t t) .

The normal-size typewriter font is selected by
the following commands:

\normals i ze \ t t

This must be done at the beginning, so that
\baselineskip and the em and ex units have the
correct values for all length assignments to come.

All font changing commands are re-defined to
refer to the \tt font:

\let\rm=\tt \let\bf =\tt \ l e t \ i t = \ t t
\ l e t \ s l = \ t t \ l e t \ s f= \ t t \ le t \ sc=\t t

\let\em=\tt

Of course, this does not catch special fonts
loaded by the user, nor implicit font changes other
than \em, nor does it consider the mathematical

mode. If the I P w input file contains commands
to load special fonts, these should be \let to \tt,
too.

Font Sizes

Only one character size is available on a line printer.
All size changing commands are changed to refer to
\normalsize, and instead of switching to the \rm
font, they will switch to the \tt font.

First, we change the \normalsize command to
switch to \tt rather than \rm:

Then, all other size changing commands are re-
defined to this new \normalsize command:

Accents and Special Characters

Overprinting should be avoided in the ASCII file
generated, because it does not work when the file
is viewed on a terminal screen. All accented and
special characters have to be mapped to LLnormal"
ASCII characters or character sequences.

Most accents can just be omitted, i.e. 6 can be
printed as e, and so on.

\let\'=\relax \let\'=\relax \let\-=\relax

\let\c=\relax \let\-'=\relax \let\==\relax

\let\. =\relax \let\u=\relax \let\v=\relax

\let\H=\relax \let\d=\relax \let\b=\relax

\let\t=\relax

Various umlaut characters are to be replaced by
two-character sequences, e.g. a will be printed as ae,
% will be printed as ss, ce will be printed as oe, and
so on. Most of these changes are straightforward:

\def \ssCss> \def \aa(aa) \def \aeCae)

\def\oe(oe> \def\AA(Aa) \def\AECAe)

\def\OE(Oe> \def\oIoel \def\OCOe>

However, with the umlaut accent \", the following
has to be considered: The german umlaut characters
a, 6 , and ii are to be printed as ae, oe, and ue, but
with the other letters, the umlaut dots can just be
omitted, e.g. oe can be printed as oe, and ai' can
be printed as ai. Therefore, the \" command is
re-defined like this:

\def\"#l(\ifmmode #l\else

TUGboat, Volume 10 (1989), No. 2

Since we do not set any accents above letters,
the dotless i and j can be replaced by their normal
dotted versions:

\def \iCi) \def\jCj)

Language Specific Modifications

Non-English speaking I4m users may use some
modified versions of the I4m document styles. For
instance, the german style option is likely to be used
for german texts. In this case, some of the language
specific definitions may need similar re-definitions.

If the option file german.sty has been pro-
cessed, the active quotes character " must be re-
defined with respect to the umlaut characters, the
sharp s and the german quotes. The \Qifundef ined
command can be used to test whether the german
option has been specified.

Here is an example how the french quotes
("guillemets") can be re-defined:

\def \f lqq((\tt <<)) \def \frqqCC\tt >>)I

Mathematical Symbols

We do not consider the typesetting of mathemati-
cal formulae. However, even in non-mathematical
texts, some symbols of w ' s math mode are used,
e.g. dots, bullets, and arrows. These commands are
re-defined to print appropriate ASCII characters or
character sequences, switching to text mode and to
the \tt font:

\def \ldots(\mboxC\tt . . .))
\let\cdots=\ldots

\let\dots=\ldots

\def \timesC\mboxC\tt XI)
\def\bulletC\mbox(\tt *I)
\def \right arrow(\mbox(\tt ->)I
\def \Rightarrow(\mbox(\tt =>)I

\def \longrightarrow(\mboxC\tt -->)I
\def\Longrightarrow(\mbox(\tt ==>)I
\def \lef tarrow(\mbox(\tt <-)I
\def \Lef tarrow(\mbox(\tt <=I)
\def \longlef tarrow(\mbox(\tt <--1)
\def \Longlef tarrow(\mboxI\tt <==)I

Other symbols should be added to this list, if
needed.

Other Special Characters

Two conversion problems still need to be solved:

TUGboat, Volume 10 (1989), No. 2 243

In normal text, the character sequences -- and
--- produce long dashes. Since we have switched
to the \tt font, however, they produce two or three
hyphens, respectively. It would be nice to find an
automatic way that makes the character sequences
-- and --- print a single hyphen (-) only.

A similar problem exists for the opening and
closing quotes: In normal text, ' ' and ' ' are used
to print opening and closing quotes. Since we have
switched to the \tt font, they produce double apos-
trophes. Instead, we would like them to print one
double quotes character (").

I have not found a suitable definition yet that
would accomplish this within m. I assume that
it should involve \catcode to make the characters
active, and \@ifnextchar to look at the following
character. However, the hyphen sign and quotes
should not become "fragile", and the re-definitions
should not inhibit the use of hyphens within the
\hyphenation command nor the use of the grave
character within the \catcode command.. .

Perhaps, a better way would be to define liga-
tures for verb-, ' ' and ' ' in the TFM-File for
font cmtt 10. Of course, these ligatures should be
disabled in the verbatim mode, i.e. they should be
included in the \@noligs command.

Kerning, Raising and Lowering

Both the character positions within each line and the
line positions within each page are fixed in the line
printer file. Therefore, kerning, raising, and lowering
of characters must be avoided.

The following re-definitions make the - and ^

commands do nothing in mathematical mode:

\catcode'\-=\active \let-=\relax

\catcode '\^=\active \let ̂ =\relax

The following re-definitions generate appropri-
ate substitutes for the m and J4m logos:

\def\TeXCTeX) \def\LaTeX(LaTeX)

Similar re-definitions should be added for other logos
of this kind, if needed.

Vertical Skips

The files to be generated consist of discrete lines
(as opposed to arbitrary character placement on the

page). Therefore, all vertical skips must be inte-
ger multiples of the line height \baselineskip, and
they must not be stretched or shrunk.

The \baselinestretch factor must be 1:

\def\baselinestretchCi)

If paragraphs are indented with no vertical skip,
\parskip can be set to zero:

\parskip=Opt

If, however, they are not indented but is to be s e p
arated by a vertical skip, this skip should be one
blank line:

\parskip=\baselineskip

The predefined vertical skips are re-defined to
zero or one line, respectively:

\smallskipamount=Opt

\medskipamount=\baselineskip

\bigskipamount=\baselineskip

The sectioning commands are re-defined such
that the vertical skips and their stretching are mul-
tiples of the line height, and that the heading is
printed in \tt style:

\def\section(\Qstartsection

(section)(l)C\zQ3%

C-2\baselineskip plus -2\baselineskip)%

(l\baselineskip>%

(\raggedright\normalsize\tt 33
\def\subsection~\@startsection

Isubsection)C2)(\z@)%

(-l\baselineskip plus -l\baselineskip)%

(l\baselineskip)%

(\raggedright\normalsize\tt 33
\def\subsubsection~\Qstartsection

(subsubsection)(3)C\z0)%

(-l\baselineskip plus -l\baselineskip)%

(l\baselineskip)%

(\raggedright\normalsize\tt)>

Note that due to the \raggedbottom command (see
below), the stretchable glue in these skips will not

cause an actual stretching but will help to

find a suitable place for the page breaks.
The vertical skips used in all list environments

are re-defined, too. Here is an example that re-
defines them all to equal \parskip:

\def\QlistI(\leftmargin\leftmargini

\topsep\zQ \parsep\parskip

\itemsep\zQ)

\let\Qlisti\QlistI

\Qlisti

\def \Qlistii(\lef tmargin\lef tmarginii

\labelwidth\leftmarginii

\advance\labelwidth-\labelsep

\topsep\zQ \parsep\parskip

\itemsep\z@)

\def \Qlistiii(\lef tmargin\lef tmarginiii

\labelwidth\leftmarginiii

\advance\labelwidth-\labelsep

\topsep\zQ \parsep\parskip

\itemsep\zQ)

Of course, these re-definitions don't catch ex-
plicit \vspace and \ \ [length] commands that a p

244 TUGboat, Volume 10 (1989), No. 2

pear in the I4m input file. These may have to be
changed manually.

The \raggedbottom command makes sure that
vertical skips are never stretched:

\raggedbott om

Horizontal Skips

In an ASCII file, horizontal skips can only be ac-
complished by space characters which all have the
fixed character width. Therefore, all horizontal skips
must be multiples of the \tt font's character width.
Note that 1 em is 2 character widths in this font.

If paragraphs are indented, \parindent should
be set to something like:

\parindent=lem

If, however, they are not indented but are separated
by a vertical skip only, \parindent is set to zero:

\parindent=Opt

The indentation amounts of all list environ-
ments are re-defined like this:

\leftmargini=aem
\leftmargin=\leftmargini

\leftmarginii=2em

\leftmarginiii=2em

\leftmarginiv=2em

The dot distance in the dotted lines within the
table of contents has to be re-defined, too:

\def\Qdottedtocline#l#2#3#4#5I%

\ifnum #l>\cQtocdepth \else
\vskip \zQ plus .2pt

(\leftskip #2\relax \rightskip\Qtocrmarg
\parf illskip -\rightskip

\parindent #2\relax\Qafterindenttrue

\interlinepenalty\QM
\leavemode

\Qtempdima #3\relax

\advance\leftskip \Qtempdima
\hboxO\hskip -\leftskip

#4\nobreak\leaders\hbox(\tt ".-l\hfill
\nobreak \hbox to\Qpnumwidth

(\hf i l \ m #5)\par)\f i)

(This differs from the original definition only in the
argument of the \leaders command.)

Of course, these re-definitions don't catch ex-
plicit \hspace or \kern commands that appear in
the I4w input file. These may have to be changed
manually.

The \raggedright command is needed, be-
cause in the \tt font, the spaces have fixed width
and cannot be stretched for justification:

\raggedright

Page Layout

The line width is set to 72 characters per line:

The text height is set to 54 lines, which corresponds
to 9 inches if the print density is 6 lines per inch:

Other values (e.g. 80 characters per line) may be
chosen in a similar way.

The top margin (including the header area) is
set to zero:

\t opmargin=Opt

\advance \t opmargin by -\headheight
\advance \topmargin by -\headsep

The left margin, too, is set to zero for all pages:

The empty pagestyle is selected, because page
numbers are normally not printed in on-line infor-
mation files:

However, for long documents, page numbers may
be desirable. This can be accomplished by issuing
an appropriate \pagestyle command in the IP'QX
input file.

Future Work

I am well aware that what I have presented here is a
very first attempt only. Several extensions are cer-
tainly necessary to make it generally applicable. For
instance, I have included the most simple text ele-
ments and environments only, but did not consider
many other issues like footnotes, marginal notes,
rules, tables, figures, title pages, abstracts, bibli-
ographies, and so on. And I have completely omitted
mat hematics and pictures.

Furthermore, my re-definitions may contain
bugs and errors, and perhaps a completely different
approach would be much better.

It is my hope that many m p e r t s will now go

on with this topic and propose and discuss different
approaches - by e-mail, via the TeXhax mailing list,
and in future editions of TUGBOAT. I am looking
forward to many articles titled "Another approach
to producing on-line information files with Urn".

o Hubert Part1
EDV-Zentrum
Technische Universitat Wien
Wiedner HauptstraDe 8-10
A-1040 Wien, Austria
Bitnet: z3000pa@awituv01

TUGboat, Volume 10 (1989), No. 2 245

The doc-Option*

Frank ~i t te lbacht
Gutenberg Universitat Mainz

Abstract

This style option contains the definitions that are necessary to format the documenta-
tion of style files. The style file was developed in Mainz in cooperation with the Royal
Military College of Science.

Contents

Introduction 245
1.1

The
2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8
2.9

2.10

2.11

Using the doc style option 246

User Interface 246
General conventions . . . 246
Describing the usage of
new macros 247
Describing the definition
of new macros 247
Formatting the margins . 247
Using a special escape
character 248
Cross-referencing all macros
used
Producing the actual in-
dex entries
Setting the index entries .
Changing the default val-
ues of style parameters . .
Additional bells and whis-
tles
Acknowledgements

Introduction

3 The
3.1

3.2

3.3
3.4

3.5

3.6
3.7

3.8

3.9

3.10
3.11

3.12

Description of Macros 251
Macros surrounding the

. $definition parts' 251
Macros for the 'documen-

. tation parts' 253
Formatting the margin . . 257
Creating index entries by

. . . scanning 'macrocode' 257
Macros for scanning macro

. names 259
The index exclude list . . 262

Macros for generating in-
. dex entries 264

Redefining the index envi-
. ronment 266

Dealing with the change
. history 268

. Bells and whistles 269
Layout parameters for doc-

. . . . umenting style files 270

Changing the \cat code of
% 271

The rn macros which are described
here allow definitions and documentation
to be held in one and the same file. This
has the advantage that normally very
complicated instructions are made sim-
pler to understand by comments inside
the definition. In addition to this, u p
dates are easier and only one source file
needs to be changed. On the other hand,
because of this, the style files are consid-

* This file has version number v1.5j dated 89/06/07. The documentation was last
revised on 89/06/09.

t Further commentary added at Royal Military College of Science by B. HAMILTON
KELLY; English translation of parts of the original German commentary provided by
Andrew Mills.

erably longer: thus rn takes longer to
load them. If this is a problem, there is
an easy remedy: one needs only to write
a small Pascal program that removes all
lines that begin with a % sign.

The idea of integrated documentation
was born with the development of the
'I)$ program; it was crystallized in Pas-
cal with the WEB system. The ad-
vantages of this method are plain to

TUGboat, Volume 10 (1989), No. 2

macrocode

see (it's easy to make comparisons [2]).
Since this development, systems similar
to WEB have been developed for other
programming languages. But for one
of the most complicated programming
languages (m) the documentation has
however been neglected. The TEX world
seems to be divided between:-

a couple of "wizards", who produce
many lines of completely unreadable
code "off the cuff", and

many users who are amazed that it
works just how they want it to do.
Or rather, who despair that certain
macros refuse to do what is expected
of them.

I do not think that the WEB system is
the reference work; on the contrary, it is a
prototype which suffices for the develop
ment of programs within the TEX world.
It is sufficient, but not totally suRb5ent.l
As a result of WEB, new programming
perspectives have been demonstrated;
unfortunately, though, they haven't been
developed further for other programming
languages.

The method of documentation of
macros which I have introduced here

should also only be taken as a first sketch.
It is designed explicitly to run under
U r n alone. Not because I was of the
opinion that this was the best starting
point, but because from this starting
point it was the quickest to develop.' As
a result of this design decision, I had to
move away from the concept of modular-
ization; this was certainly a step back-
ward.

I would be happy if this article could
spark off discussion over rn documen-
tation. I can only advise anyone who
thinks that they can cope without doc-
umentation to "Stop Time" until he or
she completely understands the AMS-
m source code.

1.1 Using t h e doc style option

Just like any other option, invoke it by
including it amongst the style options
in the optional parameter list for the
\document style command.

N.B. Because this style option makes the
% character ignorable, which may inter-
fere with the reading of other style op-
tions, doc should be the last style option
invoked.

2 T h e User Interface

2.1 General conventions

A file prepared to be used with the 'doc' style option consists of 'documentation
parts' intermixed with 'definition parts'.

Every line of a 'documentation part' starts with a percent sign (%) in column one. It
may contain arbitrary rn or UQX commands except that the character '%' cannot
be used as a comment character. To allow user comments, the - -A character is defined
as a comment character later on.

All other parts of the file are called 'definition parts'. They contain fractions of the
macros described in the 'documentation parts'.

If the file is used to define new macros (e.g. as a style file in the \documentstyle
macro), the 'documentation parts' are bypassed at high speed and the macro defini-
tions are pasted together, even if they are split into several 'definition parts'.

On the other hand, if the documentation of these macros is to be produced, the 'defi-
nition parts' should be typeset verbatim. To achieve this, these parts are surrounded
by the macrocode environment. More exactly: before a 'definition part' there should
be a line containing

I know that this will be seen differently by a few people, but this product should
not be seen as the finished product, at least as far as applications concerning 'l&X are
concerned. The long-standing debate over 'multiple change files' shows this well.

This argument is a bad one; however, it is all too often trotted out.

TUGboat, Volume 10 (1989), No. 2

macrocode*

\DescribeEnv

verbatim

verbatim*

macro

%uuuu\begin~macrocode3
and after this part a line

%uuuu\end~macrocode3
There must be exactly four spaces between the % and \endCmacrocode3 - is
looking for this string and not for the macro while processing a 'definition part'.

Inside a 'definition part' all T ' commands are allowed; even the percent sign could
be used to suppress unwanted spaces etc.

Instead of the macrocode environment one can also use the macrocode* environment
which produces the same results except that spaces are printed as , characters.

2.2 Describing the usage of new macros

When you describe a new macro you may use \DescribeMacro to indicate that at
this point the usage of a specific macro is explained. It takes one argument which
will be printed in the margin and also produces a special index entry. For example,
I used \DescribeMacro(\DescribeMacro~ to make clear that this is the point where
the usage of \DescribeMacro is explained.

An analogous macro \DescribeEnv should be used to indicate that a IPm environ-
ment is explained. It will produce a somewhat different index entry. Below I used
\DescribeEnv(verbat im).

It is often a good idea to include examples of the usage of new macros in the text.
Because of the % sign in the first column of every row, the verbatim environment is
slightly altered to suppress those character^.^ The verbatim* environment is changed
in the same way.

2.3 Describing the definition of new macros

To describe the definition of a new macro we use the macro environment. It has one
argument: the name of the new mac~-o .~ This argument is also used to print the name
in the margin and to produce an index entry. Actually the index entries for usage and
definition are different to allow an easy reference. This environment might be nested.
In this case the labels in the margin are placed under each other.

There also exist four style parameters: \MacrocodeTopsep and \MacroTopsep are
used to control the vertical spacing above and below the macrocode and the macro
environment, \MacroIndent is used to indent the lines of code and \MacroFont holds
the font and a possible size change command for the code lines. If you want to
change their default values in a style file (like l tugbot . s ty) use the \DocstyleParms
command described below.

2.4 Formatting the margins

As mentioned earlier, some macros and the macro environment print their arguments
in the margin. This is actually done by three macros which are user definable.5 They
are named \PrintDescribeMacro, \PrintDescribeEnv and \PrintMacroName (called
by the macro environment).

These macros were written by Rainer Schopf. He also provided a new verbatim
environment which can be used inside of other macros. This will be documented
elsewhere.

This is a change to the style design I described in TUGboat 10#1 (Jan. 89). We
finally decided that it would be better to use the macro name with the backslash as

an argument.
You may place the changed definitions in a separate style file or at the beginning

of the documentation file. For example, if you don't like any names in the margin but
want a fine index you can simply \ l e t these macros equal \@gobble. The doc style
option won't redefine any existing definition of these macros.

TUGboat, Volume 10 (1989), No. 2

2.5 Using a special escape character

If one defines complicated macros it is sometimes necessary to introduce a new es-
cape character because the '\' has got a special \catcode. In this case one can use
\SpecialEscapechar to indicate which character is actually used to play the r61e
of the '\'. A scheme like this is needed because the macrocode environment and its
counterpart macrocode* produce an index entry for every occurrence of a macro name.
They would be very confused if you didn't tell them that you'd changed \catcode s.
The argument to \SpecialEscapechar is a single-letter control sequence, that is,
one has to use \ I for example to denote that ' I ' is used as an escape character.
\SpecialEscapechar only changes the behavior of the next macrocode or macrocode*
environment.

The actual index entries created will all be printed with \ rather than I , but this
probably reflects their usage, if not their definition, and anyway must be preferable
to not having any entry at all. The entries could be formatted appropriately, but the
effort is hardly worth it, and the resulting index might be more confusing (it would
certainly be longer!).

2.6 Cross-referencing all macros used

As already mentioned, every new macro name used within a macrocode or macrocode*
environment will produce an index entry. In this way one can easily find out where a
specific macro is used. Since QX is considerably slower when it has to produce such
a bulk of index entries one can turn off this feature by using \Disablecrossref s in
the driver file. To turn it on again just use \&ablecrossref s . ~

But also finer control is provided. The \DoNotIndex macro takes a list of macro
names separated by commas. Those names won't show up in the index. You might
use several \DoNotIndex commands: their lists will be concatenated. In this article I
used \DoNotIndex for all7 macros which are already defined in U r n .

All three declarations are local to the current group.

2.7 Producing the actual index entries

Several of the aforementioned macros will produce some sort of index entries. These
entries have to be sorted by an external program-the current implementation assumes
that the makeindex program by Chen [4] is used.

But this isn't built in: one has only to redefine some of the following macros to be
able to use any other index program. Since the doc style option has to be the last
option in the \documentstyle macro, all macros which are installation dependent are
defined in such a way that they won't overwrite a previous definition. Therefore it is
safe to put the changed versions in a style file which might be read in before the doc
style option.

To allow the user to change the specific characters recognized by his or her index
program all characters which have special meaning in the makeindex program are
given symbolic name^.^ However, all characters used should be of \catcode other
than 'letter7 (11).

The \actualchar is used to separate the 'key' and the actual index entry. The
\quotechar is used before a special index program character to suppress its special
meaning. The \encapchar separates the indexing information from a letter string

Actually, \Enablecrossref s changes things more drastically; any following
\Disablecrossref s which might be present in the source will be ignored.

In this implementation there is one exception: you can't use \par in the argument
of \DoNotIndex. This will be fixed in a later version.

1 don't know if there exists a program which needs more command characters,
but I hope not.

TUGboat, Volume 10 (1989), No. 2 249

\verbat irnchar

theindex

\IndexMin

which makeindex uses as a command to format the page number associated with
a special entry. It is used in this style to apply the \main and the \usage commands.
Additionally \levelchar is used to separate 'item', 'subitem' and 'subsubitem' entries.

It is a good idea to stick to these symbolic names even if you know which index
program is used. In this way your files will be portable.

To produce a main index entry for a macro the \SpecialMainIndex macrog may be
used. It is called 'special7 because it has to print its argument verbatim. If you want a
normal index entry for a macro name \SpecialIndex might be used.1° To index the
usage of a macro or an environment \SpecialUsageIndex and \SpecialEnvIndex
may be used. Additionally a \SortIndex command is provided. It takes two
arguments-the sort key and the actual index entry.

All these macros are normally used by other macros; you will need them only in an
emergency.

But there is one characteristic worth mentioning: all macro names in the index are
typeset with the \verb* command. Therefore one special character is needed to act as
a delimiter for this command. To allow a change in this respect, again this character
is referenced indirectly, by the macro \verbatimchar. It expands by default to + but
if your code lines contain macros with '+' characters in their names (e.g. when you use
\+) you will end up with an index entry containing \verb+\++ which will be typeset
as '\+' and not as '\+'. In this case you should redefine \verbatimchar globally or
locally to overcome this problem.

We also provide a * macro. This is intended to be used for index entries like

index entries
Special macros for -

Such an entry might be produced with the line:

\index<index entries\levelchar Special macros for *)

2.8 Setting the index entries

Contrary to standard I s \ ' , the index is typeset in three columns by default. This is
controlled by the Is\m counter 'IndexColumns7 and can therefore be changed with a
\setcounter declaration. Additionally one doesn't want to start a new page unnec-
essarily. Therefore the theindex environment is redefined. When the theindex environ-
ment starts it will measure how much space is left on the current page. If this is more
than \IndexMin then the index will start on this page. Otherwise \newpage is called.

Then a short introduction about the meaning of several index entries is typeset (still in
onecolumn mode). Afterwards the actual index entries follow in multi-column mode.
YOU can change this prologue with the help of the \IndexPrologue macro. Actually
the section heading is also produced in this way, so you'd better write something like:

\IndexPrologue<\section*CIndexl The index entries underlined . . . I

When the theindex environment is finished the last page will be reformatted to produce
balanced columns. This improves the layout and allows the next art.icle to start on
the same page. Formatting of the index columns (values for \columnssep etc.) is
controlled by the \IndexParms macro. It assigns the following values:

\parindent = O.Opt \columnsep = 15.0pt

\parskip = O.Opt plus l.Opt \rightskip = 15.0pt

\mathsurround = O.Opt \parf illskip = -15.0pt

Additionally it defines \@idxitern (which will be used when an \item command is

This macro is called by the macro environment.
lo This macro is called within the macrocode environment when encountering a macro

name.

TUGboat, Volume 10 (1989), No. 2

encountered) and selects \small size. If you want to change any of these values you
have to define them all.

The page numbers for main index entries are encapsulated by the \main macro (un-
derlining its argument) and the numbers denoting the description are encapsulated
by the \usage macro (which produces italics). As usual these commands are user
definable.

2.9 Changing t h e default values of style parameters

If you want to overwrite some default settings made by the doc style, you can either
put your declarations in the driver file (that is after doc.sty is read in) or use a
separate style file for doing this work. In the latter case you have to define the macro
\DocstyleParms which should contain all assignments. This indirect approach is
necessary because your style file will be read before the doc.sty, thus some of the
registers are not then allocated. If you don't define this macro its default definition
will be used which just starts the index process by calling \makeindex.

The doc style option currently assigns values to the following registers:

\IndexMin = 80.0pt \MacroTopsep = 7.0pt plus 2.0pt minus 2.0pt
\marginparwidth = 96.0pt \MacroIndent = 10.0pt
\marginparpush = O.Opt \MacrocodeTopsep = 3.0pt plus 1.2pt minus l.Opt
\tolerance = 1000

2.10 Additional bells a n d whistles

We provide macros for logos such as WEB, AMSTEX, BIB^, SLI'QJ and
PLAIN 7&X. Just type \Web, \AmSTeX, \BibTeX, \SliTeX or \PlainTeX, respectively.
Urn and Q X are already defined in la tex . tex.

Another useful macro is \meta which has one argument and produces something like
(d imen parameter).

You can use the \OnlyDescription declaration in the driver file to suppress the
last part of your document. To make this work you have to place the command
\StopEventually at a suitable point in your file. This macro has one argument in
which you put all information you want to see printed if your document ends at this
point (for example a bibliography which is normally printed at the very end). When
the \OnlyDescription declaration is missing the \StopEventually macro saves its
argument in a macro called \Finale which can afterwards be used to get things back
(usually at the very end). Such a scheme makes changes in two places unnecessary.

Thus you can use this feature to produce a local guide for the T@ users which describes
only the usage of macros (most of them won't be interested in your definitions anyway).
For the same reason the \maketitle command is slightly changed to allow multiple
titles in one document. So you can make one driver file reading in several articles at
once.

Last but not least I defined an \IndexListing macro which takes a file name as an
argument and produces a verbatim listing of the file, indexing every command as it
goes along. This might be handy, if you want to learn something about macros without
enough documentation. I used this feature to cross-reference 1atex.tex getting a
verbatim copy with about 15 pages index.ll

To maintain a change history within the file, the \changes command may be placed
amongst the description part of the changed code. It takes three arguments, thus:

\changesC(version)3((date))C(tezt)3

l1 It took quite a long time and the resulting . idx file was longer than the .dvi
file. Actually too long to be handled by the makeindex program directly (on our
MicroVAX), but the final result was worth the trouble.

TUGboat, Volume 10 (1989), No. 2 251

\f ileversion

\f iledate

\docdate

\macrocode

\macro@code

The changes may be used to produce an auxiliary file (U r n ' s \glossary mechanism
is used for this) which may be printed after suitable formatting. The \changes macro
encloses the (date) in parentheses and appends the (tex t) to form the printed entry
in such a change history; because the makeindex program limits such fields to 64
characters, care should be taken not to exceed this limit when describing the change.

2.11 Acknowledgements

I would like to thank all folks at Mainz and at the Royal Military College of Science
for their help in this project. Especially Brian and Rainer who pushed everything
with their suggestions, bug fixes, etc.

3 The Description of Macros

As always, we begin by identifying the latest version of this file on the VDU and in
the transcript file. But only if the macros are unkown to the system.

\@ifundefined{macro@cnt){){\endinput)

\typeout{Style-Option: 'doc \f ileversion\space <\f iledate> (FMI))

\typeout{English Documentation \@spaces <\docdate> (RMCS and FMI))

This time we also add a warning for the user.

\typeout{\@spaces Warning: This style option should be used as last option)

\typeout{\@spaces Warning: in the \protect\documentstyle\space command !)

As you can see I used macros like \f i l evers ion to denote the version number and the
date. They are defined at the very beginning of the style file (without a surrounding
macrocode environment), so I don't have to search for this place here when I change
the version number. You can see their actual outcome in a footnote to the title.

The first thing that we do next is to get ourselves a new comment sign. Because
all sensible signs are already occupied, we will choose one that can only be entered
indirectly:

3.1 Macros surrounding the 'definition parts'

Parts of the macro definition will be surrounded by the environment macrocode. Put
more precisely, they will be enclosed by a macro whose argument (the text to be set
'verbatim') is terminated by the string %uuuu\end{macrocode). Carefully note the
number of spaces. \macrocode is defined completely analogously to \verbatim, but
because a few small changes were carried out, almost all internal macros have got new
names. We start by calling the macro \macro@code, the macro which bears the brunt
of most of the work, such as \catcode reassignments, etc.

Then we take care that all spaces have the same width, and that they are not discarded.

\f renchspacing \@vobeyspaces

Before closing, we need to call \xmacro@code. It is this macro that expects an ar-
gument which is terminated by the above string. This way it is possible to keep the
\catcode changes local.

We will now begin with the macro that does the actual work:

\def\macro@code{%

In theory it should consist of a trivlist environment, but the empty space before and
after the environment should not be too large.

TUGboat, Volume 10 (1989), No. 2

The next parameter we set is \(Obeginparpenalty, in order to prevent a page break
before such an environment.

We then start a \ t r i v l i s t , set \parskip back to zero and start an empty \item.

\triplist \parskip \z@ \item[]%

Additionally, everything should be set in typewriter font. Some people might prefer
it somewhat differently; because of this the font choice is macro-driven.12

Because \item sets various parameters, we have found it necessary to alter some of
these retrospectively.

\lef tskip\Qtotallef tmargin \advance\lef tskip\MacroIndent

\rightskip\z@ \parindent\z@ \parfillskip\@flushglue

The next line consists of the IPm definition of \par used in \verbatim and should
result in blank lines being shown as blank lines.

What use is this definition of \par? We use the macro \obeylines of [3] which
changes ^^M to \par so that each line can control its own indentation. Next we must
also ensure that all special signs are normalized; that is, they must be given \catcode
12.

We also initialize the cross-referencing feature by calling \ ini tQcrossref . This will
start the scanning mechanism when encountering an escape character.

\ifblank@line \ifblank(Oline is the switch used in the definition above. In the original verbatim
\blank@linetrue environment the \ i f (Otempswa switch is used. This is dangerous because its value may
\blank@linef alse change while processing lines in the macrocode environment.

\endmacrocode Because we have begun a trivlist environment in the macrocode environment, we must
also end it. This is easily done using the following line of code:

Additionally \closeQcrossref is used to do anything needed to end the cross-
referencing mechanism.

\MacrocodeTopsep In the code above, we have used two registers. Therefore we have to allocate them.
\MacroIndent The default values might be overwritten with the help of the \DocstyleParms macro.

\newskip\MacrocodeTopsep \MacrocodeTopsep = 3pt plus 1.2pt minus Ipt
\newdimen\MacroIndent \MacroIndent = lOpt

\MacroFont Here is the default definition for this macro:

l2 The font change has to be placed after the \item. Otherwise a change to
\baselineskip will affect the paragraph above.

TUGboat, Volume 10 (1989), No. 2 253

\macrocode* Just as with the verbatim environment, there is also a 'star' variant of the macrocode
\endmacrocode* environment in which a space is shown by the symbol ,. Until this moment, I have not

yet used it (it will be used in the description of the definition of \xmacroQcode below)
but it's exactly on this one occasion here that you can't use it (cf. Miinchhausen's
Marsh problem)13 directly. Because of this, on this one occasion we'll cheat around the
problem with an additional comment character. But now back to \macrocode*. We
start with the macro \macroQcode which prepares everything and then call the macro
\sxmacroQcode whose argument is terminated by the string %,,,,\endCmacroc ode*).

As we know, \sxmacroQcode and then \endCmacrocode*) (the macro, not the string),
will be executed, so that for a happy ending we still need to define the macro
\endmacrocode*.

\xmacro@code AS already mentioned, the macro \xmacroQcode expects an argument delimited by
the string %,,,,\endImacrocode). At the moment that this macro is called, the
\catcode of m ' s special characters are 12 ('other') or 13 ('active'). Because of this
we need to utilize a different escape character during the definition. This happens
locally.

Additionally, we need to ensure that the symbols in the above string contain the
\catcode s which are available within the macrocode environment.

Next follows the actual definition of \macroQcode; notice the use of the new
escape character. We manage to get the argument surrounded by the string
\endCmacrocode), but at the end however, in spite of the actual characters used
during the definition of this macro, \end with the argument Imacrocode) will be
executed, to ensure a balanced environment.

I gdef 1 xmacro@code#l%uuuu\end{macrocode~ [#l I end[macrocode] 1

\e~anacro@code The definition of \swacroQcode is completely analogous, only here a slightly different
terminating string will be used. Note that the space is not active in this environment.

Because the \catcode changes have been made local by commencing a new group,
there now follows the matching \endgroup in a rather unusual style of writing.

l endgroup

3.2 Macros for the 'documentation parts'

\DescribeMacro The \DescribeMacro and \Des cribeEnv macros should print their arguments in the
\DescribeEnv margin and produce an index entry. We simply use \marginpar to get the desired

result. This is however not the best solution because the labels might be slightly
misplaced. One also might get a lot of 'marginpar moved' messages which are hard-
wired into the IPQX output routine.14 First we change to horizontal mode if necessary.

l3 Karl Fkiedrich Hieronymus Frhr. v. Miinchhausen (*1720, t1797). Several books
were written about fantastic adventures supposedly told by him (see [5] or 111). In one
story he escaped from the marsh by pulling himself out by his hair.

141t might be better to change these macros into environments like the macro
environment.

TUGboat, Volume 10 (1989), No. 2

The IPW macros \@bsphack and \Qesphack are used to make those commands
invisible (i.e. to normalize the surrounding space and to make the \spacefactor
transparent).

Note the use of \raggedleft to place the output flushed right. Finally we call a macro
which produces the actual index entry and finish with \Qesphack to leave no trace.15

The \Des cribeEnv macro is completely analogous.

To put the labels in the left margin we have to use the \reversemarginpar declaration.
(This means that the doc. s t y can't be used with all style options.) We also make the
\marginparpush zero and \marginparwidth suitably wide.

\bslash From time to time, it is necessary to print a \ without being able to use the \verb

command because the \catcode s of the symbols are already firmly established. In this
instance we can use the command \bslash presupposing, of course, that the actual
font in use at this point contains a 'backslash' as a symbol. Note that this definition
of \bslash is expandable; it inserts a \lz. This means that you have to \protect it
if it is used in 'moving arguments'.

We start a new group in which to hide the alteration of \catcodes, and make I
introduce commands, whilst \ becomes an 'other' character.

{\catcode'\ I =\z@ \catcode'\\=l2

Now we are able to define \bslash (globally) to generate a backslash of \catcode

'other'. We then close this group, restoring original \catcode s.

l gdef I bslash{\))

\verbatim The verbatim environment holds no secrets; it consists of the normal IPm envi-
ronment. We also set the \@beginparpenalty and change to the font given by
\MacroFont .

\@verbatim Additionally we redefine the \@verbatim macro so that it suppresses % characters at
the beginning of the line. The f i s t lines are copied literally from l a t e x . tex .

\def\@verbatim{\trivlist \item[]\if(Ominipage\else\vskip\parskip\fi

\lef tskip\@totallef tmargin\rightskip\z@

\parindent\z@\parfillskip\@flushglue\parskip\z@

\@tempsvaf alse

\@verbatim sets ^*M, the end of line character, to be equal to \par. This control
sequence is redefined here; \@@par is the paragraph primitive of W.

\def \par{\if @tempsva\hbox{)\f i\@tempswatrue\@@par

l5 The whole mechanism won't work because of the \leavemode in front. As a
temporary change \ignorespaces is added.

TUGboat, Volume 10 (1989), No. 2

We add to the definition of \par a control sequence, \check@percent, whose task it
is to check for a percent character.

\check@percent)%

The rest is again copied literally from la tex . tex.

\obeylines \tt \catcodef\'\active \@noligs \let\do\(Omakeother \dospecials)

Finally we define \check(Opercent. Since this must compare a character with a percent
sign we must first (locally) change percent's \catcode so that it is seen by m. The
definition itself is nearly trivial: grab the following character, check if it is a %, and
insert it again if not. At the end of the verbatim environment this macro will peek at
the next input line. In the case the argument to \checkQpercent might be a \par or
a macro with arguments. Therefore we make the definition \long (\par allowed) and
use the normal \next mechanism to reinsert the argument after the \f i if necessary.

{\catcodeC\%=12

\long\gdef\check@percent#l{\ifx #i%\let\next\@empty \else

\let\next#l\fi \next))

The macro environment is implemented as a trivlist environment, whereby in order
that the macro names can be placed under one another in the margin (corresponding
to the macro's nesting depth), the macro \makelabel must be altered. In order to
store the nesting depth, we use a counter.

The environment takes an argument-the macro name to be described. Since this
name may contain special 'letters' we have to re-\cat code them before scanning the
argument. This is done by the \MakeprivateLettem macro.

\def\macro{\begingroup \MakePrivateLetters \macro@)

After scanning the argument we close the group to get the normal \catcodes back.
Then we assign a special value to \topsep and start a trivlist environment.

\long\def \macro@#ii\endgroup \topsep\MacroTopsep \trivlist

We also save the name being described in \saved@macroname for use in conjunction
with the \changes macro.

Now there follows a variation of \makelabel which is used should the environment
not be nested, or should it lie between two successive \beginCmacro) instructions or
explanatory text. One can recognize this with the switch \ i f (Oinlabel which will be
t rue in the case of successive \item commands.

\def \makelabel##1{\1lap(##l)}%

If (Oinlabel is t rue and if \macroQcnt > 0 then the above definition needs to be
changed, because in this case would otherwise put the labels all on the same
line and this would lead to them being overprinted on top of each other. Because of
this \makelabel needs to be redefined in this case.

\if @inlabel

If \macroQcnt has the value 1, then we redefine \makelabel so that the label will be
positioned in the second line of the margin. As a result of this, two macro names appear
correctly, one under the other. It's important whilst doing this that the generated label
box is not allowed to have more depth than a normal line since otherwise the distance
between the first two text lines of TJ$ will be incorrectly calculated. The definition
should then look like:

TUGboat, Volume 10 (1989), No. 2

Completely analogous to this is the case where labels need to be placed one under the
other. The lines above are only an example typeset with the verbatim environment.
To produce the real definition we save the value of \macro@cnt in \count@ and empty
the temp macro \Qt empa for later use.

\let\@tempa\@empty \countQ\macro@cnt

In the following loop we append for every already typeset label an \hbox{\strut) to
the definition of \Qt empa.

\loop \if num\count@>\z@

\edef\@tempa~\@tempa\hbox~\strut}}\advance\cot@\m@ne \repeat

Now be put the definition of \makelabel together.

\edef\rnakelabel##li\llap(\vtop to\baselineskip

{\@tempa\hbox{##l)\vss)))%

Next we increment the value of the nesting depth counter. This value inside the macro
environment is always at least one after this point, but its toplevel definition is zero.
Provided this environment has been used correctly, \macroQcnt = 0 should not occur
when Qinlabel = true. It is however possible if this environment is used within other
list environments (but this would have little point).

\advance \macro@cnt \Qne

If Qinlabel is false we reset \macroQcnt assuming that there is enough room to print
the macro name without shifting.

\else \macro@cnt\@ne \f i

Now the label will be produced using \item. The following line is only a hack saving
the day until a better solution is implemented. We have to face two problems: the
argument might be a \par which is forbidden in the argument of other macros if they
are not defined as \long, or it is something like \ i f f a l s e or \else, i.e. something
which will be misinterpreted when 7l&X is skipping conditional text. In both cases
\item will bomb, so we protect the argument by using \ s t r ing .

\edef \@tempa~\noexpand\item[\noexpand\PrintMacroNam~\string#1}])\atempa

At this point we also produce an index entry. Because it is not known which index
sorting program will be used, we do not use the command \index, but rather a com-
mand \SpecialMainIndex. This may be redefined by the user in order to generate an
index entry which will be understood by the index program in use (note the definition
of \SpecialMainIndex for our installation).

\SpecialMainIndexi#l)\nobreak

The \nobreak is needed to prevent a page break after the \wri te produced by the
\SpecialMainIndex macro. We exclude the new macro in the cross-referencing fea-
ture, to prevent spurious non-main entry references. Again we have to watch out
for problematic arguments. In case of \par we wait for a new implementation; the
conditionals are uncritical.

\def\@tempa{#l}%

\ifx\@tempa\@defpar \else \DoNotIndex{#l)\fi

Because the space symbol should be ignored between the \beginCrnacro){ . . . I and
the following text we must take care of this with \ignorespaces.

\ignorespaces}

\endmacro At this command nothing special needs to happen. However, the trivlist environment
must still be ended. Because of the \endgroup which is used by \end, the changes to
\macroQcnt stay local to the environment.

TUGboat, Volume 10 (1989), No. 2

\MacroTopsep Here is the default value for the \MacroTopsep parameter used above.

\newskip\MacroTopsep \MacroTopsep = 7pt plus 2pt minus 2pt

3.3 Formatting the margin

The following three macros should be user definable. Therefore we define those macros
only if they have not already been defined.

\PrintMacroName The formatting of the macro name in the left margin is done by these macros. We
\PrintDescribeMacro first set a \strut to get the height and depth of the normal lines. Then we change to

\PrintDescribeEnv the \MacroFont using \string to \catcode the argument to other (assuming that it
is a macro name). Finally we print a space. The font change remains local since this
macro will be called inside an \hbox.

We use the same formatting conventions when describing a macro.

To format the name of a new environment there is no need to use \string.

3.4 Creating index entries by scanning 'macrocode'

When this doc option is used, it automatically invokes \makeindex to cause an . idx
file to be generated. The following macros ensure that index entries are created for
each occurrence of a m - l i k e command (something starting with '\'). With the
default definitions of \SpecialMainIndex, etc., the index file generated is intended to
be processed by Chen's makeindex program [4].

Of course, in this style file itself we've sometimes had to make I take the r61e of T)$'s
escape character to introduce command names at places where \ has to belong to
some other category. Therefore, we may also need to recognize I as the introducer
for a command when setting the text inside the macrocode environment. Other users
may have the need to make similar reassignments for their macros.

\SpecialEscapechar The macro \SpecialEscapechar is used to denote a special escape character for the
\active@escape@char next macrocode environment. It has one argument-the new escape character given as
\special@escape@char a 'single-letter' control sequence. Its main purpose is defining \specialOescapeQchar

to produce the chosen escape character \catcode d to 12 and \activeQescapeQchar
to produce the same character but with \catcode 13.

The macro \specialQescapeQchar is used to print the escape character while
\activeQescapeQchar is needed in the definition of \initQcrossref to start the
scanning mechanism.

In the definition of \SpecialEscapechar we need an arbitrary character with
\catcode 13. We use '-' and ensure that it is active. The \begingroup is used
to make a possible change local to the expansion of \SpecialEscapechar.

\def \SpecialEscapechar#li%

\begingroup \cat code '\'\active

Now we are ready for the definition of \activeQescapeQchar. It's a little tricky: we
first define locally the uppercase code of '-' to be the new escape character.

\uccode'\"#l%

TUGboat, Volume 10 (1989), No. 2

Around the definition of \activeQescapeQchar we place an \uppercase command.
Recall that the expansion of \uppercase changes characters according to their
\uccode, but leaves their \catcode s untouched (cf. W b o o k page 41).

The definition of \specialQescapeOchar is easier; we use \ s t r i n g to \catcode the
argument of \SpecialEscapechar to 12 and suppress the preceding \escapechar.

Now we close the group and end the definition: the value of \escapechar as well as
the \uccode and \catcode of '-' will be restored.

\init@crossref The replacement text of \ in i t@crossref should fulfil the following tasks:

1) \catcode all characters used in macro names to 11 (i.e. 'letter').

2) \catcode the '\' character to 13 (i.e. 'active').

3a) \ l e t the '\' equal \scan@macro (i.e. start the macro scanning mechanism) if there
is no special escape character (i.e. the \specialQescapeQchar is '\').

3b) Otherwise \ l e t it equal \bslash, i.e, produce a printable \.

4) Make the (special escape character) active.

5) \ l e t the active version of the special escape character (i.e. the expansion of
\activeQescapeQchar) equal \scan@macro.

The reader might ask why we bother to \catcode the '\' first to 12 (at the end of
\macro@code) then re-\catcode it to 13 in order to produce a \12 in case 3b) above.
This is done because we have to ensure that '\' has \catcode 13 within the macrocode
environment. Otherwise the delimiter for the argument of \xmacroQcode would not
be found (parameter matching depends on \catcode s).

Therefore we first re-\cat code some characters.

We carry out tasks 2) and 3b) first.

Igdeflinit0crossref~catcode'l\lactive Ilet\lbslash

Because of the popularity of the '0' character as a 'letter' in macros, we normally have
to change its \ca t code here, and thus fulfil task 1). But the macro designer might
use other characters as private letters as well, so we use a macro to do the \catcode
switching.

Now we \catcode the special escape character to 13 and \ l e t it equal \scanQmacro,
i.e. fulfil tasks 4) and 5). Note the use of \expandafter to insert the chosen escape
character saved in \specialQescapeOchar and \active0escape@char.

~catcode~expandafter'~special0escapeQchar~active

I expandaf ter I let I activeBescapeQchar I scadmacro)
l endgroup

If there is no special escape character, i.e. if \SpecialEscapechar is \\, the second
last line will overwrite the previous definition of \i3. In this way all tasks are fulfilled.

For happy documenting we give default values to \specialQescapeQchar and
\activeQescapeQchar with the following line:

TUGboat, Volume 10 (1989), No. 2 259

\ifscanQallowed

\scanQallowedtrue

\scanQallowedf alse

Here is the default definition of this command, which makes just the Q into a letter.
The user may change it if he/she needs more or other characters masquerading as
letters.

At the end of a cross-referencing part we prepare ourselves for the next one by setting
the escape character to '\'.

\def\close@crossref{\SpecialEscapechar\\}

3.5 Macros for scanning macro names

The \initOcrossref will have made \active our \specialQescapeQchar, so that
each \activeQescapeQchar will invoke \scan@macro when within the macrocode en-
vironment. By this means, we can automatically add index entries for every TQX-like
command which is met whilst setting (in verbatim) the contents of macrocode envi-
ronments.

First we output the character which triggered this macro. Its version \catcode d to
12 is saved in \specialQescapeQchar.

If the macrocode environment contains, for example, the command \\, the second
\ should not start the scanning mechanism. Therefore we use a switch to decide if
scanning of macro names is allowed.

The macro assembles the letters forming a TEX command in \macroQnamepart so this
is initially cleared; we then set \next to the first character following the \ and call
\macroQswitch to determine whether that character is a letter or not.

As you recognize, we actually did something else, because we have to defer the
\futurelet call until after the final \f i. If, on the other hand, the scanning is
disabled we simply \let \next equal 'empty'.

Now we invoke \next to carry out what's needed.

\if scanOallowed is the switch used above to determine if the \activeQescapeQchar
should start the macro scanning mechanism.

At this point we might define two macros which allow the user to disable or enable
the cross-referencing mechanism. Processing of files will be faster if only main index
entries are generated (i.e., if \Disablecrossrefs is in force).

The macro \EnableCrossref s will also disable any \Disablecrossref s command
encountered afterwards.

260 TUGboat, Volume 10 (1989), No. 2

\macro@switch Now that we have the character which follows the escape character (in \next), we can
determine whether it's a 'letter' (which category probably includes 9).

If it is, we let \next invoke a macro which assembles the full command name.

Otherwise, we have a 'single-character' command name. For all such single-character
names, we use \shortQmacro to process them into suitable index entries.

Now that we know what macro to use to process the macro name, we invoke it . .
\next)

\ehort@macro This macro will be invoked (with a single character as parameter) when a single-
character macro name has been spotted whilst scanning within the macrocode envi-
ronment.

First we take a look at the \index9excludelist to see whether this macro name
should produce an index entry. This is done by the \ifnotQexlcuded macro which
assumes that the macro name is saved in \macro@namepart. Since the argument might
be an active character, \ s t r i n g is used to normalize it.

If necessary the index entry is produced by the macro \produce@index. Depending
on the actual character seen, this macro has to do different things, so we pass the
character as an argument.

Then we disable the cross-referencing mechanism with \scanQallowedf a l s e and print
the actual character. The index entry was generated first to ensure that no page break
intervenes (recall that a ^^M will start a new line).

\scan@allowedfalse#l~

After typesetting the character we can safely enable the cross-referencing feature again.
Note that this macro won't be called (since \macroQswitch won't be called) if cross-
referencing is globally disabled.

\produce@index This macro is supposed to generate a suitable \SortIndex command for a given single-
character control sequence. We test first for the cases which involve active characters
(i.e. the backslash, the special escape character (if any), the space and the -7). Using
the \ i f test (testing for character codes), we have to ensure that the argument isn't
expanded.

If the character is the special escape character (or the '\' in case there was none) the
\ i t Q i s @ a macro is used to produce the actual \SortIndex call.

Next comes the test for a '\ ' which must be the \13 expanding to \bslash.

Another possibility is u13. Recall that \space produces a "10.

\ i f \noexpand#l\space \it@is@a\space \else

TUGboat, Volume 10 (1989), No. 2 261

The l a d 6 possibility of an active character is - 3 . In this case we don't test for
character codes, since it is easier to look if the character is equal to \par. (We are
inside the macrocode environment.)

\if x#l\par

If we end up here we have just scanned a \ ^ ^ M or something similar. Since this will
be treated like \, by we produce a corresponding index entry.

\it@is@a\space \else

The next three branches are needed because of bugs in our makeindex program. You
can't produce unbalanced index entries17 and you have to double a percent character.
To get around these restrictions we use special macros to produce the \index calls.''

\if \noexpand#l\bgroup \Lef tBraceIndex \else

\if \noexpand#l\egroup \RightBraceIndex \else

\if\noexpand#l\percentchar \PercentIndex \else

All remaining characters are used directly to produce their index entries. This is
possible even for the characters which have special meanings in the index program,
provided we quote the characters. (This is correctly done in \it@isOa.)

\it@is@a{\string#l)%

We now need a whole pile of \f i s to match up with the \ i f s.

\fi \fi \fi \fi \fi \fi \fi)

We now come to the macro which assembles command names which consist of one
or more 'letters' (which might well include (Q symbols, or anything else which has a
\catcode of 11).

To do this we add the letter to the existing definition of \macro@namepart (which you
will recall was originally set to \@empty).

Then we grab hold of the next single character and let \more@macroname determine
whether it belongs to the letter string forming the command name or is a non-letter.

This causes another call of \macroQname to add in the next character, if it is indeed
a letter.

Otherwise, it finishes off the index entry by invoking \macro@f in ish .

Here's where we invoke whatever macro was \ l e t equal to \next.

\next 1

l6 Well, it isn't the last active character after all. I added \@noligs some days ago
and now ' too is active. So we have to make sure that such characters don't get
expanded in the index.

''This is possible for 7QX if you use C12 or Ilz, but makeindex will complain.
l8 Brian HAMILTON KELLY has written fixes for all three bugs. When they've found

their way through all installations, the lines above will be removed. See page 265 if
you already have them.

262 TUGboat, Volume 10 (1989)' No. 2

\macro@f inish When we've assembled the full letter-string which forms the command name, we set
the characters forming the entire command name, and generate an appropriate \index
command (provided the command name is not on the list of exclusions). The '\' is
already typeset; therefore we only have to output all letters saved in \macroQnamepart.

\def\macro@finish{%
\macro@namepart

Then we call \ifnotQexcluded to decide whether we have to produce an index en-
try. The construction with \Qtempa is needed because we want the expansion of
\macroQnamepart in the \index command.lg

3.6 The index exclude list

The internal form of the index exclude list is

\Qelt (macro name) \Belt (macro name) \Qelt (macro name) . . .

where (macro name) is a macro name like \Qtempa. To test if a given macro
name is on the list we only have to assign \@elt a proper meaning and then call
\indexQexcludelist. This is faster than looping through the list and looking for the
last element.

\DoNotIndex This macro is used to suppress macro names in the index. It starts off with a new
group because we have to change the \catcodes of all characters which belong to
'letters' while macros are defined.

Then we call the macro which actually reads the argument given by the user.

\do@not@index We make the \doQnotQindex macro \long since the user might want to exclude the
\par macro.20

\long\def \do@not@index#l{%

Now we have to face the problem that \indexQexcludelist should be changed only lo-
cally (and we are already in a new group). Therefore we pass its contents to \Qgtempa.

\global\let\@gtempa\index@excludelist

Then we define \Qelt to allow expanding \@gtempa without damaging its contents.

\def\@elt{\noexpand\@elt\noexpand}%

The argument to \doQnotQindex is a set of macros separated by commas, so we use
\Qf or to extract individual entries. Since \@for expands its argument, we hide it in
another macro.21

Now we can safely add new entries to \Qgtempa (i.e. \indexQexcludelist).

{\xdef \@gtempa{\@gtempa \expandafter \@elt \@tempb}}%

l9 The \index command will expand its argument in the \output routine. At this
time \macroQnamepart might have a new value.

20 Actually this doesn't work either because the argument is passed to \@forloop
which isn't a \long macro. This will be fixed in a later version.

Instead of using \Qf or one can make the comma active (expanding into \Qelt)
and then simply putting \@gtempa and , #I together. This will probably change.

TUGboat, Volume 10 (1989), No. 2 263

After this we close the group and assign the retained value of \Qgtempa to
\indexQexcludelist.

\indexQexcludelist To get things going we have to initialize \indexQexcludelist and fix a bug in the
\@for V'l$$ \Qf or macro.

\def\index@excludelist()

In the original \Of or macro, \Of ortmp gets its value using \edef. This means that
it bombs if the contents of the second argument (i.e. the list A,B,C,. . .) contains
undefined macros. Since this is possible if we use the doc .sty file to document a
macro package which isn't loaded, we change the definition a little bit. Now it is
tested only if the second argument expands to 'empty' when it is expanded once.22

\def \@f or#l : =#2\do#3C\expandaf ter\def \expandaf ter\@f ortmp\expandafterC#2)%

\if x\@f ortmp\@empty \else

\expandaf ter\@f orloop#2, \@nil, \@nil, \@@#l{#3)\f i}

\ifnotQexcluded Now we take a look at the \indexQexcludelist to see whether a macro name

saved in \macroQnamepart should produce an index entry. This macro is a pseudo
\if; it should expand to \iftrue or \iff alse depending on the contents of
\indexQexcludelist. We use \if Otempswa for this purpose and initialize it with
true.

Then we \let the macro \Qelt equal to a test macro (which is supposed to change the
switch if the \macroQnamepart is on the list) and call \indexQexcludelist. This is all
done in an \hbox so any garbage produced by calling \indexQincludelist will vanish.
The test macro uses \aftergroup to avoid global changes while communicating with
the outside world.

Finally we call \if Otempswa.

Note however that since we have called \ifQtempswa inside this macro, such a con-
struction can't be used inside a conditional at the same expansion level [3, ~2111.

\exclude@test Strictly speaking, \macroQnamepart contains only the name without the backslash.
So we use \expandafter and \csname to produce the actual macro name (arguments
to \if x are not expanded).

\def\exclude@test#l{%

\expandafter \ifx \csname\macroQnamepart\endcsname #I%

The \ifx test will be true if the argument and the constructed macro are the same. In
this case we have to change the switch. We also change the definition of \Qelt because
our goal is reached and we can gobble up the tail of the list. As mentioned above,
switch changing is deferred until after the current group by using \aftergroup.

\aftergroup\@tempswafalse \let\@elt\@gobble \fi}

22 This is exactly the way in which the argument is used in the second part of the
definition (in the actual loop). Therefore I am inclined to call it a bug and not a
feature.

TUGboat, Volume 10 (1989), No. 2

3.7 Macros for generating index entries

Here we provide default definitions for the macros invoked to create index entries; these
are either invoked explicitly, or automatically by \scan@macro. As already mentioned,
the definitions given here presuppose that the . idx file will be processed by Chen's
ma keindex program - they may be redefined for use with the user's favourite such
program.

To assist the reader in locating items in the index, all such entries are sorted alpha-
betically ignoring the initial '\'; this is achieved by issuing an \index command which
contains the 'actual' operator for ma keindex. The default value for the latter operator
is 'Q', but the latter character is so popular in style files that it is necessary to
substitute another character. This is indicated to makeindex by means of an 'index
style file'23; the character selected for this function is =, and therefore this character
too must be specially treated when it is met in a command.

First come the definitions of \actualchar, \quotechar and \levelchar. Note, that
our defaults are not the ones used by the makeindex program without a style file.

\@ifundefined{actualchar){\def\actualchar{=}}{}

\@ifundef ined{quotechar){\def \quotechar{ !I){)
\@ifundefined{levelchar){\def\levelchar{>)){)

The makeindex default for the \encapchar isn't changed.

\@ifundef ined{encapchar){\def \encapchar(I)){)

We also need a special character to be used as a delimiter for the \verb* command
used in the definitions below.

\@ifundefined{verbatimchar)I\def\verbatimchar~+)}{)

The \SpecialIndex command creates index entries for macros. If the argument is
\xyz, the command produces \indexentry(xyz=\verb! *+\xyz+)<n) given the above
defined defaults for \actualchar, \quotechar and \verbatimchar. We first remove
the initial '\' to get a better index.

\def \ S p e c i a l I n d e x # 1 { \ @ b s p h a c k \ i n d e x C \ e x p ~

Then follows the actual entry. A \quotechar is placed before the * to allow its use
as a special makeindex character. Again \Qbsphack and \Qesphack are used to make
the macros invisible.

The \SpecialMainIndex macro is used to cross-reference the names introduced by
the macro environment. The action is as for \SpecialIndex, except that makeindex
is instructed to 'encap'sulate the entry with the string lmain to cause it to generate
a call of the \main macro.

The \SpecialUsageIndex is literally the same-only we use usage instead of main.

23 A file suitable to this task is provided amongst the supporting files for this style
file in gind . ist.

TUGboat, Volume 10 (1989)' No. 2 265

made through a style file, predefining internal quantities.

\PercentIndex

\percent char

Indexing environments is done a little bit differently; we produce two index entries
with the \SpecialEnvIndex macro:

\def\SpecialEnvIndex#l{\@bsphack

First we sort the environment under its own name stating in the actual entry that this
is an environment.

\index{#l\actualchd\tt #1) (environment)\encapchar usage)%

The second entry is sorted as a subitem under the key 'environments:'.

\index<environments : \levelchar{\tt #l)\encapchar usage)\@esphack)

Because both entries corresponds to 'descriptions' of the environment, we encapsulate
the page numbers with the \usage macro.

This macro is used to generate the index entries for any single-character command
that \scan@macro encounters. The first parameter specifies the lexical order for the
character, whilst the second gives the actual characters to be printed in the entry. It
can also be used directly to generate index entries which differ in sort key and actual
entry.

\def\SortIndex#l#2{\index{#l\actualchar#2))

This macro is supposed to produce a correct \SortIndex entry for a given charac-
ter. Since this character might be recognised as a 'command' character by the index
program used, all characters are quoted with the \quotechar.

These two macros fix the problems with makeindex. Note the 'hack' with \ i f fa lse>\f i

to satisfy both 'QX and the makeindex program. When this is written to the . idx file
'l&X will see both braces (so we get a balanced text). makeindex will also see balanced
braces but when the actual index entry is again processed by 'l)jX the brace in between
\ i f f a l se \f i will vanish.

\@ifundefined{LeftBraceIndex)C\def\LeftBraceIndex{~

\index~\bgroup\actualchar\string\verb\quotechar*\verbatimchar

\quotechar\bslash{\verbatimchar\string\iffalse)\string\fi)))~~

Here is one solution for the percent bug in makeindex. The macro \percentchar

denotes a %12.

\@ifundefined{PercentIndex){\def\PercentIndexC%

\index{\quotechar\percentchar\actualchar\string\verb

\quotechar*\verbatimchar\quotechar\bslash

\percentchar\percentchar\verbatimchar))){)

{\catcode'\%=12 \gdef \percentchar{%))

If you've got a newer makeindex program which handles the percents correctly you
have to uncornment the next three lines.24 Otherwise you will get \%% entries in your
index.

% \def\PercentIndex{\it@is@a\percentchar)

% \typeout{The doc style option assumes that a \percentchar\space

% will be processed as a \percentchar\space by the index program!)

24 This is the only change which is allowed in this file! All other changes should be

TUGboat, Volume 10 (1989), No. 2

3.8 Redefining the index environment

\endthe index

The index is set in three columns, and will start on the same page as, and underneath,
the last part of the text of the documented style file, if possible. The last page will
be reformatted with balanced columns. We make use of the multicols environment
which is described elsewhere (in an article scheduled to appear in the next issue of
TUGboat).

\input{multicol. sty)

When the index is started we compute the remaining space on the current page; if it is
greater than \IndexMin, the first part of the index will then be placed in the available
space. The number of columns set is controlled by the counter \cQIndexColumns
which can be changed with a \setcounter declaration.

Now we start the multi-column mechanism. We use the \cQIndexColumns WTEX
counter declared above to denote the number of columns and insert the 'index prologue'
text (which might contain a \section call, etc.). See the default definition for an
example.

Then we make a few last minute assignments to read the individual index \items and
finish off by ignoring any initial space.

At the end of the index, we have only to end the multicols environment.

The \Indexprologue macro is used to place a short message into the document above
the index. It is implemented by redefining \indexOprologue, a macro which holds
the default text. We'd better make it a \long macro to allow \par commands in its
argument.

\long\def \IndexPrologue#l{\@bsphack\def \index@prologue{#l)\(Oesphack)

Now we test whether the default is already defined by another style file. If not we
define it.

\@ifundefined{index@prologue)

{\def \index@prologue{\section*{Index)~

\markboth~Index){Index)%

The italic numbers denote the pages where the

corresponding entry is described,

numbers underlined point to the definition,

all others indicate the places where it is used.

3 H 3

These are some last-minute assignments for formatting the index entries. They are
defined in a separate macro so that a user can substitute different definitions. We start
by defining the various parameters controlling leading and the separation between the
two columns. The entire index is set in \small size.

\@ifundefined{IndexParms)

{\def\IndexParms{%

\parindent \z@

\columnsep 15pt

\parskip Opt plus lpt

TUGboat, Volume 10 (1989), No. 2

\@idxitern

\subitem

\subsubitem

\indexspace

\ef ill

\pf ill

\dotf il

\dotf ill

\ *

\main

\usage

\printindex

Index items are formatted with hanging indentation for any items which may require
more than one line.

Any sub-item in the index is formatted with a 15pt indentation under its main heading.

\def\subitem{\@idxitem\hspace*~5pt))%

Whilst subsubitems go in a further 10pt.

The makeindex program generates an \indexspace before each new alphabetic section
commences. After this final definition we end the \@ifundef ined and the definition
of \IndexParms.

\def\indexspace{\par\vspaceClOpt plus 2pt minus 3pt))%

I}C)

This definition of \ e f i l l is intended to be used after index items which have no
following text (for example, "see" entries). It just ensures that the current line is
filled, preventing "Underf u l l \hboxW messages.

\def\efill{\hfill\nopagebreak)%

The following definitions provide the \pf ill command; if this is specified in the index
style file to makeindex as the delimiter to appear after index items, then the intervening
space before the referenced page numbers will be filled with dots, with a little white
space interpolated at each end of the dots. If the line is broken the dots will show up
on both lines.

\def\dotfill{\leaders\hbox to.6em{\hss .\hss)\hskip\z@ plus Ifill}%

\def\dotfil{\leaders\hbox to.bem{\hss .\hss}\hfil}%

\def\pfill{\unskip"\dotfill\penalty500\strut\nobreak

\dotfil'\ignorespaces)%

Here is the definition for the * macro. It isn't used in this set of macros.

\def*{\leavewode\lower.8ex\hbox{$\,\uidetilde{\)\,$)I

The defining entry for a macro name is flagged with the string l main25 in the \index

command; makeindex processes this so that the \main macro will be invoked to un-
derline the page number(s) on which the definition of the macro will be found.

\@ifundefined{main){\def\main#l{\underline{#l}}}{}

The \usage macro is used to indicate entries describing the usage of a macro. The
corresponding page number(s) will be set in italics.

\@ifundefined{usage){\def\usage#l{{\it #1})){)

To read in and print the sorted index, just put the \printindex command as the last
(commented-out, and thus executed during the documentation pass through the file)
command in your style file. Precede it by any bibliography commands necessary for
your citations.

Alternatively, it may be more convenient to put all such calls amongst the arguments
of the \StopEventually macro, in which case a \Finale command should appear at
the end of your file.

\def\printindex{\@input{\jobname.ind))

25 With the current definition of \encapchar substituted for I

TUGboat, Volume 10 (1989), No. 2

3.9 Dealing with the change history26

To provide a change history log, the \changes command has been introduced. This
takes three arguments, respectively, the version number of the file, the date of the

change, and some detail regarding what change has been made. The first of these
arguments is otherwise ignored, but the others are written out and may be used to
generate a history of changes, to be printed at the end of the document. However, note
that Chen's standard makeindex program limits any textual field to just 64 characters;
therefore, is important that the number of characters in the second and third param-
eters should not exceed 61 altogether (to allow for the parentheses placed around the
date.

The output of the \changes command goes into the (Glossary-File) and therefore uses
the normal \indexentry commands. Thus makeindex or a similar program can be used
to process the output into a sorted "glossary". The \changes command commences
by taking the usual measures to hide its spacing, and then redefines \protect for use
within the argument of the generated \indexentry command.

\def \changes#1#2#3{\@bsphack{%

\def \protect##l~\string##l\space)%

We now create the requisite \glossary command, and output it.

The entries are sorted for convenience by the name of the most recently introduced
macroname (i.e., that in the most recent \begin{macro) command). We therefore
provide \saved@macroname to record that argument, and provide a default definition
in case \changes is used outside a macro environment. (This is a wicked hack to get
such entries at the beginning of the sorted list!)

\def\savedQmacroname{' General Changes '1

To cause the changes to be written (to a .glo) file, we define \Recordchanges to
invoke U r n ' s usual \makeglossary command.

The remaining macros are all analogues of those used for the theindex environment.
When the glossary is started we compute the space which remains at the bottom of the
current page; if this is greater than \GlossaryMin then the first part of the glossary
will be placed in the available space. The number of columns set are controlled by the
counter \cQGlossaryColumns which can be changed with a \setcounter declaration.

We start with a few last minute assignments to read the individual glossary \items.
Note the \par at the beginning. If we leave it out, parameter changes done by the
\GlossaryParms macro might affect the paragraph above the glossary.

26 The whole section was proposed by Brian HAMILTON KELLY. He also documented
and debugged the macros & well as many other parts of this style option.

TUGboat, Volume 10 (1989), No. 2

Now we start the multi-column mechanism. We use \cQGlossaryColumns to denote
the number of columns and insert the 'glossary prologue' text which might contain a
\ sec t ion call etc. See the default definition for an example.

\endglossary At the end of the glossary, we've only to end the multicols environment.

\GlossaryPrologue The \GlossaryPrologue macro is used to place a short message above the glossary
\glossary@prologue into the document. It is implemented by redefining \glossaryQprologue, a macro

which holds the default text. We better make it a long macro to allow \par commands
in its argument.

\long\def\GlossaryPrologue#1{\@bsphack

\def\glossary@prologue{#1)%

\@esphack)

Now we test whether the default is already defined by another style file. If not we
define it.

\@ifundefinedCglossary@prologue)

~\def\glossary@prologue~\begingroup\parfillskip=0pt plus ifil

\section*{CChange History))\par

\endgroup

\markboth{CChange History)){{Change History))%

1 1 0

\GlossaryParms Unless the user specifies otherwise, we set the change history using the same parame-
ters as for the index.

\Printchanges To read in and print the sorted change history, just put the \Printchanges command
as the last (commented-out, and thus executed during the documentation pass through
the file) command in your style file. Alternatively, this command may form one of the
arguments of the \StopEventually command, although a change history is probably
not required if only the description is being printed.

The command assumes that makeindex or some other program has processed the . g lo
file to generate a sorted . g l s file.

3.10 Bells and whistles

\StopEventually Here is the default definition for \StopEventually, we simply save its argument in
\Finale the macro \Finale.

\OnlyDescription \long\def \StopEventually#l{\@bsphack\def \Finale{#l)\@esphackI

When the user places an \OnlyDescript ion declaration in the driver file the document
should only be typeset up to \StopEventually. We therefore have to redefine this
macro.

\def \OnlyDescription{\@bsphack\long\def \StopEventually##l{%

In this case the argument of \StopEventually should be set and afterwards W
should stop reading from this file. Therefore we finish this macro with

\meta The \meta macro is very elementary.

TUGboat, Volume 10 (1989), No. 2

\IndexListing This next macro may be used to read in a separate file (possibly a style file that is
not documented by this means) and set it verbatim, whilst scanning for macro names
and indexing the latter. This could be a useful first pass in preparing to generate
documentation for the file read.

We commence by setting up a group, and initializing a \ t r i v l i s t as is normally done
by a \beginCmacrocode) command.

\begingroup \macro@code

We also make spacing behave as in the macrocode environment, because otherwise all
the spaces will be shown explicitly.

\frenchspacing \@vobeyspaces

Then it only remains to read in the specified file, and finish off the \ t r i v l i s t .

\input{#i)\endtrivlist

Of course, we need to finish off the group as well.

\endgroup)

title The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed after
use with \relax. We must cancel anything that may have been put into \@thanks,
etc., otherwise all titles will carry forward any earlier such setting!

If the driver file documents many files, we don't want parts of a title of one to propagate
to the next, so we have to cancel these:

3.11 Layout parameters for documenting style files

\tolerance People documenting style files would probably rather have things "sticking out" in
overfull \hboxes and poorish spacing, because they probably don't want to spend a
lot of time on making all the line breaks perfect!

\tolerance=1000\relax

The following \mathcode definitions allow the characters '\' and 'Q' to appear in \tt
font when invoked in math mode;27 particularly for something like \Qabc = 1.

If an old version of the german style option is in force, then the '"' character is active
and would upset the definition of the (16-bit number) quantities below, therefore we
change the \catcode of " inside a group, and use \global.

{ \catcodef\"=12

\global\math~oda'\\=~~705C \global\mathcodef\@="7040)

27 YOU may wonder why the definitions state that both characters belong to the vari-
able family (i.e. the number 7 in front). The reason is this: Originally the \mathcode
of \ was defined to be "075C, i.e. ordinary character number 92 (hex 5C) in math fam-
ily number 7 which is the typewriter family in standard IPW. But this file should not
depend on this specific setting, so I changed these \mathcode s to work with any family
assignments. For an example see the article about the new font selection scheme.

TUGboat, Volume 10 (1989), No. 2 271

\Makepercent Ignore

\MakePercentComment

This macro can be used, for example, to assign new values to \MacrocodeTopsep and
\MacroIndent and some other internal registers. If it is already defined, the default
definition won't be carried out. Note that it is necessary to assign new values via this
macro if it should be done in a style file (like ltugbot . sty for example) since the
registers are undefined before doc. sty is read in. The default values for the internal
registers are scattered over this file. Here we only execute \makeindex because this
declaration can't be overwritten otherwise.

Now we allow overwriting the values by calling \DocstyleParms.

Here are a few definitions which can usefully be employed when documenting style
files: now we can readily refer to d~Sm, BIB^ and S L ~ , as well as the usual
l&X and U r n .

There's even a PLAIN and a WEB.

3.12 Changing the \catcode of %

And finally the most important bit: we change the \catcode of '%' so that it is ignored
(which is how we are able to produce this document!). We provide two commands to
do the actual switching. Then \Makepercent Ignore is called as the last command in
this file.

References

[I] G. A. B ~ ~ R G E R . Wunderbare Reisen zu Wasser und zu Lande, Feldzuge und lustige
Abenteuer des Freyherrn v. Munchhausen. London, 1786 & 1788.

[2] D. E. KNUTH. Literate Programming. Computer Journal, Vol. 27, pp. 97-111,
May 1984.

[3] D. E. KNUTH. Computers & Typesetting (The m b o o k) . Addison-Wesley, Vol.
A, 1986.

[4] L. LAMPORT. MakeIndex: An Index Processor for Dm. 17 February 1987.
(Taken from the file makeindex. tex provided with the program source code.)

[5] R. E. RASPE (*1737, t1797). Baron Miinchhausens narrative of his marvellous
travels and campaigns in Russia. Oxford, 1785.

TUGboat, Volume 10 (1989), No. 2

Index

The italic numbers denote the pages where the corresponding entry is described, num-

bers underlined point t o the definition, all others indicate the places where i t is used.

Symbols
* 249,267
\@for 262, 263

. \@idxitern

. 249, 266, 267, 268
\@verbatim . . . - 254, 254
^-A 246,251

\endmulticols 269
\endtheglossary . . . 269
\endtheindex - 266
environments:

macrocode* 24 7
macrocode 24 6
macro 24 7
theindex 24 9

verbatim* 24 7
verbatim 24 7

\exclude@test - 263

M
\macro - 255
macro (environment) . 247
\macro@ - 255
\macro@cnt . . . - 255, 256
\macro@code

. 251, 251, 253, 270
\macro@finish 262

\macro@name 260, 261, 261
. . . \macro@namepart

. . . . - 259, 260-263
\macro@switch . 259,260
\macrocode - 251
macrocode (environment)

24 6
\macrocode* - 253
macrocode* (environment)

24 7
\MacrocodeTopsep . .

. 24 7, 250, 251, 252
\MacroFont . . . 247,

252, 252, 254, 257 -
. \MacroIndent

. 247, 250, 252, 252
. \MacroTopsep

. 247, 250, 255, 257
\main 250,267
\make index 250
\Makepercentcomment 271
\MakePercentIgnore . 271
\MakeprivateLettem

. 255, 258, 259, 262
\maketitle . . . 250,270
\marginparpush 250, 254
\marginparwidth 250, 254
\mathsurround 24 9
\meta 250,269
\more@macroname 261, 261
\multicols . . . 266, 269

P
\par 252,

254, 261, 267-270

\parfillskip 24 9
\par indent 24 9
\parskip 24 9
\percentchar . . 261, 265
\PercentIndex . 261, 265
\pfill - 267

. \PlainTeX - 271
\predisplaypenalty .

. 252, 254
. \Printchanges - 269

\PrintDescribeEnv .
. . . . 247,254,257

TUGboat, Volume 10 (1989), No. 2 273

T
\theglossary - 268
\theindex - 266
the index (environment)

. 24 9
\tolerance . . . 250,270

v
\verbatim - 254
verbatim (environment)

. 24 7
verbatim* (environment)

. 24 7
\verbatimchar . 249,

264, 264, 265, 268

o Frank Mittelbach
Fachbereich Mathematik
Universitat Maim
Staudinger Weg 9
D-6500 Maim
Federal Republic of Germany
Bitnet: schoepf Bdmznat51

TUGboat, Volume 10 (1989), No. 2

T h e autodoc-Option*

B Hamilton Kelly

Abst rac t

This style option is used as an adjunct to the doc style option, and facilitates the
documentation of style and other files, by making it unnecessary to have a separate
driver file for each file being documented.

Contents

Introduction

Description of t h e Macros

2.1 Reading in additional style options .
2.1.1 Recognizing parts of a file specification

2.2 Scanning the file names in \docnames

Processing t h e specified files

3.1 Processing the file itself .
3.2 Handling toc files, etc .

Reading in t h e doc Style Opt ion

Introduction

Frank Mittelbach's [I] excellent doc style option has one slight drawback: it is nec-
essary to write a small MQjX "driver" file for each file being documented. The
\documentstyle used for this will always be a r t i c l e , and the last style option on the
command will always be doc. However, because the documentation of a style option
file should obviously include examples of the use of the commands which it provides,
it is necessary also to include as a further option the name of the style option being
documented, in order that its commands may be available as the documentation is
generated.

The style option presented here removes the necessity for writing a separate driver
file; it works by prompting the user for the name(s) of the file(s) being documented,
then (optionally) reading in those files and the doc style file, so that the driver file,
which may be common to all style options, just has to issue a single command to cause
all the referenced style files to be processed. As each file is processed, this style file
opens and closes various auxiliary files1 appropriate to the file being documented; the
names of these files are taken from \docname, which gets redefined as necessary, and,
in fact, these macros also redefine \jobname as the documenting process progresses.
Unfortunately, autodoc is unable to do anything about the fact that the .dvi and log
files will have already been opened with the name of the driver file. For this it will be
necessary to use the operating system's facilities for renaming files.

This is the only macro that the user needs to know about; the driver file for use with
the autodoc option should look something like this:

\documentstyle [autodoc] {article)

* This is version v2.lf dated 30-Apr-1989
' aux, idx, ind, toc, etc.

TUGboat, Volume 10 (1989), No. 2

All the work and interaction with the user is performed when the autodoc option is
first read in. At present, it firstly asks the user the question:

What f i l e (s) are you documenting?

to which the user should respond with the name(s) of the file(s) to be documented.
If there is more than one such file, the names should be separated by commas, not
spaces.

If any of the files are . s t y files, which are not doc. s t y or autodoc. s ty , then the user
is further prompted for each file to specify whether the file shall be read as an option,
with:

Does the description of Cfilename) use i t s macros?

The user should answer yes2 or no. If an affirmative answer is given, the user is
further prompted:

Can reading of (filename) be deferred u n t i l it i s processed?

It will be found that most style option files don't actually use any commands which
may only be executed in the preamble, so stack save space can be conserved by post-
poning the reading of the file until just before it is processed. However, style options
which do utilize such commands must be read now, before doc. s t y is input.

For producing a summary of all style files, etc., available at a site, the user may want
to typeset just the descriptions of the files. Therefore, he is prompted:

Should (filename) be f u l l y documented?

A negative response will lead to that file being processed by doc with \OnlyDescription
in force.

Once a file has been fully cross-referenced, it's pointless to keep on processing it with
\Enablecrossrefs in effect, so the user is given the option of suppressing this for
each file; the user is prompted with:

Should (filename) be cross referenced?

Having decided what files are to be documented, and how, the user is given the
option of reading in additional style options before the doc option is read; this permits
inclusion of such options as german. sty. The user prompt is:

Give the names of any fur ther options (WITHOUT . s ty) :

If the user doesn't wish to use any such additional options, a response of just pressing
the RETURN key will terminate user interaction; otherwise, the specified options will
all be read.

After user interaction is completed, the specified files will be read and their docu-
mentation produced. Each file will generate its own auxiliary files (. idx, .toc, etc.),
including an . aux file; it will be necessary to make the customary two or three passes
through the files to complete all cross-references, indices, etc. The recommended
sequence is:

1. LATEX, to generate the first .idx and . toc files.

2. makeindex, to generate an . ind file (which will have the wrong page numbers,
since the . toc file has yet to be read).

In fact, any response starting with the letter 'Y' or 'y' is interpreted as 'yes, and
anything else as 'no.'

TUGboat, Volume 10 (1989), No. 2

\docnames

\style@ption

\docapt ion

\cross@ption

\if @yes

LATEX, to regenerate the auxiliary files, this time with correct page references in
them.

makeindex, to generate a correct . ind file.

LATEX, which hopefully will have correct page numbers throughout.

2 Description of the Macros

As with all style options, we commence by identifying ourselves on the terminal and
in the log file:

\typeout{Style-Option: 'autodoc' \fileversion\space\space

\f iledate\space (BHK) 1

This style file is to be used (in conjunction with the doc style option) for document-
ing style option files (including itself), (main) style files, and even any other I4W
document.

Our first action, therefore, is to prompt the user for the name(s) of the f?le(s) being
documented.

\typein[\docnamesl(What style file(s) are you documenting?)

Let's allow the user the luxury of not having to remember to type in the correct case.. .

2.1 Reading in additional style options

When we come to document each of the files in \docnames, style option files need
to be treated specially, because the description of such a file is likely to want to give
examples of the facilities which it defines, so we ask the user if it needs to be read as

an option before the documentation pass through the file. It's more convenient for the
user to answer all such questions at the beginning, so we build, in this macro, a token
list which contains the letters 'y' or 'n', in order corresponding with the file names,
with 'y' indicating that the file does need to be read. Therefore, this macro needs to
be initialized to \@empty.

\let\style@ption=\@empty

This macro similarly records whether the file is being fully documented, or whether
the \OnlyDescription command should be invoked.

And this one records whether cross-referencing shall be enabled during the processing
of the document.

This is a pseudo-if, which takes one argument, a command into which a user response
has been read by \typein. It behaves like \ i f t r u e only if the response commences
with the letter 'y', in either lower- or upper-case.

Our first action, therefore, is to force all the characters of the response to be lower-case.

Now we strip the response down to just its first character, so that we can make the
comparison correctly.

TUGboat, Volume 10 (1989), No. 2

We finish up by making the comparison,

\if #ly}

\firstch@r These macros yield, respectively, the first (or only) character, and the remaining
\otherchars characters, in the token string provided as argument. This list has to be terminated

by the token \p@ramend.

2.1.1 Recognizing parts of a file specification

As mentioned above, it is necessary to be able to recognize files whose file type is given
as ' . sty'; aut odoc adopts a very simplistic approach to this, attempting to recognize
the characters which follow the first period in the \docname, so cannot handle, for
example, complicated VAX/VMS directory specifications. At the expense of making
this style file operating system specific, it would be possible to extend this code to
be able to strip off parts of the file specification which precede the file name itself,
but it is recommended instead that all the files being documented should either be in
the current directory or in the directory where T)$ expects to find standard inputs
(TeXinputs :), so that an explicit directory or path does not need to be given.

\filetype This macro yields (in \ext) the characters (if any) which follow the first period in its
argument; the latter has to be terminated by \p@ramend.

\def \f iletype#l . #2\p@ramend{\def \ext{#2))

\filenhe This macro yields whatever precedes the first period in its argument, which again is

terminated by the token \p@ramend.

\def \f ilenhe #l . #2\p@ramend{#l)

\@if extsty This macro firstly tests to see if its argument includes the characters ' .sty' at its end.
If so, it interacts with the user to determine whether this is a style option which needs
to be read (to establish its macros) before it may be documented. If this is the case,
the macro sets \@tempswatrue.

We start by assuming that the given argument doesn't have any file extension. The
macro \ext will be set to the string of characters which follow the f ist period in
\docname, and if there is no such period, to 'tex'.

\def \@if extsty#l{%

\expandafter\f iletype #l . tex\p@ramend
If there is an explicit file extension, then \ext will not be 'tex'. This next bit gets
any such actual extension into \ext.

\ifx\ext\ext@is@tex

\else

\expand& ter\f iletype #l\p@ramend

\f i

We can now set \@tempswatrue if those last three characters are 'sty'.

If the file type is ' .s ty7, we ask the user whether the file should be read as a style
option. This has to be done by a separate macro, because the pseudo-if \ifQyes will
not be correctly matched with its \f i if the file type isn't .sty.

278 TUGboat, Volume 10 (1989), No. 2

\testifaption This macro is invoked if \fulldocname has been found to end in . s ty . It asks the
user whether it needs to be read as a style option.

\def \testif Option{%

\typein [\isBoption] {Does the description of \fulldocname\space

use its macros?)

Now we use \ i fQyes to determine whether \isQoption was an affirmative response.
If a negative response was given, we cancel \@tempswatrue.

\ifayes \is@option \else

\@tempswaf alse

\f i3

\extcOis@tex These macros expand to the strings ' tex' and 'sty', respectively, and are used in
\ext@is@sty recognizing these strings if they form part of the current argument of \@if extsty.

\def\extQisBtex{tex)

\def\ext@isQsty<sty)

\SaveAnsver This macro takes two arguments; the first is whatever the user has typed in as a
response to a \ typein command, whilst the second gives the name of a command
which is to have the letter 'y' or 'n' appended, depending upon whether the first
argument is an affirmative answer.

\def \SaveAnswer#1#2{%

We use \ i fQyes to extract from the response its first character, converted to lower-
case, and to compare this with 'y'.

\ifayes #1

If this response is affirmative, we append a 'y' to the second argument.

\edef #2{#2y)%

Alternatively, we append an 'n'.

\Checkaption Again, this pseudo-if test has to be placed inside a separate macro if is not to
become confused when skipping conditional text.

\def\CheckBption{%

\typein [\is@option] {Can reading of \fulldocname\space be deferred

until it is processed? 3
\ifayes \isQoption

\else

\input \fulldocname\relax

\f i)

2.2 Scanning the file names in \docnames

\thisdoc Now we are ready to cycle through all the file names in \docnames, during which
\thedoc we shall establish whether the file name ends in . s ty , and if so, whether the user

wants it to be read as a style option. However, we know that the files doc.sty and
autodoc. s t y should not be read in as options, so we establish here two macros which
expand to those names, so that they may be used in \ i f x tests.

\def\thisdoc{autodoc.sty}

\def\thedoc{doc.sty)

\fulldocname At last we start to cycle through the filenames and get the user's responses.

TUGboat, Volume 10 (1989), No. 2

We assume initially that the file shouldn't be read as an option.. .
\@tempswaf alse

Now we don't want to read this file again (otherwise we'll recurse and annoy the user
by repeatedly asking for the name of the option to be documented)! Therefore we
avoid that here. . .

Nor do we want to read the doc style option yet, because we're going to read it in at
the end of this file.

Otherwise, we use \@i fex t s ty to establish whether it is a file with s f i . s ty , and,
if so, whether it should be read as an option.

At this point, we know whether the file should be read in later as a style option: we
put the appropriate character into \s tyleQption.

\if@tempsua

\Checkapt ion

\else

\def \is@optionCn)

\fi

\SaveAnswer{\is@option}{\style@ption}

Now we ask whether the file is to be fully documented.

\typein [\is@fulll {Should \fulldocname\space

be fully documented? 1%
\SaveAnsuer{\is@full}{\doc@ption)

For our final question regarding each file being documented, we ask if full cross-
referencing is required. Processing is much faster without this.

\typein [\is@cross] {Should \fulldocname\space

be cross referenced? 1%
\SaveAns~er{\is@cross)(\cross@ption)

And that completes the preliminary processing of the names in \docnames.

1

\options The user is asked one final question before the doc option is read in: whether additional
options are required.

\typein[\options] {Give the names of any further

options (WITHOUT .sty) :)%

If a non-null reply is given, each such option is read in. . .
\if \options \endlinechar

\else

\@f or\f ulldocname : =\options\do~\input\fulldocname . sty\relax}%
Otherwise, there's nothing more to be done.

280 TUGboat, Volume 10 (1989), No. 2

3 Processing the specified files

\processdocs This is the macro which, when invoked as the body of the document, will cause all the
files to be input and documented.

We commence by cycling through each of the files to be processed. Any preliminary
material (for instance, a description of the files being described) will use a setting of
zero for T@Cs \count1 register. Before we do this, however, we must remember the
. toc file for the complete document, so that entries may be directed to it at the end
of processing each document.

\def \processdocs{\count 1=0

\let\SavedTOC=\tf Btoc

\Bfor\fulldocname:=\docnames\do{~

\docname We then parse the filename to extract just the name into \docname, and generate an
\Docname uppercase version of it for use in page numbering.

At this point, we start a new group for each file being documented, in order that any
changes to macros defined in doc remain local to each processed file. We also ensure
that any writes to a . toc file are discarded unless the individual document has opened
one.

Now we look at the first character of \style@pt ion to determine whether the file shall
be read as a style option.. .

\expandafter\expandaf ter\expandaf ter \if

\expandafter\firstchBr \style@ption\p@ramend y

If it is to be read, we suspend doc's ignorance of % whilst it is read, and treat O as a
letter, so that we are reproducing the conditions that pertain when style options are
ordinarily read.

Throw away that first character of \styleQption, which will therefore now commence
with the user's response relating to the next file to be processed.

\xdef \styleBption{\expandafter \otherchars \styleBption\pBramend)%

3.1 Processing the file itself

We start by changing the \jobname appropriately, in order that the correct .toc,
. ind, etc., files can be read. We also ensure that the next printed page will be recto,
since it's nicer to start a new document on a right-hand page.

\edef\jobname~\docname)\clearpage

\if odd\countO\else

\vspace*{\fill)%

\centerline{\small This page is left intentionally blank)%

\vspace*{\f ill)\clearpage

\fi

Pages are numbered individually within each separate document, so reset the counter
and redefine \Ooddf oot to include the document name in the page numbers. We also

TUGboat, Volume 10 (1989), No. 2 281

use QX's \count1 register to give us different page numbers, to facilitate the use of
D V I processing programs. Note that we do not do this through \thepage, because
that would also affect the table of contents and index entries.

\setcounter(page)-[1)\global\advance\countIbyl\relax

\def\cOoddfooti\hfil\Docname--\thepage\hfil)%

\let\~evenfoot=\@oddfoot

At this point, we perform most of the actions that would be undertaken by \include;
the latter cannot be used for this task, because it is only capable of reading files with
type .%ex.

A command is put into the main document's auxiliary file to read the . aux file for the
document being processed; when the main . aux file is being read, we prevent entries
being written to the main document's table of contents, etc, which actually relate to
the tables of the included file(s).

\if (Pf ilesu

\immediate\urite\BmainauxC\string\let\string\tf@toc

=\string\relax)%

\immediate\write\@mainaux(\string\@input{\docname. aux))%

\immediate\urite\Bmainauxi\string\let\string\tf8toc=

\string\SavedTOC)%

We arrange for output to an auxiliary file to go to the appropriate file:

\irnmediate\openout\@partaux \docname. aux

\let\@auxout=\@partaux

We need to start that off tidily. . .
\immediate\write\@partauxC\relax)\fi

Now we examine \crossQption to decide whether cross-referencing shall be enabled.. .
\expandafter\expandafter\expandafter

\if \expandafter \firstchar \cross@ption \paramend y

\Enablecrossrefs

\else

\Disablecrossrefs

\fi

\xdef \cross@ption{\expandaf ter\otherch~rs\cross~ption\p@ramend~%

And \docQption determines whether the entire document is to be processed, or
whether \OnlyDescription is required.

\expandafter\expandaf ter\expandaf ter

\if \expandafter \firstchar \docaption \paramend y

\else

\OnlyDescription

\fi

\xdef \doc@ption{\expandafter\otherch@rs\doc~tion\p@ramend)%

We activate the recording of modification records and of an index. Now we are in
a position to read the next file being documented. Afterwards, we revert to single-
column setting again (in case an index has been printed).

\RecordChanges

\HakeIndex

\input~\fulldocname)\clearpage \onecolumn

By reverting to the original auxiliary file and reading back that just written, we
complete the toc entries, etc. When performing this read, we do it under the same
conditions as for an \end{document), which redefines a number of commands; how-
ever, we're already inside a group that is about to be ended, so there's no need to
start another.

\let\@auxout=\@mainaux

TUGboat, Volume 10 (1989), No. 2

After this, we'd better close any .toc files, etc. We close the group first, because these
changes should apply "globally" to each file being documented.

We also close any glossary and index files that may be open, because 7@X can only
manage a limited number of simultaneously open files.

\ifOfilesw \immediate\closeout\Oglossaryfile
\immediate\closeout\aindexf ile \f i

Now p w ' s \makeindex and doc's \Recordchanges commands both allocate the
files' "handles" through the \newwrite command, and it would be wasteful to keep
on allocating new files through this mechanism. So we redefine \makeindex and
\Recordchanges to open new files, appropriate to the file being processed, but re-
using the same "handle" (providing we are actually generating auxiliary files).

We are now able to write (to the driver file's . aux file, and thence to its .toc file) an
entry for the complete document's table of contents. We use I 4 w ' s \addtocontents
for this, but being impatient sorts, we need the \write to take place \immediately
(actually, we're not really impatient; without this the contents for the last document
processed would be stuck in a "whatsit", and never written to the file, because \output
will not be called again). Therefore, we make local redeclarations for \write.

Finally, before reading any further files, we'd better reset the section counters, and
cancel the effect of any \appendix command. We zero the footnote counter as well,
in case a subsequent \title has a \thanks on it.

And that's all there is to it!!!! As our parting shot, we ensure that any \Qwritef ile
commands that may be read from the .aux files will be directed to the correct toc
file.

\let\tf Otoc=\SavedTOC
)% end of the \do

3

3.2 Handling toc files, etc

\@closetoc We need to be able to close toc files, etc., for each file being documented. Files are
only closed if they exist, and have been used for the current document!

TUGboat, Volume 10 (1989), No. 2 283

Since it is not possible to cancel the effect of the \newwrite which allocated the toc
file, we merely make Urn's internal reference to the file be \relax.

\extensions Here is the list of possible file extensions used for table of contents files, etc.

\@writefile Because toc files, etc., are allocated by \newwrite, which defines the "name" globally,
we need a modified \Qwritef i l e that suppresses output if the "name" has been
"undefined" (by letting it be \relax). This can happen

if no file has ever been opened; or

0 if the file has been closed, and not; re-opened.

\savedtitle When documenting a number of files, it's pleasant to be able to put a table of contents
before all the documented files, listing the titles of the files documented. Therefore,
we need to save each document's title until after it has been processed. It is saved in
this macro, which is here given a default definition.

\def\savedtitle{\hbox{}3

\@maketitle We give it a value when \ h a k e t i t l e is called3, so we save here the original definition
\orig@maketitle of that macro, and define a new one which makes the necessary save operation inside

a group: when doing that, we want to discard any \thanks that might be in the user's
\ t i t l e command.

\let\orig@maketitle=\@maketitle

\def\@maketitle~{\def\protect{\noexpand\protect\noexpand)%

\let\thanks=\@gobble

\xdef \savedtitle{\@title))%

\orig@maket itle)

\LaterMakeIndex Here are the redefinitions for \makeindex and \RecordChanges. They are similar to
\LaterRecordChanges the ordinary \makeindex, but re-use the same file "handle" (providing we are actually

generating auxiliary files). Note that we have to make the appropriate definitions for
\index and glossary

\def\LaterMakeIndex{\if@filesw

\immediate\openout\@indexfile=\docname.idx\relax

\def \index{\@bsphack\begingroup

\def\protect####1{\string####l\space~\@sanitize

\Burindex\Bindexfile)\typeout

{Writing index file \docname.idx)%

\f i3%

\def \LaterRecordChanges{\if @f ilesw

\immediate\openout\@glossaryfile=\docname.glo\relax

\def \glossary~\@bsphack\begingroup\@sanitize

\@wrindex\@glossaryf ile)\typeout

{Writing glossary file \docname.glo)%

\f il%

It would have been cleaner to have redefined \maketitle to have done the work,
but that gets redefined in doc, which we haven't yet read!

TUGboat, Volume 10 (1989), No. 2

4 Reading in the doc Style Option

Finally, as our parting shot, we read in the doc style option, which will set up ev-
erything for creating the documentation. Before we do so, however, we "remember"
the \makeindex command (because ordinarily that may be issued only in the pream-
ble), and define \DocstylePamus to do nothing; this will prevent the doc style from
invoking \makeindex unnecessarily for the root file.

We now read in doc. sty; that will leave the % character ignorable, so we'll set it back
to it's usual state before tidying up this file, which ends, (you'll have to take my word
for it!) with a call of \MakePercentIgnore so that documentation can proceed in the
usual way.

\inputCdoc. sty)

\MakePercentComment

References

[I] F. MITTELBACH The doc-Option. (see page 245 of this issue of TUGboat.).

Index

The italic numbers denote the pages where the corresponding entry is described, num-
bers underlined point to the definition, all others indicate the places where it is used.

Symbols
. \@closetoc - 282

\@ifextsty 277
. \@maketitle - 283

\@writefile 283
F

\f iledate 276
\filen@me - 277
\f iletype - 277
\fileversion 276
\f irstchQr - 277
\fulldocname - 278

o B Hamilton Kelly
Royal Military College of Science
Shrivenham
SWINDON
SN6 8LA
United Kingdom
Janet: tex@uk.ac.cranfield.rmcs

TUGboat, Volume 10 (1989), No. 2 285

Calendar

Harvard University,
Cambridge, Massachusetts

Jun 5 - 9 Advanced 'T'@/Macro Writing

Jun 6 - 9 Intermediate '&$

University of Maryland,
College Park, Maryland

Jun 5 - 9 Intensive BeginningIIntermed. l&X
Jun 12 - 16 Intensive @'I@

Jun 12 Nordic l&X meeting
Royal Institute of Technology,
Stockholm (See page 287.)

University of Illinois, Chicago, Illinois

Jun 12 - 16 Intensive BeginninglIntermed. l&X
Jun 13 - 16 Beginning TEX

Providence College,
Providence, Rhode Island

Jun 12 - 16 Intensive BeginningIIntermed. rn
Jun 13 - 16 Beginning TEX

University of Michigan,
Ann Arbor, Michigan

Jun 19 - 23 Intensive BeginningIIntermed. l&X

Jun 20 - 23 Beginning TEX

Jul 6 - 7 Macro Writing

Jul 6 - 7 Output Routines

Jul 10 - 14 Advanced m / M a c r o Writing

Jul 11 - 14 Intermediate Q$

McGill University, Montreal, Quebec

Jun 19 - 23 Advanced m / M a c r o Writing

Jun 20 - 23 Intermediate 7QX

Jun 26 - 30 Intensive P'I@

Jul 3 - 7 Intensive BeginningIIntermed. rn
Jul 4- 7 Beginning TkX

Northeastern University,
Boston, Massachusetts

Jun 19 - 23 Intensive Beginning/Intermed.

Jun 20 - 23 Beginning l&X
Jun 29 - 30 I4l&X, courses, NTG- "happening"

Utrecht. For information, contact
C. G. van der Laan (Bitnet:
cglQHGRRUG5).

Jul 5 UKTUG: "Fonts, Design and Use"
Aston University, Birmingham, U.K.

Jul 10 - 14 Intensive BeginningIIntermed. Tl$
Exeter University, England

Jul 30- ACM SIGGRAPH '89, Boston,
Aug 4 Massachusetts. Contact: Chris Herot

or Branko Gerovac, (312) 644-6610.

Rutgers University, Busch Campus,
Piscataway, New Jersey

Jul 31 - Intensive Beginninglhtermediate

Aug 4 'I@

Aug 1 - 4 Beginning Tl$

Aug 7 - 11 Advanced l&X/Macro Writing

Aug 8 - 11 Intermediate Tl$

Aug 14 - 18 Intensive IPT@

Aug 14 - 18 Intensive Urn, University of
Michigan, Ann Arbor, Michigan

TEX Users Group 1989 Conference
- Tenth Anniversary -
Stanford University, Stanford, California

Aug 14- 18

Aug 15- 18

Aug 16-18

Aug 19

Aug 20-23

Aug 24-25

Aug 24-25

Aug 24-25

Intensive Begiming/Intermed. Tl$

METAFONT

Postscript

Introduction to SGML

TUG Annual Meeting

Graphic Design of
Technical Documents

Macro Writing

Output Routines

Status as of 12 May 1989

TUGboat, Volume 10 (1989), No. 2 286

Vanderbilt

Aug 14- 18

Aug 15-18

Aug 21-25

Aug 22-25

University of Illinois, Chicago, Illinois

Aug 14 - 18 Intensive I P '

Aug 28 - 31 Wizard Course

Sep 11-14 METAFONT

Sep 12 - 15 Intermediate

University, Nashville, Tennessee

Intensive BeginningIIntermed. rn
Beginning 7QX

Advanced r n / M a c r o Writing

Intermediate

Sep 7-8

Sep 11

Sep 11-13

Macro Writing, University of
Maryland, College Park, Maryland

TUGboat Volume 10, No. 3:
Deadline for receipt of manuscripts.

m 8 9 : 4th Annual Meeting
of European QX Users,
University of Karlsruhe, FRG.
For information, contact
Rainer Rupprecht (Bit net:
RZ32QDKAUNI48. See also
TUGboat 10#1, page 118.)

Exeter University, England

Sep 18 - 22 Advanced '&$/Macro Writing

Sep 26 - 29 Beginning METAFONT

Protext V Conference:
5th International Conference on
Computer-Aided Text Processing
and its Applications. Boston,
Massachusetts. For information,
contact Protext Conference, INCA,
P. 0. Box 2, Duli Laoghaire, Ireland;
+353-1-613749.

DANTE - Deutschsprachige
Anwendervereinigung m.
Eichstatt, FRG. For information,
contact Joachim Lammarsch (Bitnet:
RZ92QDHDURZI. See also page 287.)

Oct 12 - 13 RIDT'89 - Raster Imaging
and Digital Typography.
Ecole Polytechnique FCdCrale,
Lausanne, Switzerland.
For information, contact
Prof. R.D. Hersch, Lausanne,
Switzerland (herschQelde. epf 1. ch
or (4121) 693 43 57);
or Debra Adams
(adams . paQXerox . corn or (415)
494-4022). (See announcement,
TUGboat 9#3, page 316.)

Nov 23 4e NTG-Byeenkomst. Tilbing,
The Netherlands. For information,
contact H. Mulders of
C. G. van der Laan (Bitnet:
cglQHGRRUG5).

Jan 15 TUGboat Volume 11, No. 1:
Deadline for receipt of manuscripts
(tentative).

'90, Cork, Ireland.

Sep 18-20 EP'90
National Institute of Standards
and Technology, Gaithersburg,
Maryland. For information,
contact Richard Furuta
(f uruta9bri l l i .g . umd . edu).

For additional information on the events listed
above, contact the TUG office (401-751-7760) unless
otherwise noted.

TUGboat, Volume 10 (1989), No. 2

NORDIC 'QjX Meeting

Stockholm, June 12th, 1989

Location

Lindstedtsvagen 25
Room D l
Royal Institute of Technology
Stockholm

Program

rn today and in the future. Niels Mortensen
Back to international standards. Malcolm Clark
Nordic national letters. Staffan Romberger
Standard proposal (recommendations for TUG 89)

rn and graphics. Bjerrn Larsen
Integration of Autocad in TPW. Anders Eriksson
Graphics in W t u r e s . Miro Sedlacek
rn on workstations (demo of the Publisher).
Phototypesetting and high quality output.

Peter Busk Laursen
and PostScript -experiences. Jan M Rynning

Panel discussion.
Dinner at the KTH "Vkdshus"

For information, contact

Roswitha Graham
tel: 46 8 790 6525
fax: 46 8 25 10
tlx: 103 89 KTHB S
email: roswitha0admin. k th . se

- -

IPm course book in Dutch

As one of the results of the Dutch activities with
respect to 7$X a (Dutch, but read on!) course book
on Urn has emerged. It is called

Publiceren with U r n
by R. de Bruin, C.G. van der Laan,
J.R. Luyten, H.F. Vogt
CWI-syllabus 19. Centrum voor Wiskunde
en Informatica, Postbus 4079 1009 AB Am-
sterdam, Holland. (196pp) (Price: fl. 28.50,
posting costs not included)

Although it is written in Dutch, the exercises are
primarily directed to report preparation by the aid
of computers, especially Dm. So, the exercises
and especially the answers are useful for a broader
audience.

DANTE - Deutschsprachige

Anwendervereinigung m
Joachim Lammarsch

Last year, when I was in Exeter at the European
'I)$ meeting, was the first time that the idea of
a German l&X society came into my mind. I
saw that the organisation and representation of the
European users was not very good. And the
first step toward making it better is in my opinion
to improve the organisation of the national groups.

So because of that, in Freiburg at the German
W meeting, I made the proposal in my capacity
as the coordinator of the German group to found
a German society, and asked for comments
about that idea. The response has been so positive
that I have gone on to prepare the foundation.

On 14th of April 1989 in Heidelberg, it has
come to fruition. DANTE, Deutschsprachige An-
wendervereinigung Tm, has been founded.* 17
persons were present to found the society, and af-
ter a discussion about the statutes the board was
elected. For chairman of the society the persons
present elected me. For vice chairwoman Mrs.
Gabriele Kruljac, Max-Plank-Institut Stuttgart,
for treasurer Mr. Friedhelm Sowa, Research Center
of the University Diisseldorf, and for secretary Mrs.
Luzia Dietsche, Research Center of the University
Heidelberg, have been chosen.

The principal aim of the society is to encourage
advice and cooperation among German language
T)$ users. But this is not the only intention.
The user group will examine proposals of members
for new l&,X software, if there are some. It will
above all cooperate with other related national and
international groups. Besides, DANTE shall
represent the interests of the German language
users to the TUG more than has happened up till
now. Perhaps that will be done in team-work with
other European 7$X groups.

Another activity will be the organisation of
training and education. The first training course
will perhaps be held at the next German
meeting. Last, but not least, a newspaper will be
edited and published.

Institutions as well as individuals can become
members. Membership is possible for universities,
publishers, software houses, computer companies,

* I agree, the name is not from a German.
But the French users group has taken the Ger-
man GUTenberg, so we needed another well-known
name.

288 TUGboat, Volume 10 (1989), No. 2

public authorities, private persons, students, e.a. to
name but a few. The dues for the various groups
are graduated.

The first general meeting will take place to-
gether with the German rn meeting on l l t h -
13th October 1989 in Eichstatt. The first day of
the meeting will be reserved for the members of
DANTE; the other two days will be the same as
normally happens at meetings.

For more information about DANTE please
contact:

DANTE - Deutschsprachige Anwender-
vereinigung w .

Research Center of the University Heidelberg
Im Neuenheimer Feld 293
6900 Heidelberg 1
West Germany
Bitnet: DANTEQDHDURZI

Joachim Lammarsch
Research Center of the University Heidelberg
Im Neuenheimer Feld 293
6900 Heidelberg 1
West Germany
Bitnet: RZ920DHDURZl

Notes on first meeting of

UK TEX Users' Group, 15 March 1989

David Osborne

The London School of Economics was the venue
on 15th March for the first meeting of a UK
TEX Users' group (numbering November's inaugural
Nottingham meeting as the 'zeroth'l). Unlike the
earlier meeting, the LSE meeting took a theme for
all the talks: "Graphics and w " . Because more
time had been available to plan and publicise the
event, it was good to see a broader representation
of TEX users instead of the bias towards those from
academe and a rough head-count gave between 40
and 50 attendees.

see TUGboat 10,l for a report on the Not-
tingham meeting.

"Business meeting"
(Malcolm Clark, Imperial College)

As the gathering was intended to be the first official
meeting of a national UK user group, Malcolm Clark
began with what he called a "business meeting" to
discuss matters relating to the organisation of a user
group, such as a constitution and the formation of
an organising committee. Malcolm had prepared a
draft constitution for the group, copies of which he
distributed. This covered not just administrative
matters, such as arrangements for annual meetings
and the number of members at these to form a
quorum, but also raised some questions which he
asked those present to consider and decide at the
next meeting. These covered important issues such
as the relationship of a UK group to other European
TEX user groups and to TUG itself, together
with the financial (and political) implications of
membership fees. Clearly, these will require a good
deal of discussion to sort out but Malcolm argued
for co-operation with other groups, where possible.
Communication of information between users in
the group and between this and other groups is
obviously an important point and some suggestions
were made regarding a newsletter. Malcolm offered
to make the w l i n e mailing list available, though
w l i n e will continue as an independent publication.
An ad hoc election of a committee to organise the
group's future activities was then conducted.

Finally, to lead in to the theme of the day's
meeting, Malcolm distributed (w e d) copies of a
recent article by David Rogers, which had first
appeared in the w h a x digest,' later printed
in TUGboat, "Computer Graphics and m-- A
Challenge".

Technical Program

Editor's note: Owing to limited space in this issue,
the details of the technical program have been
omitted, and only the speakers and their topics are
listed.

0 Picture Languages (Sebastian Rahtz,
Southampton University)

0 Postscript (David Morgan,
Imperial College)

0 PostScript in TEX (David Brightly,
Daresbury Laboratory)

. Chemical diagrams (Tony Norris,
Polytechnic of the South Bank, London)

0 Typesetting pictures in
(Adrian Clark, University of Essex)

Whax V89 #8, 19 Jan 1989.

TUGboat, Volume 10 (1989), No. 2 289

Following a question and answer session, the
meeting closed with thanks being expressed to Carol
Hewlett of LSE who, with Malcolm Clark, had ar-
ranged the meeting. The date of the next meeting
wasn't announced, but has subsequently appeared
in the bytes of U K ~ . It will take place on
Wednesday, July 5th at Aston University, Birming-
ham, the theme being "Fonts-Design and Use".
The following meeting is provisionally arranged to
be in October 1989 in London.

Production Notes

Barbara Beeton

Inpu t a n d input processing

Electronic input for articles in this issue was received
by mail and on floppy disk. Camera copy was
accepted for one article and for several figures (see
the "output" section).

Authors who had written articles previously
for TUGboat typically submitted files that were
fully tagged and ready for processing with the
TUGboat macros - tugbot . s t y for PLAIN-based
files and l tugbot . s t y for those using U r n .

Much-improved versions of the TUGboat macros
were available for this issue, thanks to the efforts
of Ron Whitney. Most Urn-based articles can
now be run in a stream controlled from a driver file
(this has always been true for PLAIN-based items).
The exceptions are articles formatted with the
doc-option of U7QX created by Frank Mittelbach
(identified below).

About a third of the articles, and almost half
the pages in this issue are J.4". For convenience
in processing, PLAIN or U7QX articles were grouped
whenever possible. Articles in which no, or limited,

coding was present were tagged according to
the conventions of tugbot . s t y or l tugbot . s t y
as convenient. Articles tagged according to the
author's own schemes were modified sufficiently
to permit them to be merged with the rest of
the stream. Especial care was taken to try to
identify macro definitions that conflicted with ones
already defined for TUGboat, and \begingroup . . .
\endgroup was wrapped around any suspect article
as a routine precaution. Even so, several "time
bombs" made themselves known; a particularly

insidious one is the subject of a note at the end of
the article by David Salomon (page 207).

Test runs of articles were made separately and
in groups to determine the arrangement and page
numbers (to satisfy any possible cross references).
A file containing all starting page numbers, needed
in any case for the table of contents, was compiled
before the final run. Final processing was done in
one run of and four of M r n , using the page
number file for reference.

The following articles were prepared using
U r n ; the starred items required the doc-option.

- Don Hosek, Guidelines for creating portable
METRFONTcode, page 173.

- Tom Reid and Don Hosek, Report from the
DVI driver standards commit tee, page 188.

- Malcolm Clark, W l i n e : A newsletter of the
community, page 193.

- Don Hosek, Announcing (belatedly) MAG,
page 192.

- Peter Abbott, U K W and the Aston archive,
page 194.

- Ted Nieland, The DECUS rn collection,
page 195.

* Frank Mittelbach and Rainer Schopf, A new
font selection scheme. . . , page 222.

- Dezso Nagy, A bar chart in U r n , page 239.
- Hubert Partl, Producing on-line information

files with U r n , page 241.
* Frank Mittelbach, The doc-option, page 245.
* B. Hamilton Kelly, The autodoc-option,

page 274

O u t p u t

The bulk of this issue was prepared at the American
Mathematical Society on a VAX 6320 (VMS) and
output on an APS-p5 using resident CM fonts and
additional downloadable fonts for special purposes.
The items listed below were received as camera copy;
they were prepared on the devices indicated. The
output devices used to prepare the advertisements
were not usually identified; anyone interested in
determining the device used for a particular ad
should inquire of the advertiser. The appearance of
the printed pages can be taken as representative of
output from the devices which produced them.

Unidentified:
- all advertisements.

Apple Laserwriter (300 dpi):
David Salomon, DDA methods in

Z&X, page 207, figures only.

Canon CX (300 dpi): Georgia Tobin,
Another dingbat idea, page 166.

QjX Users Group 1989 Membership Form

Request for Information

The Users Group maintains a database and
publishes a membership list containing informa-
tion about the equipment on which rn is (or will
be) installed and about the applications for which
m is used. This list is updated periodically and
distributed to members with TUGboat, to permit
them to identify others with similar interests. Thus,
it is important that the information be complete
and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of 'QX and the hard-
ware on which it runs. (Operating system informa-
tion is particularly important in the case of IBM
mainframes and VAX.) This hardware information
is used to group members in the listings by com-
puter and output device.

If accurate information has already been pro-
vided by another TUG member at your site, indi-
cate that member's name and the same information
will be repeated automatically under your name. If
your current listing is correct, you need not answer
these questions again. Your cooperation is appre-
ciated.

Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

TFJ Users Group
P. 0. Box 594
Providence, Rhode Island 02901, U.S.A.

For foreign bank transfers
direct payment to the Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S. A.

General correspondence
about TUG should be addressed to:

TEX Users Group
P. 0. Box 9506
Providence, Rhode Island 02940-9506, U.S.A.

Name:
Home []
BUS. 1 1 Address:

Membership List Information

Institution (if not part of address): Date:

AMOUNT QTY

Title:

Air mail postage is included in the rates for all subscriptions
and memberships outside North America. TOTAL ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required)

ITEM

1989 TUGboat Subscription/TUG Membership (Jan.-Dec.) - North America
New (first-time): [] $35.00 each
Renewal: [] $45.00; [] $35.00 - reduced rate if renewed before February 1,1989

1989 TUGboat Subscription/TUG Membership (Jan.-Dec.) - Outside North America
New (first-time): [] $45.00 each
Renewal: [] $50.00; [] $45.00 - reduced rate if renewed before February 1,1989

TUGboatbackvolumes 1980 1981 1982 1983 1984 1985 1986 1987 1988
Circle volume(s) desired: vol. 1 vol. 2 vol. 3 vol. 4 vol. 5 vol. 6 vol. 7 vol. 8 v01.9
Indiv. issues $18.00 ea. $18 $50 $35 $35 $35 $50 $50 $50 $50

Phone:
Network address:

[] Arpanet [] BITnet

[] CSnet [] uucp
[] JANET [] other

Specific applications or reason for interest in m :

My installation can offer the following software or

technical support to TUG:

Please list high-level QX users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Status of m: [] Under consideration
Being installed

. . Up and running since: -
Approximate number of users: -

Version of m :
[] Pascal

[I C
[] other (describe)
From whom obtained:

Hardware on which 7&X is used:
Operating Output

Computer(s) system(s) device(s)

Revised 10188

A Gourmet Guide to Typesetting
with the AMS -TEX macro package

M. D. SPIVAK, Ph.D.

The Joy of l&X is the user-friendly user's
guide for AM-W, an extension of QX,
Donald Knuth's revolutionary program for
typesetting technical material. & S - W
was designed to simplify the input of math-
ematical material in particular, and to for-
mat the output according to any of various
preset style specifications.

There are two primary features of the
QX system: it is a computer system for
typesetting technical text, especially text
containing a great deal of mathematics;
and it is a system for producing beautiful
text, comparable to the work of the finest
printers.

Most importantly, W ' s capabilities are
not available only to W p e r t s . While
mathematicians and experienced technical
typists will find that 'QX allows them to
specify mathematical formulas with great

accuracy and still have control over the fin-
ished product, even novice technical typists
will find the manual easy to use in helping
them produce beautiful technical W t .

This book is designed as a user's guide
to the & S - W macro package and details
many features of this extremely useful text
processing package. Parts 1 and 2, entitled
"Starters" and "Main Courses," teach the
reader how to typeset most normally en-
countered text and mathematics. "Sauces
and Pickles," the third section, treats more
exotic problems and includes a 60-page dic-
tionary of special Wniques .

Exercises sprinkled generously through
each chapter encourage the reader to sit
down at a terminal and learn through ex-
perimentation. Appendixes list summaries
of frequently used and more esoteric sym-
bols as well as answers to the exercises.

ISBN 0-8218-2999-8, LC 85-7506 PREPAYMENT REQUIRED. Order from
290 pages (softcover), 1986 American Mathematical Society
AMS Indiv. Memb. $26, AMS Inst. P. 0. Box 1571
Memb. $30, List price $33 Annex Station
To order specify JOYTIT Providence, RI 01901-1571

ShippingIHandling: 1st book $2, each or call 800-556-7774 to use VISA or Mastercard.

add'l $ 1 , max. $25; by air, 1st book Prices subject to change.
$5, each add'l $3, max. $100

THE AMS Tfi LIBRARY
Your single source for 'QX products

AMS-'QX

The AMS macro software that simplifies the typesetting of complex mathematics. AMS-Tl$
supports the use of AMSFonts (below). Available for IBM microcomputers and for Macintosh
Plus, SE and 11.

AMSFonts

AMSFonts (Euler Fraktur, AMS Extra Symbols including Blackboard Bold, Cyrillic Lightface
and Bold) are designed for use with A M S - m . Available Resolutions: 118, 180, 240, and 300
dpi. For use with screen previewers and with drivers for dot matrix and laser printers. When
ordering AMSFonts, please specify resolution or type of printer. This information is necessary to
process your order. (IBM distribution in standard PX format, Macintosh in Textures format)

MathSciW

This macro package is designed to format search output from the database MathSci. M a t h S c i m
is available for MathSci Online and for MathSci Disc, the compact disc (CD-ROM) version of
MR and CMP.

The Joy of TEX

The Joy of Tl$ is the user-friendly guide to the AMS-'l&X macro package and details many
features of this extremely useful text-processing package. 1986, 290 pages, ISBN 0-8218-2999-8,
Softcover

Prices:

AMS-'QX: List $30, AMS Member Price $27
AMS-TEX with Joy of TG: List $55, AMS Member Price $50

*AMS-'&X with AMSFonts and M a t h S c i w : List $65, AMS Member Price $59
AMSFonts and M a t h S c i w : List $45, AMS Member Price $41
AMS-'I@ with AMSFonts, M a t h S c i w and Joy of '&X: List 890, AMS Member Price $81

*Joy of w : List $33, AMS Inst Member Price $30, AMS Indiv Member Price $26

*Included at no charge upon request if your order totals $250 or more. Please specify online or CD-ROM version

of M a t h S c i w .

Also available from the AMS Library of Tfl Products
The following commercial software may be ordered from the AMS Library - your single source
for TEX materials. Call or write for prices, (401) 272-9500, ext. 328, or (800) 556-7774, ext. 328
in the continental U.S.; 'l&X Library, American Mathematical Society, PO Box 6248, Providence,
RI 02940.

TEX for IBM PC and Compatibles Printer Drivers

0 P C W (Personal l)$, Inc.) with the P C w Manual, Epson, Okidata, IBM Graphics,
IPT@ macros and L i l ' User's Guide Proprinter, Toshiba, HP LaserJet,
pcMF-METAFONT software for PCTEX, QMS Lasergrafuc, Postscript, Apple
with manual and METAFONTbook Laserwriter, Cordata.

'l')ijX for Macintosh Plus, SE and I1 Screen Previewers for IBM and
T&ules (Blue Sky Research) with built-in screen previewer, Compatibles
ImageWriter/LaserWriter driver and picture embedding Preview (ArborText)
capability, and The 'book by D. Knuth 0 MAXView (Aurion)
L%I)ijX macros with LAW User's Guide 0 PTI View (Personal w, Inc.)

HOW TO ORDER: Call the w Library at (401) 272-9500, or (800) 5587774 in the continental U.S. to
order with VISA or Mastercard. Or write to: w Library, American Mathematical Society, P. 0. Box 6248,
Providence, RI 02940. Please add shipping and handling (see below).

PREPAYMENT REQUIRED; Software/Books are sent via UPS Second Day Air t o U.S . addresses, first class mail to Canada,
and a i r delivery elsewhere. Add shipping and handling for SoftwarejBooks: $8 per order in the U.S . and Canada; $35 per
order ($15 for AMS-TEX and AMSFonts only) for air delivery outside the U.S. and Canada. Prices subject t o change.

Publishing Companion translates

WordPerfect

It doesn't take a T@pert to use T$.

With Publishing Companion, you can publish documents using T@ with little or no
'I@ knowledge. Your WordPerfect files are translated into TEX files, so anyone using
this simple word processor can immediately begin typesetting their own documents!

And now, K-Talk introduces Publishing Companion version 2.0, which translates
WordPerfect 5.0 files into T@.

Other word processors are supported using Mastersoft's WordForWord file conversion utility, $70.

Special Introductory Offer

. Retail Price $249
. Academic Discount Price ... $1 99

Introductory Price . $1 79
This offer good until October 31, 1989. Upgrade from Publishing Companion v.1.XX is $49.

For the power of T$ with the ease of a word processor, Publishing Companion is your
"best friend' for desktop publishing.

For more information or to place an order, call or write:

50 McMillen Ave
Columbus, Ohio 43201

(61 4) 294-3535

DESKTOP PUBLISHING HAS NEVER BEEN SIMPLER
AND WILL NEVER BE THE SAME

T u r b o w Release 2.0 software
offers you a complete typesetting
package based on the T)-$ 2.95 and
METAFONT 1.7 standards: preloaded
plain w , UTEX, INITEX, VIRTEX,
and plain METAFONT interfaced to
CGA/EGA/VGA/Hercules graph-
ics; TRIP and TRAP certification;
Computer Modern and DT$ fonts,
and printer drivers for HP LaserJet
PlusJSeries 11, Postscript, and dot-
matrix printers. New features in the
HP LaserJet driver put PCX or TIFF
graphics files directly into your T@
documents. This wealth of software
fills over 10 megabytes of diskettes,
and runs on your IBM PC, UNIX,
OS/2, or VAX/VMS system.

P o w e r Features: T u r b o w
brings big-machine performance to
your small computer. T u r b o w
breaks the 640K memory barrier un-
der MS-DOS on the IBM P C with our
virtual memory sub-system. You'll
have the same sized T)-$ that runs
on multi-megabyte mainframes, with
plenty of memory for large docu-
ments, complicated formats, and de-
manding macro packages that break
other implementations. On

larger computers, T u r b o w runs up
to 3 times faster in less memory than
the Stanford Pascal distribution.

Source code: Order the Turbo-
w source in portable C, and you
will receive more disks with over
85,000 lines of generously commented
w, TurboT~X, METAFONT, and
printer driver source code, including:
our WEB system in C; PASCHAL, our
proprietary Pascal-to-C translator;
and preloading, virtual memory, and
graphics code. T u r b o w meets C
portability standards like ANSI and
K&R, and is robustly portable to a
growing family of operating systems.

--FAX: Connects TEX to the
FAX revolution. Send perfect T@
output instantly, anywhere, without
scanning. With w - F A X , any FAX
machine in the world becomes your
output device! Complete with P C
board and software for $395 (4800
bps) or $795 (9600 bps).

D e s k t o p Publ ishing In t e r f ace
Option: Converts TJ$ output (such
as equations or tables) for direct use
in programs like Ventura Publisher
and Pagemaker. ($50 for PC) .

Availability & Requirements :
T u r b o w executables for IBM PC's
include the User's Guide and require
640K and hard disk. Order source
code (includes Programmer's Guide)
for other machines. Source compiles
with Microsoft C 5.0 or later on the
PC; other systems need 1 MB mem-
ory and a C compiler supporting
USIS standard 110. Media is 360K
5-114" PC floppy disks; other formats
at extra cost.

No-risk t r i a l offer: Examine
the documentation and run the P C
T u r b o w for 10 days. If you are not
satisfied, return the software for a
100% refund or credit. (Offer applies
to P C executables only.)

Orde r ing T u r b o w

Order by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
~ u b l i c agencies (shipping and media
extra). Discounts available for quanti.
ties or resale.

Ask for the free, 50-page Buyer's
Guide.

T h e K i n c h C o m p u t e r C o m p a n y

PUBLISHERS OF TURBOQX

501 S o u t h M e a d o w S t r e e t

I t h a c a , N e w York 14850

Te lephone (607) 273-0222

F A X (607) 273-0484

Public Domain T@

The authorized and current versions T# software are available from Maria Code -

Data Processing Services by special arrangement with Stanford University and other

contributing universities. The standard distribution tape contains the source of TEX
and METAFONT, the macro libraries for d&-m, UTEX, S l i m and HP w, sample

device drivers for a Versetec and LN03 printers, documentation files, and many useful

tools.

Since these are in the public domain, they may be used and copied without royalty

concerns. They represent the official versions of TEX. A portion of your tape cost is

used to support development at Stanford University.

If you have a DEC VAX/VMS, IBM CMS, IBM MVS or DEC TOPS operating

system, you will want to order a special distribution tape which contains "ready-to-

run" TEX and METAFONT. If you do not have one of these systems, you must perform

a more involved installation which includes compiling the source with your Pascal

compiler. Ready-to-run versions of TEX are available for other systems from various

sources at various prices. You may want to examine these before ordering a standard

distribution tape.

The font tapes contain GF files for the Computer Modern fonts. While it is possible

to generate these files yourself, it will save you a lot of CPU time to get them on tape.

All systems are distributed on 9 track, 1600 bpi magnetic tapes. If both a distribution

tape and a font tape are ordered, they may be combined on a single 2400' reel, space

permitting.

Your order will be filled with the current versions of software and manuals at the time

it is received. If you want a specific version, please indicate that on your order.

Please use the form on the next page for your order. Note that postage, except

domestic book rate is based on the item weights in pounds. If you want to place your

order by telephone, please call (408) 735-8006 between 9:00 am and 2:00 pm West

Coast time. Do not call for technical assistance since no one there can help you.

We normally have a good stock of books and tapes, so your order can be filled

promptly - usually within 48 hours.

Make checks payable to Maria Code - Data Processing Services. Export orders must

have a check drawn on a US bank or use an International Money Order. Purchase

orders are accepted.

Tfi Order Form

TEX Dis t r ibu t ion tapes: Font Library Tapes (G F files)

- Standard ASCII format - 300 dpi VAX/VMS format

- Standard EBCDIC format - 300 dpi generic format

- Special VAXIVMS format Backup - IBM 382013812 MVS format

- Special DEC 20/TOPS 20 Dumper format - IBM 3800 CMS format

- Special IBM VMJCMS format - IBhl4250 CMS format

- Special IBM MVS format - IBM 382013812 CMS format

Tape prices: $92.00 for first tape,
$72.00 for each additional tape.

Documents:
m b o o k (vol. A) softcover .
TJ$: The Program (vol. B) hardcover
METAFONT book (vol. C) softcover
METAFONT: The Program (vol. D) hardcover . .
Computer Modern Typefaces (vol. E) hardcover
UTEX document preparation system
WEB language *

..................................... T@ware *
..................................... B i b m *

Torture Test for TEX * .
Torture Test for METAFONT *
METAFONTware *
Metamarks * .

* published by Stanford University

Total number of tapes
Postage: allow 2 lbs. for each tape

Price $

27.00
40.00
22.00
40.00
40.00
27.00
12.00
10.00
10.00
8.00
8.00

15.00
15.00

Weight Quantity
2 -
4 --
2 -
4 -
4 -
2 -

Paymen t calculation:
Number of tapes ordered Total price for tapes
Number of documents ordered Total price for documents

Add the 2 lines above
Orders from within California: Add sales tax for your location.

Shipping charges: (for domestic book rate, skip this section)

Total weight of tapes and books lbs.

- domestic priority mail rate $1.50/lb.
Check - air mail to Canada and Mexico: rate $2.00/lb.
One - export surface mail (all countries): rate $1.50/lb.

- air mail to Europe, South America: rate $5.00/lb.
- air mail to Far East, Africa, Israel: rate $7.00/lb.

Multiply total weight by shipping rate. E n t e r shipping charges:

Tota l charges: (add charges for materials, tax and shipping)

Send to: M a r i a Code, D P Services, 1371 Sydney Drive, Sunnyvale, C A 94087.

Include your name, organization, address, and telephone number.

Are you or your organizaton a member of TUG?

If you find
yourself needing
a Tmnician each
time you want to
create a format for a
new document, or mod-
ify an existing one, then
you need TEXTI .

 TEXT^ makes it easy for the
Tm novice and expert alike to
quickly modify the style of you1
chapters, contents, running head,
gin notes, indices, etc. You can get
a microcomputer for $150.

mar-
TEX Tl for

 TEXT^ also has an International Phonetic
font optionally available for $1 00.

For more information, write to: or call:

 TEXT^ Distribution TEXT^ Distribution
WSUCSC 509-335-04 1 1
Pullman, WA 99 164- 1220

Made Easy
Using T)jX With The Plain Macro Package

Instruction

Since 'I&X Made Easy was created, author/

illstructor Daniel Zirin has taught hundreds

of new TEX users with this 10 hour seminar
format class. Many of the participants
were unsophisticated computer users like
administrative aids and business people.
Mr. Zirin has coilsistently received high marks

in presenting begiming T)-$ by T&Y Made

Easy students.

Now you can bring 'Q$ Made Easy to

your place of business a t affordable rates.*

Mr. Zirin will present 'I&X Made Easy over a

period of 2 to 5 days a t your office (unlimited
class size). To schedule a two day seminar in
most U.S. cities would cost an average $2500.

Opt. l* 10 hours seminar over 2 days ($1500).

Opt. 2* 10 hours seminar and 3 hours lab

assistance over 2 days ($1750).

Opt. 7* 10 hours seminar over 5 days ($2850).

Opt. 8" 10 hours seminar and 73 hours lab

assistance over 5 days ($3325).

*Restrictions apply. Call or write for details.

Use the money you saved buying 'I)$ teaching
the power of TI$!

Book

'I&X Made Easy, the book, is written for

people interested in a quick simple approach
to learning how to start using P l a i a w .

Written for the business professional, T'$
Made Easy has been given high praise by

those considered "computer shy".

Topics Covered

0 Creating TI$ files.

0 Defining page layout and margins.
0 Accenting alld overstriking characters.

Using different fonts.

How to use the T)-$ program.

Specializiilg the headline and footline for
each page.

0 Generating footnotes.

0 Setting a tabular environment.
0 Using alignment to make tables.

0 Dealing with figures and insertions.

0 Automatic enumeration of paragraphs,
equations, references, etc. . .
Using math and equation modes.

Creating simple TEX macros.

A sample macro package to generate an

automatic table of contents.

Price: $15 for each 90 page book.
$3 shipping U.S., $6 all others.
Softcover handbook available soon.

Purchase orders, checks, and money orders accepted.

Zar Limited (818)794-1224
P. 0. Box 372, Pasadena, CA 91102, USA

TEX Device Interfaces for VMS

Postscript

LaserJet

The VMS TEX speclalists

I!!!!

QUALITY PUBLISHING MADE SIMPLE

Write a book, a memo ... or anything in between.

THE PUBLISHER gives you the power,
flexibility and quality you've come
to expect from T#, in a window-
based, WYSIWYG editing environ-
ment. Our Table Editor allows
you to create, scale and rule ta-
bles containing text, graphics and
equations. The Graphics Editors
let you create bit-mapped or object-

oriented graphics like a profes-
sional. With our Equation Edi-
tor, you can write mathematical ex-
pressions using the symbols and
characters you expect to see on the
printed page. All these tools are
combined into a single product de-
signed to bring to you the power of
T@ and much, much more.

See just how simple quality publishing can be with THE PUBUSHER.

Call us today.

535 West William Street
Suite 300

Ann Arbor, MI 48103
FAX: (313) 996-3573

(313) 996-3566
E-Mail arbortext@arbortext.com

THE PUBLWER runs on Sun workstations and supports SGML. PostScripP and T@ standards.

~ ~ k d d b D r e w e d hoeem& a ~ d o b l , worm. ins sn r a hoeemon of sw ~ l s r w a r m . ~ns 18 o h o m r * d IM m&m M o t h m c d b m w

ArborText has been providing quality TEX products from the
beginning. We've delivered more TEX products with more
features for more platforms than anyone else.

We stand behind our products with
knowledgeable customer support, For Your PC
comprehensive documentation THE EQUATION EDITOR
and on-going software A WYSIWYG editor for
ehancements. writing complex mathematical

expressions-coming soon from
ArborText.

// See our Equation Editor at the T$ Users Group 10th Anniversary Conference

WE'LL BE

HERE TOMORROW.

535 West William Street, Suite 300, Ann Arbor, MI 48103 (313) 996-3566 FAX (313) 996-3573
TEX 15 a trademark of the American Mathematical Society

Converting TEX DVI files to fully paginated typeset pages in
either "AM" or "CM" fonts.

Providing 300 dpi laser-printed page proofs which simulate
the typeset page in "AM" fonts only.

Keyboarding services from traditionally prepared
manuscripts via the TEX processing system in either "AM" or
"CM" fonts.

Full camera work senrices, including halftones, line art,
screens and full-page negatives or positives for your printer.

Call or write for sample pages

in either "AM" or "CM" fonts

HAPPY
BIRTHDAY

TUG!
To celebrate, Personal T s , Inc. is extending this special offer to all TUG members:

20% oflthe regular price of these selected products when ordered before September 15, 1989!

And on orders of $300 or more, you'll also get a PC T@ T-shirt-free!

PTWET FOR HP DESKJET. Full featured printer
driver for HP DeskJet, PLUS. Laser quality output. * $95

P C W + PTILASER + PTMEW. T ~ x 8 2 , Ver-
sion 2.9: professional formatting and typesetting
results-for amateur prices. Includes INITEX, La-
TEX, AMS-TEX, VANILLA Macro Pak, PCTEX
and LaTEX manuals. Plus a PTILaser device driver,
to take full advantage of your laser printer. PLUS
the PTIView screen previewer for on-screen pre-
viewing of your TEX documents and immediate
editing. Top performance and low cost make this
our most popular package. $44P $399

P C W + PTILASER. As above, but without the
PTIView screen previewer. $34P $309

P C W + PTIDOT + PTMEW. This package gives
you all the TEX and PTIView benefits, together
with our dot-matrix device driver for reliable, low
cost printing. $34P $309

PC'&X + PTIJET + PTMEW. Same as the above
package, but with PTIJet instead of PTIDot. Laser
quality output. 44?9 $343

PC'&X + PTIJET. As above, without the PTIView
screen previewer. -$3£'+ $263

PCMF-METAFONT for the PC. Lets you design
fonts and create graphics. (Not for the novice.)
pcMF Version 1.7. -$-E% $156

PTI LASER HP+, SERIES 11. This device driver
for the HP LaserJet Plus and Series I1 laser printers
takes full advantage of the 512K resident memory.

-$-E% $156

PTI LASER POSTSCRIPT. Device driver for Post-
Script printer; allows the resident fonts and graphic
images to be used in TEX in documents.

$156

PTI FONTWARE Interface Package. Software to
generate Bitstream outline fonts at any size. (The
Interface is necessary to use Bitstream fonts. Fonts
are not inluded-order below). %95- $76

PTI FONTWARE WITH SWISS or DUTCH. Same
as above but includes your choice of either Swiss or
Dutch at a special bundled price. 4-FB- $143

BITSTREAM Font Families. An extensive library of
30 type families, in any size you specify, with true
typographic quality. Each family: +I-?!+ $143

P E R S O N A L

I N C
To order, just dial

(41 5) 388-8853
12 Madrona Avenue Mill Valley, CA 94941 FAX: (415) 388-8865 VISA, MC accepted.

Requires: DOS 2.0 or later, 51 2K RAM. 10M hard disk. TEX IS an American Mathematical Society TM. PC TEX is a Persanol TEX, Inc. TM.
Manufadurers' names are their TMs. Outside the USA, order through your local PCTEX distributor. Inquire about available distributorships

and s~te licenses. This ad was produced using PCTEX and Bitstream fonts.

TYPESETTING: JUST

PER PAGE!
Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream Fontware", and any METAFONT fonts. (For each
METAFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEX@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 4151388-8873.

T Y P E

The Scriwk Challenge
We challenged ourselves and now we challenge the competition to offer the TEX

community a system as comprehensive as our complete System I for less than $125.

Simply stated, the ScripTek challenge was to
create a total typesetting system that offered
value, speed, and flexibility at a price unrivaled
by other TEX vendors. We met the challenge. We
now challenge the others to follow our lead.

Value
The components of ScripTek's Complete System
I can not be purchased separately for less than
$125. The system includes: TEX (VIRTEX and
INITEX), METAFONT (VIRMF and INIMF)
with support for CGA, EGA, VGA and AT&T
graphics cards, DVIew (a three zoom level pre-
viewer that produces fully scaled fonts on the fly
and also supports CGA, EGA, VGA, and AT&T
graphics cards), DVIhp (a driver for the HP
Lase jet I1 and compatible laser printers), DVIhp
(a driver for the IBM Graphics dot matrix printer
and compatible dot matrix printers), all of the
CM Fonts including source files, plus TFM, DVI,
and GF utility programs like GF to DVI (for full
page proofs of METAFONT designs), TF to PL,
PL to TF, GF type, and DVI type. That's value.

Speed
When we translated the mainframe versions of
TEX and METAFONT into C, we didn't rely
upon any convenient shortcuts. Rather, ScripTek
translated both these programs one line at a time
to achieve the most compact C code possible.
The same is true of our virtual memory routines
which we incorporated into both TEX and
METAFONT These routines, like the screen rou-
tines for DVIew, were custom designed for use

with TEX and METAFONT, and once developed,
were repeatedly profiled under the UNIX oper-
ating system. Those functions that were most
often called were then rewritten in assembly
language to optimize speed and minimize size.

Flexibility
ScripTek wanted its customers to have options.
We designed our installation package to allow
you to set dozens of different environment varia-
bles that meet your special needs for the right
typesetting system. Little touches like routines
that automatically call in your favorite editor
when you need to make changes are examples of
ScripTek's system approach to typesetting. We
hand crafted all of the components of the Com-
plete System I to work together in a system that
addresses your individual needs.

We don't offer any gimmics - no newsletters
with cute little Gorillas on the cover-just the
finest quality typesetting for serious scientific and
literary work at the lowest price. Even the call is
free. For phone orders, call 1-800-950-1998 and
listen for the dial tone. Then dial 383-5022 (must
use touch-tone phone). We accept Mastercard
and Visa, and our operators are there 24 hours
a day, seven days a week. If you wish to order by
mail with a personal check, or for more informa-
tion write: ScripTek, Inc., Sales Department,
PO. Box 5022, Kansas City, Missouri 64131.

Requires IBM PC XTJAT or compatible, 512K
or more RAM, and MS DOS operating system.
Postage, handling and tariffs extra.

Value, Speed, Flexibility. % ScripTek Challenge.

The American Mathematical Society can offer you a basic TEX publishing service. You provide the
DVI file and we will produce typeset pages using an Autologic APS Micro-5 phototypesetter. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or call 401-272-9500 or 800-556-7774 in the
continental U.S.

The Coolspring Banjo Works

Delaware, OH 43015
U.S.A.

$50.
postpaid *

computer aided
drafting program to

communicate graphically
with METAFONT. Create

your own dingbats, borders, line
illustrations, and logos for Q X

printing on all systems and devices. ' Outside North America? Please write for
postage rates and overseas distributors.
Ohio residents lease add 6% sales tax.

Ordering Information: 1\ 3.5 Inch Diskette Format (check one): A
Amiga -- MS-DOS -- Atari ST --

(Other? We'll try!
Computer System

Gra~hics Software

THE WRITE STUFF,

TEXNICALLY SPEAKING $I

TEX is the write stuff

TEX is the powerful publishing system that
is guaranteed to make any document you

. write easier to read.. and guaranteed to
make that document say the right stuff
about you!

Micro Programs, Znc. is your source for
TEX and related ArborText products
for ZBM PC and Sun workstations.

Call Bob Harris on (516) 921 -1351 and
get the name of the dealer nearest you.

MICRO PROGRAMS, INC.
251 JACKSON AVENUE

SYOSSET
NY 11791

TEX Users Group Membership List - Supplement

July 1989

This supplementary list, compiled on 9 June 1989, includes the names of all persons who
have become members of TUG or whose addresses have changed since publication of the last
full membership list, as of 3 March 1989. Total membership: 151 institutional members
and 3,268 individuals affiliated with more than 1,350 colleges and universities, commercial
publishers, government agencies, and other organizations throughout the world having need
for an advanced composition system.

The following information is included for each listing of an individual member, where it
has been provided:

Name and mailing address

Telephone number

Network address

Title and organizational affiliation, when that is not obvious
from the mailing address

Computer and typesetting equipment available to the mem-
ber, or type of equipment on which his organization
wishes to (or has) installed TEX

Uses to which rn may be put, or a general indication of
why the member is interested in rn

CONTENTS

Board of Directors 2

Site Coordinators, TUG Committees 3

Addresses of TUG Members: additions and changes
from 3 March 1989 through 9 June 1989 4

QX consulting and production services for sale 11

Recipients of this list are encouraged to use it to identify others with similar interests, and, as
TUG members, to keep their own listings up-to-date in order for the list to remain as useful
as possible. New or changed information may be submitted on the membership renewal form
bound into the back of a recent issue of TUGboat. Comments on ways in which the content
and presentation of the membership list can be improved are welcome.

This list is intended for the private use of TUG members; it is not to be used as a source of
names to be included in mailing lists or for other purposes not approved by TUG. Additional
copies are available fiom TUG. Mailing lists of current TUG membership are available for
purchase. For more information, contact Ray Goucher, TUG Executive Director.

Distributed with TUGboat Volume 10 (1989), No. 2. Published by

Users Group

P. 0. Box 9506

Providence, R.I. 02940-9506, U. S. A.

M-2 Officers and Comrnitt :ee Members

TUG Board

July 1989

of Directors

CHILDS, S. Bart
Departmentt of Computer Science
Texas A br M University
College Station. TX 77843-3112

409-8455470
bart0cssun.tamu.edu
Bitnet: BartOTAMLSR

President; Finance Committee;
DG MV Site Coordinator

FURUTA, Richard
Department of Computer Science
University of Maryland
College Park. MD 20742

301-4561461
furutaOmimsy.umd.edu

Vice President; Finance Committee;
Laser-Lovers moderator

HOENIG. Alan
17 Bay Avenue
Huntington, NY 11743

5163850736

Secretary; Finance Committee

NESS, David
803 Mil l Creek Road
Gladwyne. PA 19035

215-649-3474

Treasurer; Finance Committee

Other Board Members

BEETON, Barbara
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940

401-272-9500 x299
BNBOMath.AMS.com
TUGboatOMath.AMS.com

Editor. TUGboat

CARNES. Lance
163 Linden Lane
Mill Valley. CA 94941

415-3888853

Site Coordinator for "small" systems

CLARK, Malcolm W.
Imperial College
Computer Center
Exhibition Rd
London SW7 2BP. England

01-589-5111 x 4949
Unix: mwcOdoc.ic.ac.uk

CRAWFORD. John M .
Computing Sewices Center
College of Business
Ohio State Univers~ty
1775 College Road

Columbus. OH 43210
614-292-1741
crawford-jOosu-20.ircc.oh'1ostate.edu
Bitnet: TS013500HSTVMA

Prime 50 Series Site Coordinator

DYER. Allen R.
13320 Tridelphia Road
Ellicott City, MD 21043

(301) 531-3965

FARRELL. Shawn
Computing Centre
McGill University
805 Sherbrooke St W
Montreal H3A 2K6. Quebec Canada

514-398-3676
Wnet: CCSFOMCGlLLA

FOX. Jim
Academic Computing Center HG-45

Univerrity of Washington
3737 Brooklyn Ave NE

Seattle. WA 98105
206-543-4320
fox0uwavm.acs.washington.edu

Bitnet: fox7632Ouwacdc

CDC Cyber Site Coordinator

FUCHS. David
1775 Nemll
Palo Alto. CA 94303

415-323-9436

GIROUARD, Regina
American Mathematical Society
P. 0. Box 6248
Providence. RI 02940

401-272-9500 x224
RMGOMath.AMS.com

GOUCHER. Raymond
T@ Usen Group

P. 0. Box 9506
Providence. RI 02940-9506

401-751-7760
REGOMath.AMS.com

Executive Director

GUENTHER, Dean
Computing Service Center
Washington State University
Pullman WA 99164-1220

509-335-0411
Bitnet: GuentherOWSUVMl

Finance Committee; IBM VM/CMS
Site Coordinator; Annual Meeting
Program Coordinator

HAMILTON, Hope
National Center for

Atmospheric Research

P. 0. Box 3WO
Boulder. CO 80307

303-497-8915
HamiltonOMMM.UCAR.Edu

HENDERSON, Doug
Division of Library Automation

Office of the President
University of California. Berkeley
300 Lakeside Drive. Floor 8

Oakland. CA 94612-3550
415-987-0561
Bitnet: dlatexOucbcmsa

Metafont Coordinator

ION, Patrick D.
Mathematical Reviews
416 Fourth Street
P. 0. Box 8604
Ann Arbor. MI 48107

313-996-5273
kmOMath.AMS.com

KELLERMAN. David
Northlake Software

812 SW Washington
Portland. OR 97205

503-2283383
Usenet: imapn!negami!davek

VAY (VMS) Site Coordinator

KNUTH. Donald E.
Department of Computer Science
Stanford University
Stanford, CA 94305

DEKOSail.Stanford.edu

KRATZER, David H.
Los Alamos National Laboratory
P. 0. Box 1663, C-10 MS 8296

Los Alamos. NM 87545
(505) 667-2864
dhk0lanl.gov

MacKAY, Pierre A.
Northwest Computer Support Group
University of Washington
Mail Stop DW-10

Seattle. WA 98195
206543-6259
MacKayOJune.CS.Washiogtoo.Edu

UNlX Site Coordinator

PLATT. Craig R.
Dept of Math & Astronomy
Machray Hall
University of Manitoba
Winnipeg R3T 2N2, Manitoba

Canada

204-474-9832
Bitnet: platt0wfmcc
Bitnet: platt0ccm.UManitoba.CA

CSnet: platt0uofm.cc.cdn

IBM MVS Site Coordinator

THIELE, Christina
Canadian Journal of Linguistics
Carleton University
Ottawa K1S 586, Ontario Canada

Bitnet: WSSCATOCARLETON

WHIDDEN, Samuel 0.
American Mathematical Society
P. 0. Box 6248
Providence. RI 02940

401-272-9500
sbwOMath.AMS.com

Finance Committee

ZAPF, Hermann
Seitersweg 35
D-6100 Darmstadt
Federal Republic of Germany

Addresses and telephone numbers o f individuals serving in more than one capacity are

listed only once. Unless indicated otherwise, network address are for the Internet.

July 1989

Site Coordinators

Officers and Committee Members M-3

CDC Cyber IBM MVS

FOX, Jim PLATT, Craig R.
Academic Computing Center HG-45 Dept of Math & Astronomy
University of Washington Machray Hall

3737 Brooklyn Ave NE University of Manitoba
Seattle. WA 98105 Winnipeg R3T 2N2, Manitoba

2M543-4320 Canada
fox0uwavm.acs.washington.edu 204-474-9832

Bitnet: fox7632Ouwacdc Bitnet: plattOuofmcc

CDC Cvber Site Coordinator Bitnet: plattOccm.UManitoba.CA
CSnet: platt0uofm.cc.cdn

DG M V

CHILDS. S. Bart
IBM VMJCMS

Deot of Comouter Science GUENTHER. Dean

~ e i a s A & M University Computing Service Center

College Station, TX 77843-3112 Washington State University

409-845-5470 Pullman WA 991641220

bart0cssun.tamu.edu 509-335-0411
Bitna: BartOTAMLSR Bitnet: GuentherOWSUVMl

President: Finance Committee Annual Meeting Program Coordinator

0 Annual Meeting Program Committee on
Committee Local User Groups

GUENTHER. Dean R.
509-3350411
Bitnet: GUENTHEROWSUVMl

CLARK, Malcolm W.
Unix: mwc0doc.ic.ac.uk

(Board of Directors)

0 Prime 50 Series

CRAWFORD, John M .
Computing Services Centel
College of Business
Ohio State Univenity
1775 College Road

Columbus. OH 43210
614-292-1741
Crawfad-JOOhiiState.edu
Bitnet: TSOl35OOHSTVMA

International Coordinator

"small" systems

CARNES. Lance
163 Linden Lane

Mill Valley. CA 94941
4153888853

Committees

NAUGLE, Norman
Mathematics De~artment
Texas A & M university

College Station. TX 778433112
409-845-3104

(Board o f Directors)
GOUCHER. Raymond 0 Output Device Standards

Annual Mu t i ng Program Coordinator 401-751-7760 Committee

HAMILTON. Hope
(Board of Directors)

HENDERSON, Doug
Bitnet: dlatex0ucbcmsa

(Metafont Coordinator)

THIELE. Christina
Bitnet: WSSCATOCARLETON

(Board of Directors)

Bylaws Committee

BEETON. Barbara
401-272-9500 x299
BN0OMath.AMS.com

(Board of Directors)

DYER. Allen R.
13320 Tridelphia Road

Ellicott City, MD 21043
(301) 531-3965

(Board of Directors)

Chair

GOUCHER. Raymond
401-751-7760
regOMath.AMS.com

(Board of Directors)

(ex officio)

KNUTH. Donald E.
(Board of Directors)

(ex officio)

PRICE. Lynne A.
Hewktt-Pacbrd
3200 Hillview Avenue

Palo Alto. CA 94304
408-857-4075

WHIDDEN. Samuel B.
401-272-9500
rbwOMath.AMS.com

(Board of Directors)

.- .- ..

REGOMath.AMS.Com

(Board of D~rectors)

Chau

HENDERSON, Doug
415-642-9485
Bitnet: dlatex0ucbcma

MCGAFFEY. Robert W.
Martin Marietta Energy Systems. Inc
Building 9104-2

P. 0. Box Y
Oak Ridge. TN 37831

615-574-0618

(Board of Directors) McGai?ey%ORN.MFEnstOnrnfecc.arpa

THIELE, Christina 1989 Scholarship Committee
Bitnet: WSSCATOCARLETON

(Board of Directors)
SHARLOW, Larry

Membership Committee 10 Toltec #3
Flagstaff. AZ 86001

LAURENDEAU. Charlotte V. 602-774-1630

TEX Users Group
P. 0. Box 9506
Providence. RI 02940-9506

TUGboat Editorial Committee

401-751-7760

(ex officio)

CLARK. Malcolm W.
Unix: mwcOdoc.ic.ac.uk

(Board of Directors)

BEETON. Barbaa
TUGboatOMath.AMS.Com

(Board of Directors)

Editor

GIROUARD, Regina DAMRAU. Jackie
401-272-9500 x224 Mission Research Corporation
RMGOMath.AMS.com 1720 Randolph Road SE

(Board of Directors) Albuquerque. N M 87106-4245
505768-7647

Nominating Committee damrauOdbitch.unm.edu

BARNHART. Elizabeth
National EDP Department
N Guide
Radnw. PA 19088

215-2938890

MacKAY, Pierre A.
Department of Computer Science,

FR-35
University of Washington

Seattle. WA 98195
2LX-543-6259
MacKayOJune.CS.Warhingh.Edu

(Board of Directors)

Bitnet: damrauObootu

Associate Editor, L&@

HOENIG, Alan
(Board of Directws)

Associate Cc-Editor, Typesetting on
Personal Computers

HOSEK, Don
3916 Elmwood
Stickney, IL 60402

w e t : U33297OUICVM

Associate Editor for Output Devices

UNlX

MacKAY. Pierre A.
Northwest Computer Support Group
University of Washington
Mail Stop DW-10
Seattle. WA 98195

206-543-6259
MacKayOJune.CS.Washington.Edu

VAX (VMS)

KELLERMAN. David
Northlake Software
812 SW Washington
Portland. OR 97205

5032283383
Usenet: imagen!negami!davek

J~RGENSEN, Helmut
Dept of Computer Science
Univ of Western Ontario
London N6A 587, Ontario, Canada

519-661-3560
Bitnet: A5050UWOCC1
UUCP: helmut0deepthot

Associate Editor for Software

MANN. Laurie D.
Stratus Computer
55 Fairbanks Blvd
Marlboro. MA 01752

617-460-2610
uucp: harvard!anvil!es!Mann

Awcia te Editor for Training issues

PFEFFER, Mitch
Suite 90
148 Harbor View South

Lawrence. NY 11559
516-239-4110

Associate Co-Editor. Typesetting on
Personal Computers

TOBIN, Georgia K.M.
The Metafoundty
OCLC Inc., MC 485
6565 Frantz Road
Dublin. OH 43017

614-764-6087

Associate Editor for Fonts

WHITNEY. Ron
TEX Users Group
P. 0. Box 9506
Providence. RI 02940

TUGboatOMath.AMS.com

Production Editor

TEX USERS GROUP
Have you ever wished you knew how to use the

full potential of or WTjijX properly?

Can't get away to take a course? Let us help you!

Here's your opportunity to learn more about T'X.

If you know of six to fifteen individuals interested in learning more about QX or U r n , we'll come to
you!* Check around your own organization; check with other organizations in your locality. (If you have
less than six, let us know; we may be able to combine two or more small groups.)

NAME OF CONTACT/TELEPHONE:

Names of individuals interested in courses Dept./Co. Level of Instruction

Please check one:

[] We have a training facility equipped with computer terminals, PC's or Macs.

[] We do not have a training facility.

Notes:
Completion of this inquiry does not obligate you in any way.
Fees will vary depending on the course offered and the number of participants.

Some of the courses we offer are:

7QX: all levels, macro writing,
' output routines, wizard

UQX: all levels, style files

METAFONT

Postscript

If you would like to have detailed descriptions of
the courses we offer or need additional information,
contact Charlotte Laurendeau at the TUG office:

P. 0. Box 9506
Providence, RI 02940, U.S.A.
401-751-7760

In addition to having conducted these courses over
the past several years throughout the U. S. and
Europe as part of our Regional Course program,
we have offered courses on-site for a number of
organizations, including:

American Mathematical Society,
Beckman Instruments, Inc.,
Brookhaven National Lab,
Digital Equipment Corp.,
Digital Equipment Corp. (England),
Institute for Advanced Study (Princeton),
Lawrence Livermore National Lab,
Lawrence Berkeley National Lab,
Los Alamos National Lab,
Rutgers University,
Science Applications (Las Vegas),
University of Delaware,
University of Washington, and
Woods Hole Oceanographic Institute.

In many cases TUG has conducted several different
courses for each these organizations, especially Los
Alamos National Lab, where more than two dozen
courses at all levels of QX and UT)@ have been
conducted since 1985.

*Based on availability of a properly equipped training facility.

July 1989 TEX Consulting and Production Services M-11

TEX Consulting and Production Services

North America

AMERICAN MATHEMATICAL SOCIETY
P. 0 . Box 6248, Providence, RI 02940;

(401) 272-9500, ext. 224
Typesetting from DVI files on an Autologic APS Micro-5.

Times Roman and Computer Modern fonts.

Composition services for mathematical and technical
books and journal production.

ARBORTEXT, Inc.
535 W. William, Suite 300, Ann Arbor, MI 48103;

(313) 996-3566
Typesetting from DVI files on an Autologic APS-5.

Computer Modern and standard Autologic fonts.

TkX installation and applications support.

7&X-related software products.

ARCHETYPE PUBLISHING, Inc.,
Lori McWilliarn Pickert

P. 0. Box 6567, Champaign, IL 61821; (217) 359-8178

Experienced in producing and editing technical journals

with TkX; complete book production from manuscript
to camera-ready copy; TEX macro writing including
complete macro packages; consulting.

HOENIG, Alan
17 Bay Avenue, Huntington, NY 11743; (516) 385-0736

rn typesetting services including complete book
production; macro writing; individual and group

instruction.

KUMAR, Rornesh
1549 Ceals Court, Naperville, IL 60565; (312) 972-4342

Beginners and intermediate group/individual instruction
in 'I)$. Development of macros for specific

purposes. Using Tj$ with FORTRAN for

custom-tailored software. Flexible hours, including
evenings and weekends.

OGAWA, Arthur
920 Addison, Palo Alto, CA 94301; (415) 323-9624

Experienced in book production, macro packages,
programming, and consultation. Complete book
production from computer-readable copy to

camera-ready copy.

RICHERT, Norman
1614 Loch Lake Drive, El Lago, TX 77586;

(713) 326-2583

macro consulting.

m N O L O G Y , Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;

(617) 738-8029.

w macro writing (author of M a c r o w) ; custom macros
written to meet publisher's or designer's specifications;

instruction.

Outside North America

BAZARGAN, Kaveh
Optics Section, Blackett Laboratory, Imperial College

of Science and Technology, London SW7 2BZ, U.K.;
(01) 589 5111 ext. 6841

Instruction in m, for beginner and intermediate levels.
Custom macros, including complex tables.

W W O R K S Pty. Ltd.
78 Nott Street, Port Melbourne, Victoria 3207, Australia;

61 3 646 5613; Fax: 61 3 6463550
Commercial versions of and screen previewers for

computers including PC, Macintosh, Amiga, Unix,

VAX, and w - r e l a t e d products; print drivers for dot
matrix printers, 300 dpi lasers, and phototypesetters
(Autologic, Compugraphic and Linotronic);
assistance with information on public domain software;

consulting for typesetters and other users.

Information about this service can be obtained from Ray Goucher, TkX Users Group,
P. 0. Box 9506, Providence, RI 02940, (401) 751-7760.

