
TUGboat, Volume 10 (1989), No. 2

METAPLOT
Machine Independent

Line Graphics for 'QjX

Patricia P. Wilcox

Last winter my husband and I set out to use

A m i g a m to document a collection of FORTRAN

mechanical engineering programs. We had a stack

of drawings to include: some generated directly by

the FORTRAN programs, and some created using

the Aegis Draw 2000 program on the Amiga.

It would be a big help to be able to print those

drawings with w! I decided to give it a try, using

METAFONT to do most of the work, and within a

few days I had T@ drawing pictures like these two:

From that beginning has grown a set of META-

FONT and macros collectively referred to as
"METAPLOT". Here's how it works. The METAPLOT

macros enable METAFONT to simulate a line plotter,

so that it can turn a (suitably pre-formatted) line

plotter command file into a picture variable. The

picture is chopped up into rectangular tiles which

are shipped out as "characters" that can be typeset

by w.
This is not a particularly efficient way to do

things; there is extra overhead because METAFONT

runs as an interpreter, and even more overhead

due to the diabolical deviousness of METAFONT1s

mental processes. METAFONT run time for a single

drawing is likely to be several minutes. On the other

hand, this approach is virtually system and device

independent. Slowness notwithstanding, METAPLOT

is proving to be a simple and useful way to add line

drawings to TEX documents.

We present an account of our journey on the

road to illustrated w, in the hope that the reader

will find some interest therein, and perhaps benefit

from advance knowledge of some of the landmarks

and pitfalls to look for in his own excursions into

the wilder regions of METAFONT and 'l&X.

Scope of the Project

Our graphics needs were modest, compared with

some of the ambitious work being undertaken by

other members of the community. For one

thing, there was no need to worry about line color. If

colored printing should ever be required (unlikely!)

we will use the CAD software to separate the colors;

what a human printer wants to see is a separate

black line drawing for each color.

I also chose to ignore dot fill patterns, at least

initially, because METAFONT is terrible at dealing

with closely-spaced fill patterns over large areas.

This is because METAFONT encodes edges, not

points; a dot fill pattern has a lot of edges! (I
can envision some desperate workarounds for this

problem, but basically, if you need to do this sort

of thing, you should probably be using a Postscript

drawing program with a Postscript output device.)

METAPLOT does not attempt to process half-tone

photographs, which have much the same problems

as dot fill patterns. Besides, I have enough trouble

getting acceptably printed photographs when I am

working with an experienced printer who uses a

superb copy camera and metal printing plates on a

high-precision press! Most m output devices just

aren't good enough yet to print half-tones cleanly.

By limiting our scope to the representation of

black lines and solid areas, we thought to have a

useful project that could be accomplished quickly,

so that we could get back to the original task of

publishing documents.

In Search of Graphics Standards

My first step was an informal look at standardiza-

tion (or lack thereof) in the engineering graphics

field; METAPLOT could be much more generally

useful if it did not depend on a drawing format

specific to one drawing program or one computer

manufacturer.

I looked fmt at standards for the logical

representation of graphical objects. The possibilities

were IGES (a standard adopted by the U.S. in 1981)

[I], GKS (see [I] as well as discussion by Bart Childs

et al. in the April TUGboat [2]), and DXF, the

AutoCAD drawing exchange format [3], which is

something of a de facto standard in the industry.

Quite a few of the common CAD programs attempt

to support IGES, DXF, or both, although what I

have been hearing is that you can expect about

an 85% success rate in transferring a "standard"

drawing between unrelated software packages with

IGES or DXF, and that the standards change from

week to week. Not good enough!

180 TUGboat, Volume 10 (1989), No. 2

Although Bart Childs et al. (reference [2]

again) say that "Most vendors deliver reasonable

support for a GKS environment or it is available

from third party vendors for common systems,"

at the time I was designing METAPLOT it was not

evident that the GKS standard was supported by

any CAD programs for any of the common personal

computers. It may be that Dr. Childs is talking

about large mainframe computers.

The final blow is that not one of the four

computer aided drafting programs I use on the

Amiga is smart enough to understand IGES, DXF,

or GKS.

The next place to look was on the output

side: display standards. There are two major

philosophies at work in the structured graphics

software out there today. For want of a better

term, call them "traditional" vector graphics and

PostScript graphics. PostScript is rapidly winning

the field, because it's more powerful than straight

vector graphics, and vector graphics capabilities can

be handled as a subset of the functions supported

by PostScript.

In a traditional structured graphics program,

lines are drawn by moving a pen or an electron

beam along the shortest path from here to there.

There are no true curves, only straight-line approx-

imations. If fill patterns are used, they have to be

something that can be drawn with line segments.

PostScript graphics programs allow you to

generate curves from their Bezier control points and

fill areas with arbitrarily fine and complex pixel

patterns. Many 'I)$ implementations, including

A m i g a w , already have PostScript "\specialn

commands which allow you to integrate Postscript

graphics with QX documents for output to a

Postscript printer. There's just one little problem-

if you speak PostScript, you can speak only to

something that understands PostScript. Since I

want to print documents on "dumb" lasers

and dot matrix printers, and I have considerable

investment in traditional vector graphics software

and data files, PostScript will not work for me, yet.

Things are changing rapidly. It is encouraging

to hear about the good work of people much braver

than I who are working on Postscript interpreters

like the one described in "News from the V O W
Project" in the April TUGboat [4]. If such inter-

preters were universally available, the task of im-

porting vector plot files into 7&X documents would

be reduced to writing a simple program to translate

vector commands to PostScript commands.

But, let's face it, PostScript was designed as a

"write-only" standard. It's straightforward to write

a program that produces PostScript output, but

tricky to write a program that does a 100% correct

job of interpreting PostScript code and turning it

back into a bit-mapped image to drive a non-Post-

Script device. The "real" PostScript exists only in

the microcode of PostScript display devices, and is

not generally available to developers. The problem

is exactly analogous to what we would face if we

were asked to re-create w and METAFONT from

an external description of their behavior, without

the benefit of access to the original code and without

"trip" and "trap" tests to ensure adherence to the

standard.

Instead of waiting around until there was a

Postscript interpreter that could do my work for

me, I looked for something less elegant, but simple

and general, along the lines of the "standard display

file format" described by David F. Rogers [5] in the

last TUGboat. It didn't take long to find what I was

looking for. A sort of lowest common denominator

between all of these CAD software packages is that

they all know how to drive pen plotters, using a very
small set of graphics primitives. This "standard"

has the great advantage of being enforced by a

machine. Deviations from standard are punished

by the fact that the plotter simply won't work!

If you look at Hewlett-Packard Graphics Lan-

guage (HPGL), which is understood by HP plotters

(and a lot of other plotters on the market) you find

the following set of actual drawing commands:

Pen motion:

PU pen up

PD pen down

PA p lo t absolute

PR p lo t r e l a t i v e

C I c i r c l e

AA a rc absolute

AR a rc r e l a t i v e

LB l a b e l (draw t e x t)

Line spec i f i ca t i on :

LT l i n e type (dot/dash pa t t e rn)

SP s e l e c t Den color

..................................
Special purpose commands, mostly

f o r graphs & p i e char t s :

FT specify f i l l pa t t e rn

[type C , spacing C , angle1 I I
EA,ER,EW ou t l i ne rectangle/wedge

RA,RR,WG shade rectangle/wedge

XT,YT draw X and Y t i c k marks

along with a collection of auxiliary commands to

do things like plot scaling and plotter initialization
and cleanup. The specialized commands below

TUGboat, Volume 10 (1989), No. 2 181

the dashed line do not really belong in a standard

command set. Of the commands above the line, if

we omit the "relative" commands, we haven't lost

any functionality. This leaves, for a "standard" set

of line plotter commands:

Pen motion:

PU pen up

PD pen down

PA plot absolute

CI circle

AA arc absolute

LB label (draw text)

Line specification :

LT line type (dot/dash pattern)

SP select pen color

Could I omit anything else? Looking closely

at the actual HPGL plot commands used by CAD

software, you'll find that not everything in the list

is required by every graphics application. Ignoring

plotter setup and scaling, the three programs I use

on the Amiga (Aegis Draw, IntroCAD, and mCAD)

use just four commands: "move", "draw", "line

type", and "pen color". Generic CADD (on the

IBM PC) makes do with even fewer commands; it

uses only "move", "draw", and "pen color".

However tempting it was to pare down the list

further, I had one application (John's FORTRAN

plot package) that was going to need CI and LB

commands, and I later found another (VersaCAD)

that also used CI. Better leave them in.

Plot scaling would be done by scanning the

data (after rotation) for min and max x values, and

multiplying all coordinates by the ratio of printed

width (specified by the user) to width of the data

(X - x i) This is scaling from a printer's
point of view, where the important final dimension

is column width.

METAPLOT - Initial Implementation

Including the commands in the standard command

set didn't mean I had to implement them right away.

Color was at the bottom of my list; dashed lines

were near the bottom; label was too complicated

to deal with on the f i s t pass. I chose to start

the implementation of METAPLOT by writing META-

FONT macros analogous to plotter "move" and

"draw" routines.

You may notice that something is missing.

METAFONT is not very good at character string

manipulation. Surely we don't want to write an

HPGL language interpreter in METAFONT! How do

we get plotter commands translated to a form that

METAFONT can understand?

There were three answers to that. One of the

f i s t things we did was to write a version of the

FORTRAN plotting routines with output in the

form of METAPLOT macro calls instead of plotter

commands. This took care of the first stack of

drawings.

Translating the second category of drawings

(plots from the CAD program) depends on a sneaky

trick with Aegis Draw - watch closely! Aegis

Draw has the virtue of allowing the user to supply

his own plotter configuration file containing an

initial string, a separator, and a terminator for

each plot command. I created a configuration file

defining a rather strange imaginary plotter called

"META". When plotting to META, Aegis Draw

emits METAFONT macro calls instead of physical

plotter commands. Here's a small plot in HPGL,

with the equivalent META plot commands as first

implemented back in January:

HPGL : META :
----- -----
IN ; DF beginplot;

SP 1 pencolor(1) ;

LT 5 linetype(5) ;

PU;PA 100,100 moveto(100,100) ;

PD;PA 200,100 drawto(200,100);

PD;PA 150,167 drawto (l5OYl67) ;

PD;PA 100,100 drawto (100,100) ;

1N;DF endplot ;

Later on, I changed the most frequently-

used META plotter commands to more efficient

2-character codes, and added an explicit "-1" for

each unused HPGL parameter. (Line type has an

optional second parameter indicating pattern size.)

The same drawing, revised, looks like this:

beginplot; % EXPLANATION:

sp(1) ; % pen color
lt(5,-I); % pattern, spacing
pu(l00,100); % move to x,y
pd(200,IOO); % draw to x,y
pd(l5O,l67) ;

pd(l00,lOO) ;

endplot ;

The third way to convert plot commands to

META commands is a preprocessor called VGtoMF,
which is just now (May) becoming a reality. I'll

save VGtoMF to talk about later, because a lot of

things happened to METAPLOT between January and

May.

Once the META plot file exists, we need

a METAFONT driver file to generate the plot font.

This looks a lot like any METAFONT font generation

file, with a few extras needed for handling line

182 TUGboat, Volume 10 (1989), No. 2

drawings. (This sample anticipates the tile/mosaic

scheme described in the next section.)

mode-setup;

font-size .80 in#;

numeric current-char;

input plotmacs ; % METAPLOT macros
print-width:=1.5; % Inches! Using

max-tile_width:=,80; % dimensionless
max_tile_height:=.80; % numbers here is

% a design flaw.
print-rotation:=-90;

first-letter-code:=l;

plotter_pen_weight:=7;

%pen weight in plotter steps

mosaic ("myplot")(first-letter-code);

%characters generated here!

font-slant 0;

font-normal-space Opt;

font-normal-stretch Opt;

font-normal-shrink Opt;

u#= . lin#; % These values
font-x-height 5u#; % don't mean much

font-quad 2u#; % for a line plot
font-extra-space 2u#; % . . .
bye.

The resulting font could be used in by
explicitly typesetting the characters:

\font\plotfont=myplot50

. . . .
<\offinterlineskip\plotfont

\centerline(\charl\char2)

\centerline(\char3\char4}

3

or by invoking the "\plot" macro in plotutil . tex
(the third component of the METAPLOT package):

C\offinterlineskip\plot 1 (myplot50))

The Evolution of Modern METAPLOT

Dealing with Finite Memory. The biggest prob-

lem with our first test plots was that they weren't

big enough. They were small for two reasons:

METAFONT memory limitations and device driver

limitations. A complex plot (with lots of vertical

structure) will run out of memory sooner than a

very simple plot, but in any case, it doesn't make

sense to expect to keep a bit image of an entire plot

in memory at one time.

(Another reason for keeping character sizes

reasonably small is that some printers are limited

to characters 255 pixels on a side; this does not

happen with my DeskJet printer.)

It is not very easy to increase memory alloca-

tion for AmigaMETAFONT-it uses the maximum

memory addressable by 16-bit pointers. Adding

more memory would require doubling the size of all

address pointers.

Discussing TurboMETAFONT in the last TUG-

boat [6], Richard Kinch says, "We do not now see

the need to include the virtual memory simulator in

the TurboMETAFONT programs . . . the enterprise

of generating fonts does not seem to encourage the

use of enormous macros or tables" METAPLOT

may provide an incentive for including virtual mem-

ory in METAFONT, since METAPLOT could process a

large picture in a fraction of the time it takes now,

if the complete picture could be kept in memory at

once.

Figure 1. Mosaic tile layout.

Here's our initial solution for dealing with lim-

ited memory (Figure 1). A one-dimensional clipping

scheme is used, since 1-D clipping is faster than true

2-D clipping. Two new variables (max-tile-width

and max-tile-height) were added to the font

generation commands to specify how the picture

should be subdivided. The drawing is divided into

n horizontal strips, the plot file is scanned n times,

and on each pass, all lines are clipped against the

top and bottom of the current strip (remembering

to add half the pen width at the top and subtract

it at the bottom, so as not to lose the edge of a

line whose center just misses the box limits); after

clipping, any visible parts of the path are added

cumulatively to a picture variable. Then (and this

part is pretty fast) METAPLOT moves fiom left to

right across the strip, and-ing the picture with a

TUGboat, Volume 10 (1989), No. 2

black box exactly the size of one tile, and shipping

out the resulting piece of the puzzle as a character.

Note that the clipping is used only to reduce

the amount of memory used to store the picture.

The final character edges are determined by the

and-ing operation.

I had assumed that arbitrarily large pictures

could be processed by reducing the tile height,

thus requiring fewer square inches of picture to

be stored at one time. This works, up to a

point, but there is some tile height for which the

method breaks down. The figures in this article

were well within AmigaMETAFONT1s memory limits,

even at TUGboatls 723 dpi resolution, but some

of our FORTRAN-generated plots exceed memory

capacity at large size or high resolution.

Streamlined plots. Having, after a fashion,

resolved space problems, I started looking for im-

provements in the time domain. A 2:l performance

improvement resulted when I stopped culling the

picture variable after each path was added. (One

wonders what other easy speed-ups might still lurk

in the code . . .) One thing that would certainly

make things faster and reduce the size of plot files

would be to dispense with line-segment approxima-

tions to circles, curves, and filled areas, and let

METAFONT generate the curves mathematically.

It was frustrating-here was METAFONT,

which could solve all of our problems, acting

like a dumb line plotter. How could the CAD

program send circle, spline, and fill commands to

METAFONT? Well, we weren't using the pen color

command for anything . . .
And here was born the first of several "graphical

escape sequences". Let's say (assigning arbitrary

colors to pen numbers for purposes of discussion)

that we use pen 1 (black) for plain lines, pen 2

(blue) for "fill", pen 3 (green) for "filldraw", and

pen 4 (red) for "erase". Then if we hop over and

appropriate one of the line types on the DRAW

menu, and, by convention, call it a circle-drawing

pen, and use another spare line type for a spline-

drawing pen, we should be able to transmit some

fairly useful requests to METAFONT.

Circle-drawing pen conventions: (These are

METAFONT near-circles and super-ellipses)

A rectangle drawn with the circle pen is con-

verted to the ellipse bounded by the rectangle.

0 A single line segment defines a circle - leftmost

point in print coordinates is the center, right-

most point is on the circumference. (Don't

count on your CAD package not to flip lines

end-for-end. Saying "first point is center"

didn't work at all well.)

0 Alternatively (thanks to Bill Hawes for this

idea), use a square box to specify a square

ellipse, which is, of course, a circle.

0 A triangle (which is a Cpoint path with be-

ginning and end superimposed) is used to

represent an arc- point 1 = point 4 = center

of arc. Pick the shorter of the first and last

sides; this will be the radius. The arc is

drawn counterclockwise around the circle, from

shorter side toward longer side.

Spline pen conventions: A splined path consists

of 3 N + 1 points, defining Bezier curves, four points

per segment, with the center two points of each

segment being control points. (It may take a bit

of practice to develop the knack of defining a curve

by its control points, if your CAD program doesn't

display the curve.)

Pen type and path type are defined so that

they can be paired up in any combination; you can,

for example, draw a green ellipse, and METAFONT

will use filldraw to add the ellipse to the picture;

or draw a red circle and METAFONT will erase that

circular area of the drawing.

This is a bizarre-looking way to enter data!

What you see on the screen has very little relation-
ship to the METAPLOT picture you are creating. It

helps to use brown (invisible to METAPLOT) to draw

a temporary copy of a line-segmented ellipse or arc

as a visual indication of the figure symbolized by the

rectangle or triangle you're sending to METAPLOT.

To keep plot files small, erase the brown temporary

copies before writing out the plot for META. (I
haven't told you about brown. After trying out

the red/green/blue lines, we added pen 5 (brown)

for lines that will be invisible to METAFONT except

for computing rnin and max x and y -good for
bounding boxes and construction lines. And we

added pen 6 (purple) for half-weight lines and pen

7 (orange) for half-weight filldraw.)

Figure 2 demonstrates the use of graphical

escape sequences to fool Aegis Draw into generating

an assortment of things that are "impossible" to do

with Aegis Draw.

Now one last thing would be really useful,

and that is a way to graphically specify typesetting

commands with the CAD software, and have META-

FONT pass the typesetting requests along to

for final realization. OK, let's see . . . to be a

legal splined curve, a path must consist of 3N + 1

points. A rectangle is a 5-point path, so it can't

be a spline. We'll specify the position of a typeset

TUGboat, Volume 10 (1989), No. 2

Figure 2. "Self Portrait"

Demonstration of circles, arcs, and splines.

label by drawing a brown rectangle with the spline

pen. We can start at the lower left corner for

left-justified text, start at the lower right corner

for right-justified text, and start at one of the top

corners for text centered in the box.

We have METAFONT compute the corner co-

ordinates for each text box (in true inches on the

printed page, down and across from the upper left

hand corner of the plot), and write a TEX typeset-

ting command to the METAFONT log file, complete

with position information and a label number to

print on the first draft. After the user sees the first

QX draft of the plot, he can replace label numbers

with the appropriate text and move labels by ad-

justing x and y coordinates in the rn file, without

incurring the overhead of running METRFONT a

second time.

While we're on the subject of typesetting, I

should mention that complete typesetting informa-

tion for each mosaic of plot characters has been

included in the typeface itself, in the form of

\f ontdimen parameters (thanks to Tom Rokicki for

nagging me to do this). METAFONT writes the one-

line macro call that reassembles the plot mosaic,

along with the rest of the typesetting information,

in the METAFONT log file. After METAFONT has

created your plot type face, extract the typesetting

commands from the METAFONT log file and insert

them in your QX file at the point where you want

the picture printed, and you're done.

Using little invisible typesetting boxes, I did

the typesetting for Figure 3 at least ten times as

fast as I could have done it with pencil and ruler.

What a relief!

(Note for dingbat enthusiasts: the \f ontdimen

parameters now include line weight in printer coor-

dinates, so that fancy METAPLOT characters can be

joined with 7L-p-X rules of the right thickness.)

VGtoMF: A Universal Vector Graphics
Interface?

According to what I've told you so far, the Aegis

Draw program on the Amiga and a mysterious

FORTRAN program are the only programs in the

world that can generate command files for the

META plotter. If you look at the sample plot

listing, you can see that it would not be very

difficult to convert HPGL commands to META

format using nothing more than a text editor: but

this is hardly an elegant solution!

The trick to making METAPLOT portable to

all systems is to have a nice simple easily ported

C program that reads plotter configuration files

describing 1) the syntax of your existing plot file

and 2) the command syntax of the plotter you want

to convert to. This is intended to convert from

something else to META, but in theory it ought to

be able to convert from any plotter to any other

plotter.

y e , \
center of

Figure 3. A typical engineering drawing, using
METAPLOT typesetting boxes to position labels.

TUGboat, Volume 10 (1989), No. 2 185

There are a couple of traps here that I should

warn you about. Remember the 4095+ limit on

numeric values in METRFONT? Given that coordi-

nates in HPGL are usually written as integers, this

creates a rather narrow range of plot coordinates

where the plot program is not losing accuracy and

METAPLOT is not blowing up with illegally large

numbers in its transforms. A related issue is that,

in the present version of METAPLOT at least, the x

and y dimensions of a picture, measured in printer

steps, may not exceed 4095. This is not a problem

at low resolutions, but it would limit picture size on

a 2000 dpi printer to just over two inches.

Furthermore, mCAD, my favorite shareware

graphics program on the Amiga, needs a little

help in fixing up its x-to-y aspect ratio. And,

as I discovered in preparing the drawings for this

article, if you wish to plot at high resolutions,

you had better be prepared to center your plot

directly over the x, y origin, again to prevent

numeric overflow of transforms. Things would be

much more comfortable if coordinates were decimal

numbers pre-scaled to reasonable limits: say x and

y coordinates ranging from about -1000.000 to

about +1000.000.

The HPGL language permits a path to be

represented by a single draw command followed by

a list of x, y pairs-yet another syntactic variation

that the conversion program must be able to handle.

A quick look at some HPGL output from the

Macintosh version of VersaCAD revealed that it was

using CI (circle) commands as well as the move,

draw, pen color, and line type commands we were

expecting. OK, we'll add CI to the list of required

commands.

It's becoming apparent that VGtoMF has to be

more than the simple string-substitution editor I

originally set out to write! Required functions are:

Command string substitution

Aspect ratio correction

0 Coordinate transformation

Translation

Scaling

0 Special work-arounds

It's just about working now, with code to take

account of all the quirks I know about, but it's clear

that for every new CAD program someone wants

to use with METAPLOT, we can plan on having to

tweak up the code in VGtoMF to handle a new set of

Of course, with what we've already said about

Generic CADD, the graphic escape sequences for

curves and fills would have to work with just colors

(they have 256 of them), since CADD does not use
"Line type" commands. I'm beginning to see that

my "graphic escape sequences" are simply a way to

implement a set of PostScript graphics commands

for a CAD program that does not understand

PostScript. Since generic CADD does understand

PostScript, it would make sense to read the Post-

Script file directly. It's not much of a design change

to enhance the VGtoMF design to handle a small set

of PostScript commands, specified (along with the

vector graphics commands) in the configuration file.

What should this PostScript command set

include?

I've discussed this at some length with Scott

van der Linden, who handles the technical support

part of the Generic CADD bulletin board on BIX;

I've also studied PostScript output from several
other commercial CAD programs. Here are the

PostScript features supported by Generic CADD:

0 Arcs

0 Circles

Bezier curves (4 points per segment)

Lines

0 Ellipses

0 Fills (not supported by Macintosh CADD

Levell)

0 Conversion of colors to greyscales (not sup-

ported by Macintosh CADD Levell)

This is pretty close to the list supported by

Gold Disk's Professional DRAW on the Amiga.

(Professional DRAW also allows the user to import

bit-mapped drawings, but METAPLOT will ignore

them.)

What has to be added to the list of META

commands to support this list? Not much! It

looks to me like all we need is to add an "ellipse"

command and a "fill" command, and generalize the

line type command a little bit.

Ellipse. Suggested ellipse command:

e l k 1 , r2 , theta) ;

where ri is the length of the semi-major axis, r 2

is the length of the semi-minor axis, and the ta is

the angle of the semi-major axis measured counter-

clockwise from the positive x axis.

Line type. The syntax of the HPGL line type

idiosyncrasies. And, even though I am attempting is:

to write VGtoMF in simple straightforward C code, LT pat-no C ,pat-lenl

it will take a bit of work to get it to compile and where pat-no (0. .6) specifies a dot/dash pattern
run whenever we try it on a new system. and pat-len specifies a scale factor for the dashes.

186 TUGboat, Volume 10 (1989), No. 2

A pattern number 7 (line erase) would be handy.

I could add an eighth pattern number indicating

Bezier curves, but I'd rather not - this would

preclude the possibility of specifying a smooth

dashed line. Instead, let's add a third parameter

"path-spec", which is 0 for straight joins (the

default) and 1 for Bezier curves (4 points per

segment). This permits future extensions like path

type 2 (free join), 3 (bounded join), and 4 (tense

join). I like it! Here's how the It command in

META language looks after the change:

It (pat-no ,pat- len ,path-spec) ;

Fill types. Earlier we rejected the HPGL "FT"

command as merely part of a special-purpose pie-

chart and bar-graph complex. Let's resurrect it and

look at it:

FT [type C ,spacing [, angle1 I1

where "type" can be 1 (solid; bidirectional), 2 (solid;

unidirectional), 3 (parallel lines), 4 (cross-hatch), or

5 (ignored).

To include black and white PostScript fills,

we need to add type 6 (gray scale) and a fourth

parameter (percent) to specify the percent black, so

the META command looks like this:

f t (type, spacing, angle ,percent) ;

"Area erase" is "draw" with fill-type 6 and 0% fill;

solid fill could be "draw" with fill type 6 and 100%

fill, or possibly just fill type 1 or 2. The Post-

Script files I've looked at implement "f il ldraw"

by breaking it down into separate fill and draw

commands: this lets you draw a solid outline with

a dot fill.

More generally, it would be nice to draw a

sample and say "Fill area with this pattern."

Text. This part is deliberately left vague. HPGL

does text by specifying direction (DI) and size (SI)

e l (r 1 , r 2 , t he t a) ; %draw e l l i p s e

Line spec i f ica t ion:

lt (pat-no ,pat-len,path-spec) ;

sp(co1or);

F i l l spec i f ica t ion:

f t (type, spacing, angle ,percent) ;

Standard Graphics subsets for PostScript. I
would like to propose a nomenclature for talking

about PostScript graphics. I steered clear of Post-

Script for months because the choices seemed to be

either 1) no PostScript or 2) writing a full-featured

Post Script interpreter.
In fact, METAPLOT includes a well-defined set of

PostScript functions, even though it does not call

them PostScript. Let's have some formally-defined

subsets of PostScript for Graphics!

METAPLOT is capable of doing "Subset 1 Post-

Script", which consists of the set of functions

supported by Generic CADD Level1 for the Macin-

tosh. (Arcs, circles, Bezier curves, lines, and ellipses

in black and white only; fills not supported.)

The META language defined above will support

a "Subset 2 PostScriptl'-same as Subset 1, but add

gray scale fill capabilities.

To make it support "Subset 3 PostScript" which

has the option of color as well as gray scale fills, we

may need to add a "color" parameter to f t ; in other

words, fill color and outline color for a filled area

are typically two different things, and specifying

line color does not affect fill color. "Subset 3

PostScript" corresponds to Generic CADD1s IBM

Level3 product, and also, I believe to Gold Draw's

Professional DRAW program for the Amiga.
METAPLOT will probably support "Subset 2"

PostScript eventually, but there are no plans to

support "Subset 3" PostScript (colored fills).

Future Directions
in separate commands and then issuing a label (LB)

The chief items on the menu are
command. It will take some juggling to defme a

1) Formalized METAPLOT support for reading and
syntax incorporating METAPLOT1s typesetting boxes,

writing "Subset 1 PostScript" . We should soon
HPGL1s stick letters, and PostScript typesetting

be able to translate any vector graphics file to
commands (if any - the entry-level CAD programs

PostScript, using an enhanced VGtoMF with the
do not seem to do PostScript typesetting.)

appropriate configuration tables.
META commands for Pos tscr ip t Graphics. 2) Making METAPLOT work for new users and new
Leaving text for a future article, here is the list CAD programs on new systems. It may take
of META commands augmented with the tools for some work to get VGtoMF to compile with
doing Postscript graphics: non-Amiga C compilers; the METAFONT and

Pen motion: QjX macros have so far run perfectly on every

PU(X,Y) ; %move system we've tried.

pd(x,y) ; %draw On page 306 of this issue of TUGboat is a

c i (r > ; %draw c i r c l e METAPLOT order form. Be sure to specify diskette

aa(x,y, t he t a) ; %draw a r c size and format in your order! I've tried to set

TUGboat, Volume 10 (1989), No. 2 187

the price low enough that it won't be a barrier

for any of you who wish to join this adventure

into the unknown. I look forward to a challenging

group effort to see just how many systems we can

get METAPLOT to work on; and I'm excited about

the prospect of illustrations bursting into bloom

in rn documents all over the world. I'll try to

keep the TUGboat readership up to date on future

developments.

Afterward

As we go to press, I've just received my copies of

the ANSI Graphical Kernel System and Computer
Graphics Metafile standards. Look at the foregoing

paper as a historical treatise on "How Pat Wilcox

attained enlightenment on the reasoning behind the

inner workings of the Computer Graphics Metafile

standard." The standard defines a set of graphical

objects very similar to my HPGL-derived list. Two

changes are needed: add "elliptical arcs" to my

list, and add support for Bezier cubic splines to

the CGM standard (splines would be supported as

Generalized Drawing Primitives). Add to "Future

Directions": incorporate CGM support into the

VGtoMF program.

References

1. Encarnaqiio, J., R. Schuster, and E. Voge,

eds., Product Data Interfaces in CAD/CAM

Applications: Design, Implementation and Ex-
periences. Springer-Verlag, Berlin Heidelberg

New York Tokyo, 1986.

2. Childs, Bart, Alan Stolleis, and Don Berryman,

"A Portable Graphics Inclusion." TUGboat,

Vol. 10, No. 1, pp. 44-46, April, 1989.

3. Johnson, Nelson, AutoCAD: The Complete Ref-

erence. Osborne McGraw-Hill, Berkeley, CA,

1989.

4. Harrison, Michael A., "News from the V i m

Project." TUGboat, Vol. 10, No. 1, pp. 11-14,

April, 1989.

5. Rogers, David F., "Computer Graphics and

TEX -A Challenge." TUGboat, Vol. 10, No.

1, pp. 39-44, April, 1989.

6. Kinch, Richard J . "TurboMETAFONT: A New

Port in C for UNIX and MS-DOS." TUGboat,

Vol. 10, No. 1, pp. 23-24, April, 1989.

7. Tobin, Georgia K. M., The Elements of META-

FONT Style. Preliminary Version, 4 August

1985.

Acknowledgments

Tomas Rokicki gets a large part of the credit for

METAPLOT -first, for his outstanding implementa-

tion of rn and METAFONT on the Amiga, and

second, for being a constant source of inspiration,

informatiorf, bug fixes, and reassurance as I pushed

his software to its outer limits and beyond.

Thanks to my office neighbors at OCLC, Geor-

gia K.M. Tobin and Rick Tobin, for teaching me

about TEX and METAFONT, by a very successful

policy of benign neglect coupled with coming in-

stantly to the rescue when I got in trouble. Georgia's

instruction manual The Elements of Metafont Style

[7] was the start of my addiction to METRFONT.

Many thanks also to all the friends and ac-

quaintances who have cheerfully helped out when

descended upon by an apparition bearing computer

diskettes - "Here, let's see if this will run on your

system. Show me your instruction manuals. Can

I watch all your graphics programs run? Now can

you dump the data files for me? Send me some

Postscript!" Some of these long-suffering helpers

are (again) the Tobins, who first tried METAPLOT

with Personal and showed me MacDRAW 11;

Bill Hawes (the famed wizard of ARexx on the

Arniga); Tim Mooney (the author of mCAD and In-

troCAD for the Amiga); Dave Haas of Dartmouth's

Northstar Project, who ran METAPLOT for me on the

Unix system at Dartmouth and is gearing up to be

the number one Atari ST beta test site; and Andrea

Ardito and Jack Somerville at Foremost Computer

Systems, Inc., who opened my eyes to a whole world

of Macintosh wonders in a lightning late-night office

tour, and dumped their VersaCAD plot files for me.

Thanks to Willy Langeveld who sent me Postscript

files from VLT, and, most recently, to Scott van

der Linden, who has answered a steady stream of

questions about Generic CADD for the IBM PC

and Macintosh, and has convinced me that they are

Doing Things Right.

And, of course, I need to thank John Wilcox,

who is putting up with all this nonsense when I

really should be working on his program documen-

tation.

o Patricia P. Wilcox
The Coolspring Banjo Works

6617 Home Road

Delaware, Ohio 43015

