
The description language chosen for FDNTEX

Benjamin Bayart
10, rue du Croissant
75 002 Paris
France
bayartb@edgard.fdn.fr

Abstract

In this paper I will introduce the package description language that has been cho-
sen to be used in FDNTEX. In short, this language is XML with a dedicated DTD.
First, I’ll introduce FDNTEX, to obtain a good representation of its requirements.
Then, I’ll introduce the data that have to be contained in the description files.
Finally, I’ll introduce briefly the DTD itself.

This paper has to be understood for what it is: first thoughts on how to
obtain the right language. What has to be expressed by this language is something
definite, but the DTD itself is in an early stage development at the time of writing.
Thus, if the goals described in the firsts sections and the DTD described later are
in conflict, consider the DTD is wrong.

Vocabulary

The word “package” will be used with several mean-
ings in this paper, this can be troublesome in certain
places. A package can be, depending on the context:

• a LATEX style file, like array.sty;

• a part of the distribution, e.g., the package con-
taining TEX itself, or the one containing Ω;

• a binary version, in a given flavour, of the pre-
vious one, e.g., the rpm file containing Ω, or
TEX.

It’s sometimes hard to distinguish between the three
meanings since they often represent three stages in
the life of the same object: array which is a package
in the first meaning, as any LATEX user knows, is also
a package according to the second meaning, since
FDNTEX has a description of it, with dependencies,
methods to build and install it, and so on; and will
also be a package in the third meaning since the
rpm flavour of the distribution will contain an rpm
package called array.

FDNTEX is designed to exist under several “ver-
sions”, e.g., one for FreeBSD, one for Linux/RPM,
one for Linux/Debian, one for HP-UX 9, and so on.
Those versions will be named “flavours” in this pa-
per, to avoid confusing the reader between “ver-
sions” of FDNTEX and versions of the packages that
are part of it.

According to the context, “I” will refer either
to the author, or to an hypothetical user’s thoughts.

Introduction

FDNTEX is a new distribution of TEX, based upon
different ideas from the previous ones.

Before teTEX appeared, a “TEX distribution”
was, de facto, a pure distribution of “TEX, the pro-
gram” and the strictly required files to build it and
make it work in a standalone way. Any other tools,
like fonts or formats or extensions, had to be in-
stalled by hand.

Since teTEX appeared, we have lived in a more
user-friendly world: one can install the whole thing
and obtain a rather complete TEX-based system in-
cluding LATEX and lots of useful extensions.

But going on straight in the same way will lead
us to a really heavy system, providing any available
font, say Japanese fonts, to any user, even Russian-
speaking ones. Thus distributing a hundreds-mega-
bytes system, 85% of it being useless for each given
end-user.

To avoid this problem, two ways can be studied:
restrict distributions to a good subset of what is pos-
sible, and hope users will be successful in installing
the missing parts by themselves; or use a different
approach of the distribution problem. FDNTEX is
an attempt to fulfill the second solution.

The basic ideas underlying FDNTEX design are
briefly described as follow:

• Fully modular, and fine grained. I don’t want
to use patgen, thus I don’t install it.

• Easy to upgrade a part without reinstalling the
whole thing. I upgrade my LATEX kernel every

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 159

Benjamin Bayart

six months or so, and I don’t want to change
my Computer Modern fonts that often.

• Easy to install on the target system. If I use a
distribution instead of the root-source, it’s just
because I don’t want to install a useless C com-
piler.
The original idea was even simpler. We use

TEX, in the leading team of FDN1, for adminis-
trative purposes, and thus we all need to have it
installed on our computers in a satisfactory way.
Most of us are not good at using TEX outside of
this restricted use (in fact, I’m the only one in
the team who knows about the internals of TEX).
teTEX didn’t contain the packages we needed. Thus
I started developing a TEX distribution that could
satisfy those requirements. And this is also why this
distribution is called “FDNTEX”, originally, it was a
TEX distribution to be used by FDN.

Let’s have a look at some instructive examples
to have a more precise view of what is standing be-
hind those three simple ideas.

Fully modular By stating that “FDNTEX is to be
modular”, several problems are addressed.

The first problem has already been discussed:
if I don’t need patgen, since I don’t want to gener-
ate hyphenation patterns for a new language, then
I don’t want it on my system. Simmilarly, if I don’t
use PostScript fonts at all, I don’t want to have their
metrics and the related software. It’s useless, will
slow down my system, and will obstruct the use of
TEX on an old computer with a small disk.

The second problem is harder to understand.
As I’m a French native, Ω is of some help to me. If
I decide to use only Ω and Ω-based formats, then
I don’t want to install TEX itself, but Ω instead.
It means that the minimal subset needed to start
FDNTEX needn’t contain TEX itself.

The third problem is that I want to be al-
lowed to install only the minimal subset of the whole
TEXware required to build the book I’m writing.
That means that I don’t want to install large things
like “all the PS metrics” if I don’t use PostScript
fonts at all in my book. And, even more, if I only
use Times for some titles, I don’t want to install
something too large on the poor old laptop that I
have to use to write this book. Thus, something
as large as “all the PS metrics” will not be a valid
package for FDNTEX. It will have to be split into
several parts, probably one per font.

All that leads us to a system with hundreds of
packages. Just by splitting down the web2c bundle
into distinct software units leads to several dozen

1 A non profit organization, which is an Internet access
provider.

packages. Each of the hundreds of extensions of
LATEX is also an autonomous package, at least, and
sometimes several, for large parts. This makes hun-
dreds, or perhaps thousands, of packages as part of
the final distribution.

One cannot afford to know all of them in enough
details to be able to choose. Thus, there must be
a reliable description of the dependencies between
packages (who will ever remember that tabularx re-
quires array to be installed, or that concmath uses
url?), and there must be a way to choose a reason-
able subset for a given use. E.g., if I want to use
TEX to typeset a paper about electronics, I need a
way to say “everything related to electronics is of
interest to me”, and a second way to give more pre-
cise instructions later to add or remove packages by
hand.

Easy to upgrade This point is easier to under-
stand, and easy to automate. The only really hard
thing is to handle strange cases.

Let’s have a look at a hypothetical example.
Let’s say Mr. X wrote a few packages, a, b and c
which are really small ones and thus are distributed
as a single one. As those packages are small, and
distributed as a single thing, they are in the same
bundle in FDNTEX. But, a few months later, our
good old Mr. X has worked a lot, and his packages
have gained hundreds of features, and are now re-
ally large ones, each being composed of dozens of
small independent parts. We would then need to
re-bundle them separately. Thus, how to explain
to the system that upgrading from the first a&b&c
bundle means installing the three separate bundles,
and that from this point each part can be upgraded
separately?

Of course the symmetrical example is also trou-
blesome. If two separate things are now unified in
a single bundle, how can we explain this to the sys-
tem?

Even more, one can mix the problems: three
elements are replaced by two in the new version.
How to upgrade easily?

The 18 months spent working on FDNTEX have
not yet led to any general solution to this ugly prob-
lem.

Easy to install on the target This point is an
interesting one since it’s one of those which led to
lots of discussions about the design of FDNTEX.

The main idea can be explained so: as I run a
RedHat system, I want each FDNTEX package to be
an rpm file, so that I can install it easily, using my
usual system tools.

160 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

�
�����

H
HHHHj? ?

?

?

????

?

?

?

?

?

?

Internal representation

pre-processor

description

generator generator generator generator

HTML Catalogue.spec

processor

.rpm file

Makefiles

processor

BSD ports

debian-tree

processor

.deb file

Figure 1: In this diagram, each teletype text identifies a physical representation of the information,
and each roman text identifies a process to go from one representation to the other. The “Internal
representation” is different since it only exists in the memory of a program, and not in a real file.

This means creating several flavours of the dis-
tribution, something like one per target system, and
sometimes more, if several flavours of a system ex-
ist (as for Linux where Debian-based systems have
almost no common point with RedHat-based ones).

Another way would be to develop a really stan-
dalone system, that would provide everything from
the description language to the final binary format,
including the building tools and all the other things
needed. Such a system would be really easier for me
(read “the distribution maker” here, instead of just
“me”) but would lead to something of less interest
for most people. On the other hand, it would permit
development of a reasonably complete distribution
in a short period of time. The prototype was devel-
oped in only 6 months. And it would avoid devel-
oping all the general system that we are discussing
here.

The ideas developed here are meaningful as long
as there is a team working on the distribution, with
people dedicated to each generator, but are mean-
ingless if this is not the case, at least because I will
never have all the variety of operating systems, and
all the knowledge that is required to develop all of
the flavours.

Several technical problems arise from this inten-
tion to be close to the target system; we will expose
them later on, in the section “Developers’ tools”.

Design, implementation, tools

In this section, we will discuss the way FDNTEX is
to be developed, and what will be the development
tools. That is to say, not what the resulting binary
packages should be, nor which packages will be part

of the distribution, but how packages will be created
for any flavour of the distribution.

The system design The prototype of FDNTEX2

was written directly in an rpm representation (tech-
nically, it is a large bundle of files in .spec format,
which is that used by rpm), and from that auto-
matically translated into the right bundle of files for
FreeBSD ports. This approach is of course wrong,
but at least has shown that writing such a distribu-
tion is feasible.

The right choice is, of course, as shown on fig-
ure 1, to have a complete and precise description of
the package and to consider its representation in a
given system (say rpm, swtools, or things like that)
as a projection. Thus this description has to be a su-
perset of what can be expressed in the various target
languages.

Developers’ tools The tools used to create the
distribution itself are clearly shown in figure 1. The
first one is the pre-processor (mainly a parser) that
understands the original description of the distri-
bution. This one is, in fact, strongly linked to the
language used to describe the packages.

Discussions about TPM3 led to the conclusion
that writing a brand new language from scratch
seems to be a bad choice, and that it is better to
use XML as the representation of the knowledge

2 This prototype can be downloaded from ftp://ftp.

lip6.fr/pub/TeX/FDNTeX/Prototype. It’s rather old but
good enough to give a more precise idea of the goal to reach.

3 The TEX Package Manager, an idea proposed by Simon
Cozens, Sebastian Rahtz and Fabrice Popineau, grew inde-
pendently of FDNTEX but leads to a really similar system. It
was widely discussed, first on comp.text.tex, and then on a
separate mailing list.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 161

Benjamin Bayart

database underlying the distribution. Thus, the pre-
processor in figure 1 is only a suitable XML-parser
with some knowledge of the system.

The most interesting points of XML for this
purpose is that good XML-parsers exist on most
systems, written in various languages, so that one
can use a Perl-based system on Unix systems, or
an anything-else-based one on MacIntoshes, with-
out troubles related to the description of the distri-
bution.

The various processors are, of course, based on
the tools dedicated to the various flavours of the dis-
tribution, but not only that. They will include tools
to automatically manage the rebuilding, so each one
might look like a Makefile which uses the system
dedicated tools.

The most complicated part is the generators,
since they know about the data in the description
of the package, and are able to create the projection
for a given flavour. This part is hard to achieve, due
to the large number of flavours.

Thus, the evidence seems to indicate that the
only way to obtain good results is to have people
with good knowledge of the target systems writing
those generators.

Users’ tools As stated before in the introduction,
there will be some needs for users’ tools, some be-
ing provided by the target system, like the ones to
install or upgrade a package, others not, like the
ones that manage configuration of the whole thing.
Those tools will probably be re-used from previous
distributions, like the ones used in teTEX or TEXlive.

More information The main aim of this paper is
not to describe the internals of FDNTEX in a full
extent, but to expose how the description language
used by it was designed, and to discuss the points
that have led to this design. Thus, if one wishes to
have more information about other points related to
FDNTEX, the reference documents, like the FDNTEX
manifest or the current version of the DTD, can be
retrieved from ftp sites like ftp://ftp.lip6.fr/
pub/TeX/FDNTeX

At the time of writing, the FDNTEX manifest is
no longer up-to-date but will probably be updated
before you read it.

Describing a package

The description of a package should contain several
parts.

First, its full identification, providing the ver-
sion number, information about its author, a short
description in various languages whenever possible,

and other things of the like. All this information can
be taken from the well-known Catalogue4.

Second, information to locate it, like where it is
located, in source form, on CTAN sites, or any other
source-location for non-CTAN packages. This is dif-
ferent from the list of source files, and is to be used,
e.g., to show the packages in a tree for download.
Other kinds of locations are of interest. A good one
will be to place the package in a tree based on the
functionality it provides instead of its location on
CTAN, in such a tree, algebra would be a subset
of mathematics, and any package related to type-
setting algebra would be in this subtree, ignoring
whether it’s a package for plain TEX or for LATEX.

Third, its content, i.e., the list of files contained
in the package, and their position in a TDS conform-
ing structure.

Fourth, information on how to build it, that is,
going from the source available on the Internet to a
representation that can be directly used.

Fifth, information on how it’s linked to other
packages, that is, dependencies.

Sixth, information on how to manage it on
the target system (procedures for installation, de-
installation, upgrade, and so on).

Contents of the package The only technical
choice is to decide if it only lists files relative to
a supposedly well-known root, or if it lists them
in a more parametric way. For example, in the
first case, the font metric of cmr10 can be listed
as texmf/fonts/tfm/public/cm/cmr10.tfm, while
in the parametric form it might be expressed as
%TEXTFMS%/%MYDIR%/cmr10.tfm so that it can be
automatically adjusted on the fly to a given target.

Since this kind of re-mapping of trees seems
easy to obtain from real paths, the first choice has
been retained. If one needs to re-map a TDS con-
forming tree to another one, it will be done in the
“generator” rather than in the “pre-processor”.

Building a package During the discussions about
this description language, two different ways of de-
scribing the building have been studied.

The first one, the easier one from the developer
point of view, and the more powerful, is to use a
powerful language like a scripting one (Bourne Shell
would be a perfect candidate) and to write the script
in a well parameterized form, so that it can be used
on a large variety of systems. This is simple, since
the tools just have to use the script as is, and pow-
erful, since one can express in this language exactly

4 The Catalogue can be retrieved from any CTAN site or
mirror at CTAN:/help/Catalogue and is written with XML,
which will help re-using its contents.

162 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

all of what is feasible on a real system. But a burden
is created for the person who writes the description
of the package, and it creates a lack of portability:
Bourne Shell would be of no interest on non-Unix
systems. And moreover, there are large differences
between different flavours of this language.

The second one, harder to achieve from the de-
veloper’s point of view, and less powerful, is to ex-
press it in a high-level language. To build the tools
bundle, it can be something like:

LATEX tools.ins
DTXTODVI afterpage IND GLO
DTXTODVI array IND GLO
...

stating that the .ins file to be processed to build the
packages is tools.ins, and that each item of docu-
mentation has to be compiled twice, then has a run
of makeindex to produce the index, then another
one to produce the history of changes (a kind of
glossary, technically), and another last run through
LATEX.

The second way is far better for people who
have to describe a package, and is easily translated
on any system by the “generator”. But if one wants
to have a complete enough language to handle any
and every case, one will create a language as complex
as a traditional scripting one. Such a complex high-
level language would then be useless, since it would
be too hard to understand.

The good choice is, then, to have both. If the
high level language can express what is needed to
build the package for most flavours, then just use it,
and, if a given flavour needs to express it in a more
dedicated form, then just override the first high-level
description.

Moreover, if a given package is too hard to ex-
press its building in the high level language, then
just use the low-level one, and discard the generic
description of the building.

This model sounds good, since 95% of the pack-
ages will be described in the easy way, and only the
the most problematic 5% will be described in the
hard one. Thus porting the distribution to a new
system will be: 1) providing the right generator, 2)
porting those 5%.

Some other information will be of use to build
the package, like a knowledge of what is required to
be installed before starting to build anything.

An example can be “one cannot build web2c
without make and a C compiler”, but this is an easy
one, and external5 so that we can avoid saying it.

5 Indeed, the requirements expressed here are not in the
scope of this distribution. We will summarise those require-

Another strange example is that, to build Ω
one needs LATEX, which is strange since LATEX can
be built on top of Ω. In fact, LATEX is required
only during the building stage, to produce the doc-
umentation in a suitable dvi form; but LATEX is not
required to install Ω on a target system.

Thus, in the dependencies section of the de-
scription, one will have to pay attention to the build-
ing stage. Of course, conflicts can arise (e.g., one
cannot build the documentation if a given flavour of
a package is installed).

Another point is that a single “building” can
produce several packages, e.g., compiling the web2c
bundle produces dozens of packages. Thus, there
must be stated in some way what building is re-
quired for which package.

Links between packages As we have already
seen, several kinds of links can exist between pack-
ages. The next few sections will list them, and will
examine the level of complexity required.

Installation dependency This kind of link is
the most evident one: listing in a package descrip-
tion all the packages that need to be installed for
this one to work correctly.

A first hard point is to determine this list, by
reading the package documentation, by reading its
source, by examining its behaviour closely, and so
on. It is easy to state these dependencies in the
description file, even if the information is hard to
obtain. Just stating that tabularx requires array
is easy.

The second hard point, and the really hard one,
is that not all dependencies are that easy to give.
Let’s study two interesting examples.

The first example is the “functionality” one.
It seems clear that array has no meaning if

LATEX is not installed, and that LATEX has no mean-
ing without TEX. Now, consider that array is of
interest if Ω and Λ are installed6. Such a case can
be solved in two ways —either put the burden on
the side of array, by stating “this requires LATEX or
Λ to be installed” (which places burdens on lots of
package descriptions), or put the burden on LATEX
and Λ to state “this provides a LATEX-like format”
(so that the array description may say “this requires
a LATEX-like format”).

In fact, the second alternative requires that we
have a list of defined functionalities that packages

ments as “one needs a complete and working operating system
to build/install FDNTEX”.

6 Ω is an evolution of TEX adding features useful for inter-
nationalisation, like Unicode; and Λ is the name of LATEX2ε
when built on top of Ω.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 163

Benjamin Bayart

may provide (or require), and to be sure to express
functional dependencies only according to this list,
if there is a way to do so.

On targets that already use this kind of thing,
it’s easy to realise the projection of this information
by direct translation. On other targets, it will be a
little harder —we will need to express “A or B or
C or. . . ” by listing all the alternatives for a given
functionality. Fortunately the job can be done by
the generator, since it has a knowledge of all the
packages before it starts to generate anything.

The second example is “soft” dependencies.
Imagine a document class that has an option

psfonts that can be called to adapt the layout
to PostScript fonts instead of traditional Computer
Modern ones, and another option concrete that
uses beton instead of Computer Modern. Does
this class depend on Computer Modern, beton, and
PostScript fonts?

The conundrum is, that the class really depends
only on Computer Modern or beton or PostScript,
yet if only one of these sets of fonts is installed,
the class is not fully usable. Dependency checking
should not report “everything good” if in fact a part
of the system cannot be used for lack of another.

We can describe this situation by introduc-
ing the concept of soft dependencies — that is “this
package prefers this other one to be installed, but
can be used without it, at your own risk”.

It seems useful to define several levels of soft-
ness for this situation, e.g., strong if the default be-
haviour, or the one the most used, needs the depen-
dency, and weak if the dependency is needed for a
weird use of the package, or by an option of little
interest.

If the softness is expressed on a range from 0
to 10, 0 representing “not required at all” and 10
“strictly required” (like array for tabularx), the
system could be controlled by specifying a single
value n, to express “install all dependencies higher
than n”. The system may set a default value n = 3,
so that the end-user can care only about the points
he wants to, or drop to n = 1, if he doesn’t want to
bother at all about choosing, or raise n to 10 if he
wants a really minimal system.

Same source bundle Two packages produced
from the same source bundle, such as patgen and
gftopk which are both produced from web2c, do
have a link between them; this link has to appear
clearly in the description.

One way to describe the situation is to use
a purely object oriented representation. One has
a source-bundle web2c, a building method build-

web2c and a package patgen, then one states that
the method build-web2c has to be applied to the
source web2c in order to produce the package pat-
gen7.

A second way is to consider that the real object
is the source-bundle and that the packages that are
created from it are pieces of information related to
it, and only to it, that is, in a structural way, the
package description is a part of its parent source-
bundle description.

The first technique sounds really powerful, but
will quickly become hard to handle, and will create
a heavy burden for a lot of people, only to handle
extremely rare cases (no such cases have arisen in the
472 packages in the Prototype that would require
such a complex system, even if some extremely rare
ones have been met in the real world).

Thus, currently, the second technique is used.
Stage dependencies A case of “stage depen-

dency” that was considered in the previous section is
the “installation dependency”. Installation depen-
dencies are complex, and are probably the only ones
that need the idea of soft dependencies.

Some other cases have to be handled.
One, also considered earlier, is the “building

dependency”, which states that one cannot build a
given package unless another is installed. We can in-
sist that building dependencies should all be strict,
though one can find funny cases when soft depen-
dency might be useful (the best one is METAFONT

which requires X11, but can be built without win-
dowing support). Forcing strict dependencies for the
building stage is a strategic choice: FDNTEX has to
behave everywhere in the same way, independently
of the system on which it is built. Thus if one wants
to rebuild the METAFONT binary package, X11 li-
braries have to be installed first since it have been
decided that METAFONT has windowing support in
FDNTEX.

Another interesting case would be to list doc-
umentation dependencies in a separate list, so that
the system could ask the user “XXX is required in or-
der to read the documentation of the package you’re
installing, do you want to install it?”. This is of im-
portance, since on a minimal system, the user can
decide not to install a large set of fonts that is only
required by the documentation of a tiny package.

7 The way it’s expressed is of no importance here, it can
be patgen that states how it wants to be built, or the building
method which states what it’s able to build, but both meth-
ods are equivalent, given that when a generator runs, all the
descriptions of all the packages have been loaded to permit
consistency checking.

164 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

Conflicts The last kind of relationship be-
tween two packages is conflict : that is, a pack-
age cannot be installed if another one is already.
The most evident case is the tree LATEX-package,
since three different implementations exist, have the
same name (tree.sty), have different syntaxes and
different behaviours, and installing more than one
would lead to non-predictable results (one cannot
say which one would be called during the building of
a document). Those packages clearly conflict. (The
difficulty is not in finding packages that conflict,
that’s rather easy, but in describing the conflict.)

The technique used in other similar languages
is to have each package state which others would
conflict, e.g., if a and b are in conflict, then a states
in its description “There is a conflict with b”, and
vice versa. There is a serious drawback to this tech-
nique: if a third package (say c) arises that conflicts
with the two previous ones (this is the most probable
case, if it conflicts with one, there are great proba-
bilities it will also conflict with the other), then it
has to state “There is a conflict with a and with b”,
and then the descriptions of a and b have to be cor-
rected to indicate this new conflict. This is clearly
troublesome, not least because a and b have to be
rebuilt and to change their version numbers while
their descriptions otherwise remain the same.

Another technique would be to have a separate
list of mutual exclusions that is the only document
that has to be corrected to handle those cases, given
that the generator will easily translate the informa-
tion provided by this list into the form described in
the previous paragraph.

At the time of writing, the traditional way is
used in FDNTEX; but we plan to switch to the other
technique when a robust solution to the release num-
ber automatic increment is found.

Automatic behaviour from dependency
and conflict information As already discussed,
we aim to have tools, driving the system processor,
that create the final package if the system is not able
to do the job fully automatically.

The easy part is to use the building dependen-
cies to automate this process. Whenever the au-
tomated system wants to build a given package, it
first checks that all the building dependencies are
satisfied.

The hard part may be explained with an exam-
ple. Let’s say that a package a needs the first flavour
of tree to build its documentation, and that b needs
the second flavour. When attempting to build a, the
system will build and install the first flavour of tree
if it’s not already present. But, when the system
tries to build b, it will notice the lack of the second

flavour of tree and try to install it, which will fail
due to the conflict.

The right behaviour would be to remove the
conflicting flavour, then to install the required one,
taking care of the dependencies while doing it (that
is, remove everything that requires the conflicting
flavour).

This is not linked to the way the information is
provided, but to the way it is used.

Management information The management in-
formation is that which needs to be bundled with
each package to allow good management of the
whole system in a consistent way (like checking the
dependencies, configuring the various elements, al-
lowing one part to use another if both are installed
on the target, and so on); and to allow management
of the package itself (when installing, uninstalling,
upgrading, and so on).

Most packages have minimal and recurrent re-
quirements of management: rebuilding the ls-R
database; handling the configuration files (a dozen
or so cover a large majority of the packages); adding
the right symbolic links at the right place; rebuilding
the formats; and so on. Building stage information
will be given in a generic fashion, using a high-level
language, but can be given in fully user-controlled
fashion too, if required.

Optimizations can almost certainly be described
here too, like the fact that, if one installs 6 pack-
ages, it will probably be enough to rebuild the ls-R
database only once, after the last package. This op-
timization is important, since repetitive rebuilding
of the database is time consuming, and can be han-
dled easily: the rebuilding is delayed until either the
end of the installations, or an instruction that an up-
to-date database is needed immediately. Then, the
rebuilding will take place only when strictly needed
and at the end of all the installations.

Some subtle cases can arise, because the ac-
tions to be accomplished are complex to describe.
For example, in the first stages of an upgrade, the
actions relate to the previous version of the pack-
age, and thus should be provided by it, and during
the final stages, the actions relate to the new ver-
sion. Describing the upgrade of a package requires
description in each version how to install and how
to un-install it for an upgrade. (These actions might
be slightly different from a normal (un)installation
procedure.)

Further subtleties can arise when packages evolve
strangely, as in the previous case of 3 packages that
are replaced by 2. We must consider how packages
can describe an evolution that has not been planned;

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 165

Benjamin Bayart

moreover, the description of the last stages may have
to care about the previously installed versions of the
packages to decide how to handle the whole opera-
tion smoothly.

A good model to be reused, at least for the func-
tionalities it provides, is that used by Debian since it
takes into account all the subtleties outlined above.
Please refer to the “Debian packaging manual” to
have a more precise idea of what can be of interest.

A DTD to store this information

We will now introduce the first draft of the DTD that
will be used by FDNTEX to store the descriptions of
the packages. It’s not yet, at the time of writing,
used to produce any package. It will evolve quickly
to a first release version, used to produce the first
flavours, and then, probably, evolve again to a more
mature version when new flavours appear.

Of course, any comments, improvements or sug-
gestions are welcome, as far as they improve the
DTD and make it closer to the description given in
the previous sections, as this description is more ma-
ture than the DTD itself.

General structure A full document, validated ac-
cording to this DTD, is a series of Author, License
and BPackage. The description of the whole distri-
bution can be seen, for convenience, as a single very
large document, since one will need the descriptions
of all the packages to generate the description in a
given flavour (it’s required for some flavours, like the
FreeBSD one, and harmless for others, like the RPM

one). Physically, there will more probably be one
external document for each entity in the document:
one per Author, per License and per BPackage, and
maybe even one per Package (an internal element of
BPackage).

Author and License are top-level objects just
because there are relatively few of them, and there
is a need for consistency, thus instead of “describ-
ing” dozens of times who is David P. Carlisle, it
seems more efficient to describe him in a unique en-
tity, and then give a reference wherever it’s needed,
in the description of all the packages he has writ-
ten. Similarly for licenses: since there are only a
dozen or so of them (according to the Catalogue), it
seems useless to describe them separately for every
package.

Thus, if considered as a single document, the
description of the whole distribution might look like
figure 2.

If we want to consider it as more modular, then
we have to choose a method to aggregate all the in-
formation. One approach is to believe in XML even
more strongly and use it to aggregate the whole doc-

<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd">

<doc>
<Author Id="Carlisle">
<Name>David P. Carlisle</Name>
<EMail>david@latex-project.org</EMail>

</Author>

<License Id="LPPL">
LaTeX Project Public License
...

</License>

<BPackage>
<BPIdentification>
...
</BPIdentification>
...

</BPackage>
...
</doc>

Figure 2: The whole description seen as a single
file: this is the way it will be seen by the parser
and by the various “generators”, not the way it
has to be written.

ument, using entities; this would lead us to a doc-
ument which looks like the one in figure 3. An ad-
vantage is that the XML-parser can perform some
consistency checking, such as one on the ids of the
objects (e.g., check that Author has been defined
when referred to in a package description). The
disadvantage is that the aggregating document will
change each time a new package or author or license
is added to the system.

Another approach is to use a full standalone
document for each part, each having its own DTD,
and then to rely on the top-system to parse all the
needed documents in the right order. In such a case,
when the system needs a reference to the Author-
id “Carlisle” it looks for a file named ./authors/
carlisle.xml, parses it, and then performs the con-
sistency checking. This does not use the XML-based
mechanism, and needs no top-file to handle the list
of all other files, but it requires that we develop an-
other parser on top of the XML one, and also re-
quires more work when porting the distribution to
a new target.

The third solution, while being more complex,
seems the most interesting and will probably be used
in the final system. In the DTD presented here, only

166 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd" [
<!ENTITY carlisle

SYSTEM "./authors/carlisle.xml">
<!ENTITY bayart

SYSTEM "./authors/bayart.xml">
...
<!ENTITY lppl

SYSTEM "./licenses/lppl.xml">
...
<!ENTITY tools

SYSTEM "./packages/tools.xml">
...
] >

<doc>
&carlisle;
&bayart;
...
&lppl;
...
&tools;
...
</doc>

Figure 3: A multi-part document based upon
entities: this allows the XML-parser to check the
ids and id-references in the whole system.

the first two alternatives (which are equivalent for
the XML-parser) are available.

Authors and licenses Top-level objects Author
and License are both identified by a unique id; the
id system provided by XML is used for this purpose.

An Author refers to a physical person, or to
a well-defined group. It might be the author of a
package, or of a package description, depending on
when it’s referred to, or even of both. Up to now,
this contains little information, the aim being not
to collect personal data about people, but merely to
cite them to allow anybody to contact them in case
of troubles like bug reports, or license problems.

Currently, the three basic elements used here,
namely Name, EMail and License are, in the XML

typing system ‘ANY’, that is any non-parsed text. In
the near future it will become a bit more structured
with markups for the license text, and a more formal
way to give an e-mail address. An example of the
current structure can be seen in figure 2. The EMail
markup in the Author entity is optional and might
be repeated if needed.

About BPackage A BPackage is a bundle of pack-
ages (or big-package) which are all built from the
same sources, as TEX and METAFONT are both built

from the same web2c source-tree. web2c will then
likely be a BPackage, producing several packages, in-
cluding tex for TEX and metafont for METAFONT.

A BPackage contains a BPIdentification tag
that identifies it in the distribution, a SourceBun-
dle to help retrieve the sources, a Building section
saying how to build the packages from it, and a non-
empty list of Packages.

The BPIdentification contains a mandatory
BPName, which is used to identify the bundle when
producing a packaged version of sources in a given
flavour8, an optional version number, two textual
descriptions: a ShortDescription (maybe several,
in several languages), a LongDescription (may also
be in several languages), a mandatory LicenseId
and a non-empty list of AuthorId.

The LicenseId is the license under which the
bundle is distributed, independently from FDNTEX.
If the packages are bundled together only for conve-
nience in the distribution, but are not when referring
to the original sources, then the license will be the
same as the one for the whole distribution. The li-
cense under which the description file is distributed
is the one of FDNTEX, if the author of the descrip-
tion wants to claim that it’s part of FDNTEX, and
then it doesn’t need to be exposed there.

The AuthorId can be the author of the bundle,
that is the people who put all those things together,
or the author of the description. There is currently
no way to distinguish between them.

The descriptions are supposed to be identical,
when several are provided, but in various languages.
That is, if four ShortDescriptions are provided,
they are supposed to be four times the same text,
but in different languages, the language being spec-
ified as usual in an XML document, and defaulting
to English, e.g.:

<ShortDescription xml:lang=’fr-FR’>
Description en franais
</ShortDescription>

<ShortDescription>
English description
</ShortDescription>

A bundle of sources A SourceBundle, as re-
quired by a BPackage, is a non-empty list of Source-
File and a Prepare directive that describes how to
unpack all of those sources in a suitable tree for the
building stage.

8 Some flavours, like RPM and Debian, have their own
source distribution format, and thus will need a name for
the source package; others, like FreeBSD, give references to
the real-world source, and then might not need all of that
information. Since it’s required by some, it’s provided to all.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 167

Benjamin Bayart

<SourceBundle>
<SourceFile FileId="esieecv-1">
CTAN:/macros/latex/contrib/supported/ESIEEcv.tar.gz
</SourceFile>
<Prepare UnpackTo="./ESIEEcv/">
<untgz FileId="esieecv-1""/>
</Prepare>

</SourceBundle>

Figure 4: Example of a SourceBundle tag for a simple package with sources from CTAN.

A SourceFile needs an id, to be referred to
by the Prepare directive, and is supposed to be
URL-like, that’s either a URL, or something like
CTAN:/systems/knuth/web.tar.gz, which is not a
true URL. Several pseudo-protocols, which actually
are default generic locations, will be defined. The
need for two of them (CTAN to refer to any CTAN

mirror, and FDNTEX to refer to any mirror of the
whole distribution sources9) is already plain.

‘Composite’ generic locations may also be de-
fined: for example, a package may be derived from
CTAN, but a patch (maybe as simple as a Makefile)
to facilitate its handling within FDNTEX may come
from FDNTEX.

The Prepare directive is used for the usual sorts
of files (tar, zip, and so on archives, patch files,
etc.). Its variant PrepareCust (customize) is not
yet well defined; its intent is to provide extensions
for system-specific requirements, as when a particu-
lar flavour requires special treatment for unpacking
the sources.

The preparation directive has an attribute that
gives the place where it will unpack the sources rel-
ative to a supposed well-known root directory. E.g.,
for the RPM flavour, the sources are supposed to
be unpacked somewhere under /usr/src/redhat/
BUILD, usually in a directory called source if the
source archive is source.tgz, but maybe elsewhere
if several sources are provided. In the default case,
for this example, the attribute will be "source".
The directive is a list of actions, in the right order,
that are to be accomplished to obtain a full source
tree.

An example is shown at figure 4.
When retrieving the source file, the system is

supposed to issue FTP commands like:

[whatever is required to connect to the
local CTAN mirror and go to the root
of the mirror]

cd macros/latex/contrib/supported

9 Even if FDNTEX will probably become equivalent to some-
thing like CTAN:/systems/unix/fdntex.

get ESIEEcv.tar.gz

This is of importance, since, when a tarball is
built on the fly, like this one, it will most probably
have the same structure as it has on the archive disk.

At the time of writing, several actions are de-
fined, but others will probably be added:

untar expands a tarball, has a mandatory attribute
which is the FileId, and an optional one named
Offset, used if an archive has to be expanded
somewhere in the tree provided by a previous
tarball (like xdvik within web2c);

untgz which behaves exactly in the same way with
archives compressed by gzip or by the tradi-
tional compress;

untbz which behaves in the same way with archives
compressed by bzip2;

patch which applies a patch, as provided by a “uni-
fied diff” to a source tree; it takes at most 4 at-
tributes: the FileId (mandatory), an Offset
(optional) which allows a patch to be applied to
a subtree, a Depth (optional) which is used as
the -p argument to the patch command that is
issued, and a Compression (optional, default to
none) which specifies how the patch was com-
pressed, can be gz, bz2, Z or none.

The PrepareCust directive will be used to pro-
vide full control to the author of a description for
a given flavour of the distribution. For example,
it’s not clear how a zoo archive can be unpacked
on a Windows-like system, so it would be better to
provide full control to the author, instead of a too
fragile action in the generic directive. A way to mix
both the Prepare and the PrepareCust might be
provided in a future version.

After all the actions have been accomplished,
the sources have to be ready in the directory spec-
ified by UnpackTo relative to the well-known root
defined by the flavour of the distribution.

Description of the building stage As for the
preparation stage, the building stage may be writ-
ten in a generic way, using pre-defined actions, in

168 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

a Building directive. Otherwise (when the pre-
defined actions are not suitable), it may be written
in a system specific way with any kind of scripting
language, using a BuildingCust directive. The kind
of scripting language used will be chosen according
to the target system.

There must be, at most, one Building direc-
tive, and there may be several BuildingCust ones.
If so, they all have to have different targets. The
Building directive is optional since some packages
might not be built in any generic way. E.g., a dvi
viewer is strongly system-dependent and then has
no generic building description, since it’s not to be
built on unknown targets.

Up to now, only 6 actions have been provided
for building a package, but, of course others will be
in the first non-alpha release of the DTD.

tex to call TEX on a file, which has two attributes,
file (mandatory) is the name of the file to
be processed, and format (optional, default to
plain) is the name of the format to be used.

latex to call LATEX on a file, which has a file
mandatory argument.

dtxtodvi provides a high level interface to build
the documentations of LATEX packages (which
is, de facto, most of the work when building
the distribution). It has a mandatory file at-
tribute which is supposed to be a suffix-less file
name (suffix has to be dtx), and 5 optional at-
tributes. idx (default to no) saying if there is
an index to process. glo (default to no) saying
if there is a glossary (history of changes, usu-
ally) to process. bib saying if a bibliography
requires a BibTEX run. Those 3 attributes can
be either yes or no. pre-runs (default 2) says
how many times LATEX has to be run before
the index, glossary and bibliography are pro-
cessed. post-runs (default 1) says how many
times LATEX has to be run after that.

mktexlsr which has an optional attribute named
mandatory which states if the action can be de-
layed or not, and rebuilds the ls-R (or equiva-
lent on the target) database. Today, it is use-
less, but will be useful in a near future when
the necessary actions are created to install a
font while building a package. This is required
for packages which are composed of a font itself
and the LATEX package to handle it, since they
usually have to be installed before building the
documentation.

move takes two mandatory attributes, from and
to, and is used to move a file or a directory
from a place to another. No wildcard is allowed

here. It’s not to be used here for the installa-
tion of the package, but only for moving files
while building the package.

cd takes a mandatory argument to and is used to
move into the tree while building. Building
is supposed to start in the directory specified
in the UnpackTo attribute of the preparation
stage.

A call to
<tex file="myfile.tex" format="latex"/>

is of course equivalent to
<latex file="myfile.tex"/>

as far as the target system handles the two following
commands in the same way:
tex ’&latex’ myfile.tex
latex myfile.tex

which is ‘not always’.
An example of such a Building directive is

shown at figure 5.

Description of the package itself As one can
guess, this is the most complex part of the descrip-
tion, or at least the really interesting one.

A package description is composed of 6 parts:
Identification, Installation, UnInstallation,
FileList, Methods, and Dependencies directives.
The definition of none of these is final, but we will
discuss what we believe is a good prototype.

A Package has a mandatory Id attribute that
will be used when one needs to refer to it in de-
pendencies of other packages. The Id should be the
name of the package, but it’s permissible to use any-
thing else.

Identifying a package Just as a BPackage has a
BPIdentification, a Package has an Identifi-
cation, which is to be systematically used (the BP-
Identification will only be used by some flavours
of FDNTEX).

The Identification has to provide a Version,
which is the one provided by the main file of the
package. If there are several important files which
all have their version number, then the version num-
ber provided here can be an aggregate of those, or a
date. E.g., if the two important files are numbered
1.2 and 5.6, then the resulting package can be num-
bered 1.2.5.6 or 5.6.1.2, both being valid. When a
date is provided, e.g., for the LATEX kernel, it should
be like 20000403 to ease the comparison of two ver-
sion numbers when upgrading the system.

If a version number is provided for the bun-
dle (in the BPIdentification of the correspond-
ing BPackage) then it’s appended to the version

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 169

Benjamin Bayart

<Building>
<latex file="ESIEEcv.ins"/>
<dtxtodvi file="ESIEEcv" idx="yes" glo="yes" />
<latex file="test.tex"/>

</Building>

Figure 5: Example of a Building directive for a simple LATEX package with a full documentation
including index and history of changes.

number of the package itself, so that TEX 3.14159,
bundled in web2c 7.3a will be in a package num-
bered 3.14159.7.3a in the final binary version of each
flavour of the distribution.

A Release is mandatory to indicate if the pack-
age has evolved in its FDNTEX port but not in its
source version, as when a forgotten dependency is
added to the description. Currently, the release is
a single integer. The release number can by in-
creased either by the author of the description, when
it evolves, or by the system, in cases of automatic de-
pendency handling (see section “Conflicts”, above,
for an example of such a case).

In future releases of the DTD the Release will
probably be more informative, perhaps in a 2- or 3-
integer system, like 1.0.0 for the first release, then,
increasing the first one if the description of the pack-
age has evolved in an important way (e.g., mending
broken building directives), increasing the second
digit if it evolved in a harmless way (e.g., added
a dependency) which means there is probably no
need for upgrading, or the third digit if it evolved in
a minor way (e.g., to fix a typo in a LongDescrip-
tion) in which case there is absolutely no reason to
upgrade.

Textual descriptions use exactly the same struc-
ture as those for BPackages, as do the LicenseId
(which is the license under which the package itself
is distributed) and AuthorId (which is the author of
the package). Here, there is no confusion between
‘author of the package’ and ‘author of the descrip-
tion’: It’s systematically the author of the package;
the author of the description has already been cited
in the identification of the bundle.

Installing a package Some target systems may
not be able to deal correctly with the case where a
single source-bundle provides several packages. On
such systems, the BPackage acts as a ‘virtual’ pack-
age which has no real existence, and which installs
no files on the system. All the related packages will
require the virtual package to be built and installed
(through the dependencies mechanism) before build-
ing themselves. The ‘building’ stage of such pack-
ages will be empty, and their ‘installation’ phase

will install the part of the virtual package that is
required.

Of course, such a subtlety need only be used
when there are several Packages in a BPackage. In
such cases, the building and installation stages will
be system-specific only for those targets that expe-
rience difficulties, and for that class of packages.

In most cases, when the bundle has to be in-
stalled in a single run, the installation stage will
be handled within the building stage, and the per-
package installation stage will be empty.

1. When we build web2c on a system that can han-
dle multiple packages, the building stage builds
and installs the whole thing, and the installa-
tion stage does nothing.

2. When we build web2c on a system that cannot
handle multiple packages, the building stage
only builds the bundle, and the per-package
installation system installs that package’s part
(e.g., the dvitype binary for the dvitype pack-
age).

3. The tools bundle of packages for LATEX can be
handled in its entirety by generic directives, but
is inherently a multi-package bundle; for such
bundles the building stage will only build, and
the per-package installation will install each
package, so that the directives have to be writ-
ten only once.

4. When we build a single small package (such as
ESIEEcv) for any system, the building stage
builds and the installation stage installs the
package. This is the most frequent case.
The case of really complex bundles like web2c

is handled like this because re-writing the installa-
tion stage for systems which cannot handle multi-
packages is really hard, and error-prone. Using this
method, the errors will appear only for truly mini-
malist systems, and not for all.

So, just like the building stage, the installation
stage will use a high level language to describe things
to be done, and this generic description can be over-
loaded when a target needs some special things to be
performed that cannot be described by the generic
language.

170 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

It should also be noted that the first instal-
lation —the one performed just after the building
stage has been completed— is likely to differ from
a ‘normal’ one — installing the final package on the
target system. Thus, two tags are provided: While-
Build to describe the installation while we are build-
ing the binary package, and OnTarget for the other
one. Both of them have a “cust” variant, to allow
overriding.

The high level language, at the time of writing,
is quite poor and will evolve a lot. Some information
is given as attributes of the Installation tag:

bindir for the directory where the binary executa-
bles have to be installed, this is supposed to
be relative to the root of the target system,
or at least to another root than the one used
for the other directories; in fact it will often
be bin, which will be concatenated to any pre-
fix given while installing the real thing, e.g.,
/usr/local.

libdir is the same thing for binary system libraries
(mostly libkpathsea).

incdir is for the system include files (mostly the .h
files related to libkpathsea).

docdir is the directory where the documenta-
tion for this package should stand, relative to
the root-directory of the TEX system, usually
something like doc/latex/ESIEEcv to be con-
catenated with e.g., /usr/local/share/texmf,
where /usr/local is the prefix specified during
the installation and share/texmf is the “well-
known” root.

stydir is the directory for .sty files provided by
the package.

bstdir same thing for BibTEX styles;
bibdir for bibliographic databases;
tfmdir for tfm files;
mfdir for METAFONT sources;
mapdir for files related to the map system for PS

fonts;
istdir for makeindex styles.

Instructions (defined so far) are as follows:

mkdir to create a directory, out of the ones speci-
fied previously in the attributes.

docfile is a file to be installed in docdir, and the
same for binfile, libfile, bstfile, bibfile,
styfile, tfmfile, mffile, mapfile, and ist-
file. The only one to have an attribute is bin-
file, which has an attribute strip which can
be either yes or no, is optional, and defaults to
yes, and says if the binary is to be stripped.

mktexlsr (see description in section “Description
of the building stage”, above).

format which is empty and has a mandatory at-
tribute name giving the name of the format to
rebuild. There is still no way to say that all
the formats need to be rebuilt or that several of
them have to be; this facility will be provided
in future versions of the description language.

In practice, in most cases, the WhileBuild in-
stallation method will use those instructions, while
the OnTarget will only state a single mktexlsr, since
the system already takes care to move all the files
listed in the FileList to the right place.

The default behaviour for uninstalling a pack-
age is to perform the converse of the the same ac-
tions as for installing, that is remove the file instead
of installing, remove the directories if empty, and so
on. Formats are also rebuilt as necessary.

The list of files The FileList contains a list of
docfile, cfgfile, file and dir, each being part
of the archive to create. Configuration files are iso-
lated so that the uninstall and upgrade systems can
handle them smoothly and save them. Directories
are removed while uninstalling, if they are empty.

The dependencies The Dependencies tag con-
tains a list of BuildDep which gives the name of a
package that has to be installed in order to build this
one, Dep which gives the name of a package that has
to be installed for this one to be used properly, and
Conflict giving the name of a package that creates
a conflict if installed on the same system as this one.

The Dep tag has an integer attribute that
gives the softness level (see section “Installation
dependency” on page 164), whose default value is
10 (hard dependency). A value of 0 is legal but use-
less since it means no dependency at all.

A more fine-grained system will be used for fu-
ture versions of the description language, at least for
the conflicts since this model is really far from per-
fect. The new system will most probably be based
on an external list of packages that are known to be
in conflict. An analagous softness level will be used
for conflicts, to say if it is legal to override a conflict
directive or not.

A complete example

The package described here is a small one that per-
mits the typesetting of a curriculum vitæ as French
companies like to see them. It’s a LATEX package,
with a test file and the documentation included with
the source in the .dtx file. The description given
here has been validated against the DTD we have

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 171

Benjamin Bayart

just defined, but not yet used to build a real package
since currently there is still no generator written.

Some parts of the document have been deleted
(like the empty description of the 4 packages listed
in the dependencies list).
<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd" [
<!-- used to shorten the file name later

since this XML document is typeset in
two columns mode -->

<!ENTITY CTANmlcs
"CTAN:/macros/latex/contrib/supported">
] >

<!-- maximum length of a line -->

<doc>
<Author Id="bayart">
<Name>Benjamin B. Bayart</Name>
<EMail>bayartb@edgerd.fdn.fr</EMail>
<EMail>bayartb@guinness.domicile.fr

</EMail>
</Author>
<License Id="lppl">
LaTeX Project Public License

</License>
<License Id="fdntexl">
The FDNTeX license

</License>

<BPackage>
<BPIdentification>
<BPName>BP-ESIEEcv</BPName>
<LicenseId Id="lppl"/>
<AuthorId Id="bayart"/>
</BPIdentification>

<SourceBundle>
<SourceFile FileId="esieecv-1">
&CTANmlcs;/ESIEEcv.tar.gz
</SourceFile>
<Prepare UnpackTo="./ESIEEcv/">
<untgz FileId="esieecv-1"

Offset=".."/>
</Prepare>
</SourceBundle>

<Building>
<latex file="ESIEEcv.ins"/>
<dtxtodvi file="ESIEEcv"

idx="yes"
glo="yes" />

<latex file="test.tex"/>
</Building>

<Package Name="ESIEEcv">
<Identification>
<Version>2.0a</Version>
<Release>1</Release>
<ShortDescription>
ESIEEcv to typeset French
curriculum vitae
</ShortDescription>
<ShortDescription xml:lang="fr-FR">
ESIEEcv pour mettre en forme un
curriculum vitae a la franaise
</ShortDescription>
<LongDescription>
This package allows one to typeset
a curriculum vitae as a French
company would expect to receive it.
</LongDescription>
<LongDescription xml:lang="fr-FR">
Ce package permet la mise en forme
d’un curriculum vitae tel qu’une
entreprise franaise s’attendra a
le recevoir.
</LongDescription>
<LicenseId Id="lppl"/>
<AuthorId Id="bayart"/>

</Identification>
<Location>
macros/latex/contrib/supported

</Location>
<Location kind="func">
lang/french

</Location>
<Installation
stydir="tex/latex/ESIEEcv"
docdir="doc/latex/ESIEEcv">
<WhileBuild>
<styfile>ESIEEcv.sty</styfile>
<docfile>ESIEEcv.dvi</docfile>
<docfile>test.tex</docfile>
<docfile>test.dvi</docfile>
<mktexlsr/>
</WhileBuild>
<OnTarget>
<mktexlsr/>
</OnTarget>

</Installation>
<FileList>
<file>
tex/latex/ESIEEcv/ESIEEcv.sty
</file>
<docfile>
doc/latex/ESIEEcv/ESIEEcv.dvi
</docfile>

172 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

<docfile>
doc/latex/ESIEEcv/test.tex

</docfile>
<docfile>
doc/latex/ESIEEcv/test.dvi

</docfile>
</FileList>
<Methods>
Not yet defined
</Methods>
<Dependencies>
<Dep name="a-LaTeX-format"/>
<Dep name="tabularx"/>
<BuildDep name="a-LaTeX-format"/>
<BuildDep name="tabularx"/>
<BuildDep name="babel"/>
<BuildDep name="fnt-ec"/>
</Dependencies>
</Package>

</BPackage>
</doc>

The full DTD

As has already been explained, this Document Type
Definition (DTD) is not final. It is the DTD that
this paper has described, and it has been used to
validate the description. A more up to date ver-
sion might be available at ftp://ftp.fdn.fr/pub/
FDNTeX/Develop/fdntex.dtd, and a more up-to-
date version of this paper (or at least something
describing the corresponding version of the DTD)
should be available at the same place.

<!ELEMENT doc (Author|BPackage|License)*>

<!ELEMENT Author (Name,EMail*)>
<!ATTLIST Author Id ID #REQUIRED>

<!ELEMENT Name ANY>
<!ELEMENT EMail ANY>

<!ELEMENT License ANY>
<!ATTLIST License

Id ID #REQUIRED
xml:lang NMTOKEN ’en’>

<!ELEMENT BPackage (BPIdentification,
SourceBundle,
Building,
BuildingCust*,
Package+)>

<!ELEMENT BPIdentification
(BPName,

Version?,
ShortDescription*,
LongDescription*,
LicenseId,
AuthorId+)>

<!ELEMENT BPName ANY>
<!ELEMENT Version ANY>
<!-- ShortDescription and LongDescription

are defined later on,
when defining Package -->

<!ELEMENT LicenseId EMPTY>
<!ATTLIST LicenseId Id IDREF #REQUIRED>
<!ELEMENT AuthorId EMPTY>
<!ATTLIST AuthorId Id IDREF #REQUIRED>

<!--
Identification
BPName
Version?
ShortDescription
LongDescription
License
AuthorId

-->

<!ELEMENT SourceBundle
(SourceFile+,
(Prepare|PrepareCust))>

<!ELEMENT SourceFile ANY>
<!ATTLIST SourceFile

FileId ID #REQUIRED>
<!ELEMENT Prepare

(untar|
untgz|
patch)+>

<!ATTLIST Prepare
UnpackTo CDATA #REQUIRED>

<!ELEMENT untar EMPTY>
<!ATTLIST untar

Offset CDATA "."
FileId IDREF #REQUIRED>

<!ELEMENT untgz EMPTY>
<!ATTLIST untgz

Offset CDATA "."
FileId IDREF #REQUIRED>

<!ELEMENT patch EMPTY>
<!ATTLIST patch

Offset CDATA "."
Depth CDATA "1"
FileId IDREF #REQUIRED
Compression (gz|bz2|Z|none)

"none" >
<!ELEMENT PrepareCust ANY>

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 173

Benjamin Bayart

<!ATTLIST PrepareCust
UnpackTo CDATA #REQUIRED
>

<!--
SourceBundle
SourceFile*
Prepare | PrepareCust
(UnpackTo?) implied

-->
<!ELEMENT Building

(tex|
latex|
dtxtodvi|
mktexlsr|
move|
cd)+>

<!ELEMENT tex EMPTY>
<!ATTLIST tex

file CDATA #REQUIRED
format CDATA "plain">

<!ELEMENT latex EMPTY>
<!ATTLIST latex

file CDATA #REQUIRED>
<!ELEMENT dtxtodvi EMPTY>
<!ATTLIST dtxtodvi

file CDATA #REQUIRED
idx (yes|no) "no"
glo (yes|no) "no"
bib (yes|no) "no"
pre-runs CDATA "2"
post-runs CDATA "1">

<!-- mktexlsr will be defined later -->
<!ELEMENT move EMPTY>
<!ATTLIST move

from CDATA #REQUIRED
to CDATA #REQUIRED>

<!ELEMENT cd EMPTY>
<!ATTLIST cd

to CDATA #REQUIRED>

<!ELEMENT BuildingCust ANY>
<!ATTLIST BuildingCust

Target (i386|ppc|sparc|alpha)
#REQUIRED

System (linux|freebsd|solaris|
hpux9|hpux10) #REQUIRED>

<!ELEMENT Package (
Identification,
Location+,
Installation,

UnInstallation?,
FileList,
Methods,
Dependencies?,
Provides?)>

<!ATTLIST Package
Name ID #REQUIRED>

<!ELEMENT Identification (
Version,
Release,
ShortDescription+,
LongDescription+,
LicenseId,
AuthorId+)>

<!ELEMENT Release ANY>
<!ELEMENT ShortDescription (#PCDATA)>
<!ATTLIST ShortDescription

xml:lang NMTOKEN ’en’>
<!ELEMENT LongDescription (#PCDATA)>
<!ATTLIST LongDescription

xml:lang NMTOKEN ’en’>
<!-- LicenseId and AuthorId are

already defined -->

<!ELEMENT Location (#PCDATA)>
<!ATTLIST Location

kind (ctan|func) "ctan">

<!ELEMENT Installation
(WhileBuild,
WhileBuiltCust*,
OnTarget,
OnTargetCust*)>

<!ATTLIST Installation
bindir CDATA "."
libdir CDATA "."
incdir CDATA "."
docdir CDATA "."
stydir CDATA "."
bstdir CDATA "."
bibdir CDATA "."
tfmdir CDATA "."
mfdir CDATA "."
mapdir CDATA "."
istdir CDATA ".">

<!ELEMENT WhileBuild
(mkdir|
docfile|
binfile|
libfile|
bstfile|
bibfile|
styfile|

174 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

tfmdile|
mffile|
mapfile|
istfile|
mktexlsr|
format)+>

<!ELEMENT WhileBuildCust ANY>
<!ELEMENT OnTarget

(mkdir|
docfile|
binfile|
libfile|
bstfile|
bibfile|
styfile|
tfmdile|
mffile|
mapfile|
istfile|
mktexlsr|
format)+>

<!ELEMENT OnTargetCust ANY>

<!ELEMENT mkdir ANY>
<!ELEMENT docfile ANY>
<!ELEMENT binfile ANY>
<!ELEMENT libfile ANY>
<!ELEMENT bstfile ANY>
<!ELEMENT bibfile ANY>
<!ELEMENT styfile ANY>
<!ELEMENT tfmfile ANY>
<!ELEMENT mffile ANY>
<!ELEMENT mapfile ANY>
<!ELEMENT istfile ANY>
<!ELEMENT mktexlsr EMPTY>
<!ATTLIST mktexlsr

mandatory (yex|no) "no">
<!ELEMENT format EMPTY>
<!ATTLIST format

name CDATA #REQUIRED>
<!ELEMENT UnInstallation

(WhileBuild,
WhileBuiltCust*,
OnTarget,
OnTargetCust*)>

<!ELEMENT FileList
(docfile|cfgfile|file|dir)*>

<!ELEMENT cfgfile ANY>
<!ELEMENT file ANY>
<!ELEMENT dir ANY>

<!ELEMENT Methods ANY>

<!ELEMENT Dependencies
(BuildDep|
Dep|
Conflict)+>

<!ELEMENT BuildDep EMPTY>
<!ATTLIST BuildDep

name IDREF #REQUIRED>
<!ELEMENT Dep EMPTY>
<!ATTLIST Dep

name IDREF #REQUIRED
level CDATA "10">

<!ELEMENT Conflict EMPTY>
<!ATTLIST Conflict

name IDREF #REQUIRED>

<!ELEMENT Methodes EMPTY>
<!--
FileList
Methods

-->

<!ELEMENT Provides EMPTY>
<!ATTLIST Provides

Name ID #REQUIRED>

Acknowledgments

FDNTEX, and thus this paper, is not the pure out-
come of my ideas of what should constitute a bet-
ter distribution of TEX, it’s also the result of long
talks with friends of mine, like Rémy Card and
Olivier Gutknecht; and with people more involved
in the TEX world and in writing distributions of
TEX like Sebastian Rahtz who suggested the use
of XML as a description language, Simon Cozens
who gave me the idea of a high level language, Fab-
rice Popineau who worked with S. Rahtz on the sys-
tem used in TEXlive, Taco Hoekwater who proposed
great ideas for dependencies that have not been ma-
tured enough (at least by me) to be discussed in
this paper, Robin Fairbairns who gave us good ad-
vice during the discussions about TPM, and proba-
bly others that I forgot.

Special thanks to Sylvia Pédron who spent a
lot of hours helping me to improve my English and
proof reading this paper.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 175

