
Introduction

One of the most difficult tasks in technical

typesetting is to get computer programs to look right.

[. . .] No automatic system can hope to find the best

breaks in programs, since an understanding of the

semantics will indicate that certain breaks make the

program clearer and reveal its symmetries better.

— D. E. KNUTH, Digital Typography

Computer books and journals do not look as beau-
tiful as they used to. It is not their content that
is unsatisfactory, rather the typography is strange.
The example below illustrates that. It is a re-
ally disgusting piece of typography taken from the
Polish translation of an English book.

Program JavaScript przedstawiony w listingu 6.2
stanowi przyklad zastosowania cookie.
//==
// Here are our standard Cookie routines
//==
//--
// SetCookieEZ - Quickly sets a cookie
// which which will last until the user
// shuts down his browser
//--
function SetCookieEZ(name, value) {
document.cookie=name+"="+escape(value);

}
//--
// GetCookie - Returns the value of the
// specified cookie or null if the
// cookie doesn’t exist

It seems that typesetters think that a typewriter
is the best tool to prepare readable and clear
programs. This situation reminds us of an old
Polish proverb: “The shoemaker does not wear
shoes”. Why? Because it is inexplicable that the
typesetter does not typeset programs. Why do

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 187

Typesetting TEX documents containing computer code

W9lodek Bzyl
matwb@univ.gda.pl

Abstract

I would like to present a preprocessor driven by grammars able to automatically
mark-up pieces of computer code immersed in TEX documents. By computer
code I mean any language for which a context free grammar exists, which YACC

will accept. These include almost any computer language. But my tool could
use any such grammar to automatically mark-up text written in the language
defined by it.

they use verbatim mode of typesetting—a kind of
‘ASCII typography’? Do they have nothing better?
Although typography is well developed, that of
computer code lags far behind. However, there are
rules for typographic formatting of computer code.
Developing excellent computer code typography was
pioneered by two people: Peter Naur and Myrtle
Kellington, who set the standards that were adopted
by many computer journals [8, 6]. But it seems
that they are no longer used at all.

Editor’s note: What does the citation 6 in the
above paragraph signify?— it’s a citation of Knuth

In the next section I will try to analyze why,
and what makes code typesetting so difficult. In
the following one, I will present my idea of a
prettyprinting tool, which combines Knuth’s [3] and
Oppen’s [9] approaches. One example is worth a
thousand words, so the last section presents two
longer examples typeset by my tool.

The term ‘prettyprinting’, which goes back
to 1975 book Programming Proverbs by Henry
Ledgard, is nowadays used instead of ‘code typeset-
ting’.

Prettyprinting HOWTO

Obviously ASCII typography is what programmers
are familiar with and see most often. Look at
something less ugly.

The following code uses the extended features of
BC to implement a simple program for calculating
checkbook balances.

print "Check book program!\n";
print " Exit by a 0 transaction.\n\n";
print "Initial balance? ";
bal = read();

bal /= 1;
print "\n";
while (1) {
"current balance = "; bal
"transaction? "; trans = read()
if (trans == 0) break;
bal -= trans
bal /= 1

Although the structure of the code is clearly
laid out, the beginner will have problems with
recognizing the elements which are predefined part
of the language. Adding some typography to this
example solves this problem and makes the program
clearer.

The following code uses the extended features of
BC to implement a simple program for calculating
checkbook balances.

print "Check book program!\n";
print " Exit by a 0 transaction.\n\n";
print "Initial balance? ";
bal = read();
bal /= 1;
print "\n";
while (1) {
"current balance = "; bal
"transaction? "; trans = read()
if (trans ≡ 0) break;
bal −= trans
bal /= 1

}

A simply bit of typography makes the differ-
ence. So the question is: why is it not used? Adding
typography means adding mark-up to the source
code. This makes the source for the example look
like

The following code uses the extended
features of |\acro{BC}| to implement a
simple program for calculating checkbook
balances.
\startPP[BC]
\PPK{print}\PPbreakspace \PPS{"Check\ book\
\PPK{print}\PPbreakspace \PPS{"\ \ Exit\ by
\PPK{print}\PPbreakspace \PPS{"Initial\ bal
\PPV{bal}\PPequal \PPK{read}\PPbraceleft \P
\PPV{bal}\PPslasheq \PPN{1}\PPsemicolon \PP
\PPK{print}\PPbreakspace \PPS{"\\n"}\PPsemi
\PPK{while}\PPspace \PPbraceleft \PPN{1}\PP
\PPS{"current\ balance\ =\ "}\PPsemicolon
\PPS{"transaction?\ "}\PPsemicolon \PPspa
\PPK{if}\PPspace \PPbraceleft \PPV{trans}
\PPV{bal}\PPminuseq \PPV{trans}\PPforce

188 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

W9lodek Bzyl

\PPV{bal}\PPslasheq \PPN{1}\PPforce
\PPbackspace \PPparenright

\stopPP[BC]

We can see that it is not that simple. Markup
requires consistency and time which people do not
have, whereas computers have both. So, why
not use computers?— it seems possible, because
computer languages, unlike natural languages, are
unambiguously described by grammars. So we
can try to use grammars to control the process
of marking-up code. For example, in C or PERL,
one grammar rule for statement says that statement
is build of the opening brace ‘{’ followed by a
statement list and the closing brace ‘}’, which could
be concisely written as:

statement → ´{´ statement list ´}´

Now, assume that we want to typeset braces on
separate lines with statement list typeset indented
between them

{
statement list

}

This could be done in the following way: after
recognizing the statement components, we typeset
the opening brace followed by the newline; next we
typeset indented each statement from the statement
list; next we typeset the newline followed by the
closing brace.

Editor’s note: Propose above paragraph be re-
placed, to save enough space that the paper
doesn’t run to 6pp; wording would be (note that
the operations described also appear later on):
This could be done very simply once the syntactic
element has been recognized.

However, prettyprinting is not that simple, be-
cause programmers use both syntax and semantics
to make their programs clearer and more readable.
This makes the task of building a wholly automatic
prettyprinting tool impossible. Fortunately, the
conflicts between syntax and semantics are suffi-
ciently rare that it is acceptable to require the user
to override syntax-based decisions when necessary.

Building a tool

Many people have tried to formalize and implement
the idea of prettyprinting. William McKeeman [11]
was the first to present a prettyprinting algorithm.
Oppen [9] came up with the idea of using the orig-
inal grammars to control the marking-up process.

Knuth’s [3, 12] approach is based on his so-called
‘format primitives’ listed below.

indent indent the next line one more notch
outdent indent the next line one less notch
optbreak optional line break
backspace backspace one notch
breakspace optional break or space
force force line break
bigforce force line break and

a little extra vertical space
noindent no indentation

Spacing in expressions is inherited from the TEX
mathematical mode.

Knuth does not use the original PASCAL or C

grammars to derive prettyprinting grammars. For
each language, a specially designed and optimized
context sensitive grammar is created. These gram-
mars do not describe reference languages, which
means that some pieces of correct code would
not be prettyprinted and incorrect code would be
prettyprinted. Markup is done by manually built
parsers. Using parsers for building prettyprinters
is a double-edged sword: comments are lost during
parsing, and while prettyprinting they have to be
put back. Knuth’s tools recover comments too.

The main difficulty with Knuth’s approach lies
in creating prettyprinting grammars. So far only
two such nontrivial grammars have been created.
It took 10 years for the prettyprinting C grammar
to evolve. Therefore, I think that the Oppen’s
idea of enhancing the original grammars is easier to
implement.

For example, look at the rule for statement
above and assume, that we want to typeset state-
ment list indented within braces. The following rule
will do:

statement → ´{´ indent force statement list
force backspace ´}´ outdent force

This reads as follows: print the opening brace {
and prepare to indent following lines; next break
the line with force and typeset statement list ; now,
break the line again with force, backspace and print
the closing brace }; finally, remove with outdent the
indentation for the following lines and force the line
break again.

Combining the ideas above I designed a pret-
typrinting tool named pp which works as a prepro-
cessor for TEX.

foo.tex pp xfoo.tex tex xfoo.dvi

prettyprinting macros

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 189

Typesetting TEX documents containing computer code

It is also possible to typeset code verbatim—
simply typesetting as it used to be.

foo.tex tex foo.dvi

verbatim macros

Examples

There are many computer languages in use nowa-
days. Some of them I use on a day to day basis,
some I use occasionally, some I want to look at, and
still others are used by my colleagues. Therefore
I want my tool to be able to learn as many lan-
guages as possible. The current version knows how
to typeset only two languages: EBNF—extended
Backus-Naur formalism and BC—the language of
the binary calculator (a tool available on every
UNIX system), because it is still being developed.

Someone said “One picture is worth one thou-
sand of words,” so I want to end up with two pieces
of prettyprinted code. Because there is no general
agreement how to typeset computer documents, as
opposed to mathematical ones, some readers may
like these examples and others not. Moreover,
mathematicians, have a well developed notation
which is supported by suitable fonts. This may
explain why these examples are not as clear and
readable as they could be.

Source: Ken Arnold, James Gosling.
”The Java Programming Language.”
Addison Wesley Longman, Inc. 1996.

Consider the two groups of productions:

FieldDeclaration → {FieldModifiers}∗ Type
VariableDeclarators

;
FieldModifiers → FieldModifier
| FieldModifiers FieldModifier
;

FieldModifier → keywords common for field and
method

| transient | volatile
;

and:

MethodHeader → {MethodModifiers}∗
ResultType MethodDeclarator {Throws}∗

;
MethodModifiers → MethodModifier
| MethodModifiers MethodModifier
;

MethodModifier → keywords common for field
and method

| abstract | native | synchronized
;

where common keywords consists of: public, pro-
tected, private, final, static.

Source: Philip A. Nelson.
LIBMATH.B.
The arbitrary precision math library for the BC

calculator.

To compute exponential we use the fact that ex =
(ex/2)2. When x is small enough, we use the series:
ex = 1 + x + x2/2! + x3/3! +

scale = 20;
define e(x) {

auto a, d , e, f , i , m, n, v , z

� a — holds xy of xy/y!
� d — holds y!
� e — is the value xy/y!
� v — is the sum of the e’s
� f — number of times x was divided by 2.
� m — is 1 if x was minus.
� i — iteration count.
� n — the scale to compute the sum.
� z — orignal scale.
� Check the sign of x.
if (x < 0) {

m = 1; x = −x
}
� Precondition x.
z = scale;
n = 6 + z + .44 ∗ x ;
scale = scale(x) + 1;
while (x > 1) {

f += 1; x /= 2; scale += 1;
}
� Initialize the variables.
scale = n;
v = 1 + x
a = x
d = 1
for (i = 2; 1; i++) {

e = (a ∗= x)/(d ∗= i)
if (e ≡ 0) {

if (f > 0) while (f −−) v = v ∗ v ;
scale = z
if (m) return (1/v);
return (v/1);

}
v += e

}

190 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

W9lodek Bzyl

}
Define the logarithm function.

define l(x) {
auto e, f , i , m, n, v , z

� Return something for the special case.
if (x ≤ 0) return ((1 − 10ˆscale)/1)
� Precondition x to make .5 < x < 2.0.
z = scale; scale = 6 + scale;
f = 2; i = 0;
� For large numbers.
while (x ≥ 2) {

f ∗= 2; x = sqrt(x);
}
� For small numbers.
while (x ≤ .5) {

f ∗= 2; x = sqrt(x);
}
� Set up the loop.
v = n = (x − 1)/(x + 1)
m = n ∗ n
� Sum the series.
while (x < 2) {

e = (n ∗= m)/i
if (e ≡ 0) {

v = f ∗ v
scale = z
return (v/1)

}
v += e

}
}
The sin function uses the standard series:

sin(x) = x − x3/3! + x5/5!− x7/7! + . . .

define s(x) {
auto e, i , m, n, s , v , z

� Precondition x.
z = scale
scale = 1.1 ∗ z + 2;
v = a(1)
if (x < 0) {

m = 1;
x = −x ;

}
scale = 0
n = (x/v + 2)/4
x = x − 4 ∗ n ∗ v
if (n % 2) x = −x
� Do the loop.
scale = z + 2;
v = e = x
s = −x ∗ x

for (i = 3; 1; i += 2) {
e ∗= s/(i ∗ (i − 1))
if (e ≡ 0) {

scale = z
if (m) return (−v/1);
return (v/1);

}
v += e

}
}
For arctan we use the formula: arctan(x) =

arctan(c) + arctan((x− c)/(1 + xc)) for small c (0.2
here). For x ≤ 0.2, use the series: arctan(x) =
x − x3/3 + x5/5− x7/7 +

define a(x) {
auto a, e, f , i , m, n, s , v , z

� a is the value of a (0.2) if it is needed.
� f is the value to multiply by a in the return.
� e is the value of the current term in the

series.
� v is the accumulated value of the series.
� m is 1 or −1 depending on x (−x → −1);
� results are divided by m.
� i is the denominator value for series element.
� n is the numerator value for the series

element.
� s is −x · x.
� z is the saved user’s scale.
m = 1;
� Negative x?
if (x < 0) {

m = −1; x = −x ;
}
� Special case and for fast answers
if (x ≡ 1) {

if (scale ≤ 25) return
(.7853981633974483096156608/m)

}
if (x ≡ .2) {

if (scale ≤ 25) return
(.1973955598498807583700497/m)

}
� Save the scale.
z = scale;
� Note: a and f are known to be zero due to

being auto vars. Calculate arctan of a
known number.

if (x > .2) {
scale = z + 5; a = a(.2);

}
� Precondition x.
scale = z + 3;

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 191

Typesetting TEX documents containing computer code

while (x > .2) {
f += 1; x = (x − .2)/(1 + x ∗ .2);

}
� Initialize the series.
v = n = x ;
s = −x ∗ x ;
� Calculate the series.
for (i = 3; 1; i += 2) {

e = (n ∗= s)/i ;
if (e ≡ 0) {

scale = z ;
return ((f ∗ a + v)/m);

}
v += e

}
}

References

[1] Blashek, Günter and Johannes Sametinger.
“User-Adaptable prettyprinting.” Software—
Practice & Experience 19 (July 1989).

[2] Gärtner, Felix. 1998. The PretzelBook.
Available online as part of the PRETZEL

distribution, in directory ~gaertner/pretzel
at www.iti.informatik.th-darmstadt.de

[3] Knuth, Donald E. 1983. “The WEB

System of Structured Documentation.”
Computer Science Report 980. Stanford
University. Available online as part of the
WEB distribution, in file
~web/doc/webman.tex at ftp.dante.de.

[4] Knuth, Donald E. “Literate Programming”,
The Computer Journal 27 (1984). pp. 97–111.

[5] Knuth, Donald E. 1986. “How to read
a WEB.” Appeared in Computers &
Typesetting, Volume B. Addison-Wesley.

[6] Knuth, Donald E. 1992. Literate
Programming. Center for the Study of
Language and Information Leleand Stanford
Junior University.

[7] Knuth, Donald E. 1999. Digital Typography.
Center for the Study of Language and
Information Leleand Stanford Junior
University.

[8] Naur, Peter [ed.] et al. “Report on
the algorithmic language ALGOL 60.”
Communications of the ACM 3 (May 1960).
pp. 299–314.

[9] Oppen, Derek C. “Prettyprinting.” ACM
Transactions on Programming Languages &
Systems 2 (1980). pp. 465–483.

[10] Ramsey, Norman. 1988. “A SPIDER

user’s guide.” Technical Report, Princeton

University. Available online as part
of the SPIDER distribution, in file
~web/spiderweb/doc/spiderwebman.tex at
ftp.dante.de.

[11] McKeeman, William. “Algorithm 268.”
Communications of the ACM 8 (1965).
pp. 667–668.

192 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

W9lodek Bzyl

[12] Knuth, Donald E. and Silvio Levy. 1990.
“The CWEB System of Structured
Documentation.” Computer Science
Report 1336. Stanford University. Available
online as part of the CWEB distribution,
in file ~web/c_cpp/cweb/cwebman.tex at
ftp.dante.de.

W9lodek Bzyl

