Line breaking and page breaking

Jonathan Fine

203 Coldhams Lane

Cambridge, CB1 3HY

United Kingdom
fine@active-tex.demon.co.uk
http://www.active-tex.demon.co.uk

Abstract

In their seminal paper of 1981, Knuth and Plass described how to apply the
method of discrete dynamic programming to the problem of breaking a paragraph

into lines.

This paper outlines how the same method can be applied to the

problem of page make up, or in other words breaking paragraphs into pages. One
of the key ideas is that there must be interaction between the line breaking and
page breaking routines. It is shown that TEX can, with one important limitation,

fully support such interaction.

This article also shows how TEX can, by using a custom paragraph shape
and a special horizontal list, suppress hyphenation of the last word on a page.

Introduction

For many years the conventional wisdom has been
that TEX is good at breaking lines into paragraphs
(and setting mathematics and tables), but that it
is not at all good at page make-up. There is some
measure of truth in this statement. However, it is
the author’s view that almost all of the deficiencies
arise not from TEX the program, but from the macro
packages and other tools used with it.

The main problem considered in this article is
that of suppressing hyphenation on the last word of
a page. Traditionally, this has been avoided wher-
ever possible, for it breaks the reader’s concentra-
tion, to have to go to the next page (rather than the
next line) to complete a hyphenated word. The so-
lution proposed involves constructing a special hor-
izontal list, and an unusual paragraph shape.

Don Knuth’s view of TEX’s line-breaking algo-
rithm is well expressed by this passage from The

TEXbook (page 94):

The remainder of this chapter explains the
details precisely, for people who want to ap-
ply TEX in nonstandard ways. TEX’s line-
breaking algorithm has proved to be general
enough to handle a surprising variety of dif-
ferent applications; this, in fact, is probably
the most interesting aspect of the whole TEX
system. However, every paragraph from now
on until the end of the chapter is prefaced by
at least one dangerous bend sign, so you may

want to learn the following material in easy
stages instead of all at once.

and twelve pages of technical details follow. Not all
of it used here. The article by Knuth and Plass [4]
and Plass’ thesis [10] are also well worth consulting.

From ASCII to dvi

It will help to have an overview of the process by
which TEX converts its input file into typeset pages.
In general terms the process is the same for all macro
packages, but at each stage each package can use in
different ways the capabilities offered by TEX the
program.

Here we divide the process into seven stages,
namely ASCII, tokens, macros, horizontal list, lines,
vertical list and pages.

This section concludes with a discussion of the
look-ahead problem, whose solution is an important
part of the line-breaking algorithm. The same prob-
lem arises in page make-up, and it is the present lack
of a solution that has given rise to the view that TEX
is not good at page make-up.

ASCII This is the input stream, a text file marked
up in some syntax, formal or informal. The input
file might contain macro definitions and parameter
settings, as well as the text to be typeset. For ex-
ample, with IMTEX the body size is a parameter to
the \documentclass command.

Strictly speaking, the input stream need not be
ASCII. TgX is capable of reading 8-bit input files.

210 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




We use ASCII as a convenient shorthand for the in-
put text file.

Tokens Internally, TEX deals with tokens. Cate-
gory codes control the translation of input charac-
ters into tokens.

Traditionally, the ASCII character ‘a’ is given
category code letter, which means that when read
it become the token ‘the letter a’. The same goes
for the other letters. Digits and punctuation are
given category other, and so the digit 7 become ‘the
character 7’ when read.

Certain other symbols, such as {, } and \, have
special category codes. It is this that gives TEX its
familiar ‘backslash and braces’ input syntax. How-
ever, this syntax is not built into TEX the program.

Internally the only tokens that TEX has are
character tokens (of various categories), and con-
trol sequences. (A control symbol is a control se-
quence whose name is a single character, usually a
non-letter.) The traditional category codes cause
the ‘eyes of TEX’ to convert the sequence of charac-
ters \wibble to the control sequence whose name is,
well, wibble. This is done by TEX the program, as
part of the process that turns ASCII characters into
tokens.

In Active TEX, every input ASCII character is
an active character. An active character is rather
like a control sequence, in that it has a meaning, and
this meaning can be changed at any time. However,
its ‘name’ is the active character ‘x’, or whatever it
is. In plain TEX, the ‘~’ character is active.

Active TEX does not use the ‘eyes’ of TEX the
program to form control sequences. Instead, it uses
macros and the \csname primitive to form control
sequences out of the active characters that it receives
from the eyes of TEX. This means that it never has
to change category codes, in order to achieve special
effects, such as verbatim typesetting.

Macros The internal tokens of TEX (or more ex-
actly their meanings) can be divided into two classes,
namely the expandable and the unexpandable. Most
expandable tokens are macros, and most of the prim-
itive commands of TEX are unexpandable. How-
ever, some primitive commands, such as \ifx, the
other conditional commands and \csname, are ex-
pandable.

Unexpandable commands do something (in the
stomach of TEX the program), while expandable com-
mands and macros control what it is that is done.
In plain TEX the ‘~’ character, which is active, is de-
fined to be a macro that places a penalty and some

Line breaking and page breaking

glue on the horizontal list.
breakable interword space.

This produces an un-

Horizontal list TEX would not be able to typeset
without commands that placed items on the hori-
zontal list. The internal token ‘the letter a’ (ob-
tained say by reading an ‘a’ from the input ASCII
file) will place a ‘character box’ that is the charac-
ter ‘a’ in the current font onto the current horizon-
tal list. (This is only in horizontal mode. In math
mode it does something else.) The internal token
‘the character 9’ behaves in the same way.

There are other items that can go on the hor-
izontal list. For this article, we need to know only
about glue, penalties and discretionary penalties.
Glue is potentially stretchable and shrinkable inter-
word space, while penalties record the undesirability
of making a line break at this point.

Discretionary hyphens are hyphens that are op-
tional. The line breaking algorithm can break lines
at discretionary hyphens. If the break is taken at a
discretionary hyphen, the hyphen appears, and oth-
erwise nothing appears. Discretionary hyphens can
be placed onto the horizontal list either explicitly,
via the execution of a primitive command, or im-
plicitly, as a result of the hyphenation algorithm.

Lines TEX’s line breaking algorithm turns a hori-
zontal list into a sequence of lines. It does this by
choosing a sequence of break points in the horizontal
list. Most of the time, any glue and penalty items
after a chosen break point are discarded. This allows
the interword glue to disappear at line breaks.

Normally, TEX breaks the paragraph into lines
using the current value of the \hsize. However, the
\parshape parameter allows the width (and offset)
of each line to be specified individually.

Vertical list After the paragraph has been broken
into lines, TEX places the lines onto the current ver-
tical list. Often, this vertical list is the main vertical
list, also known as ‘the current page’. Each line of
the paragraph is a box (in fact a horizontal box).
As well as boxes, a vertical list can contain (verti-
cal) glue and (vertical) penalties. A vertical list can
also contain other items, such as insertions, that do
not concern us here.

The line breaking algorithm places (vertical)
glue between the lines, so that the baseline to base-
line distance between the lines is uniform (unless
the lines contain exceptionally tall or deep set mat-
ter). It also inserts (vertical) penalties between the
lines, to aid in the page breaking process. The
\clubpenalty is the extra penalty for a page break
immediately after the first line of a paragraph. The

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 211




Jonathan Fine

\widowpenalty is the extra penalty for a page break
immediately before the last line of a paragraph.

Pages Whenever something is placed on the main
vertical list, TEX the program checks to see if it has
accumulated enough to break off from it the cur-
rent page. If it has, then TEX chooses the best of
the available break points on the main vertical list.
It then calls a special token list, the \output rou-
tine, to add page numbers and the like to the broken
off portion, and to ship it out to the dvi file. The
\output routine is part of the macro package.

The dvi file This is the output file produced by
TEX the program. As well as recording the place-
ment of every character and every rule on the page,
it can contain what are known as \special com-
mands. Programs that process dvi files can read
the specials, and use them as parameters to their
actions. For example, a special might request the
placement of a graphic.

The look-ahead problem TgX’s line breaking al-
gorithm ‘looks-ahead’ to the end of the paragraph
before it makes any decisions as to where the first
(or any other) line break occurs. Each line break
is, so to speak, considered not by itself but in the
context of the other line breaks.

The page breaking algorithm does not perform
such a look-ahead. Each page break is considered in
isolation, without regard for its consequences later
in the document.

At the end of a paragraph, the line-breaking
algorithm is called, and it produces lines of text.
These lines are then placed on, say, the main vertical
list. If enough material has accumulated, the page-
breaking algorithm cuts off enough material for one
page, and the output routine is called.

Thus, from the end of the paragraph to the call-
ing of the output routine, everything is under the
control of TEX the program. During this time nei-
ther the user nor the macro programmer has any op-
portunity to influence TEX’s behaviour, other than
through the values of parameters and the contents
of the horizontal and vertical lists.

TEX’s page-breaking algorithm clearly is defi-
cient for complex work. One needs to be able look
ahead, when there is floating matter to be placed.
Multiple column layout is particularly complicated.
There are two aspects to the problem. The first is
that an improved algorithm requires more than the
information local to the current page. The second
is what it does with this information.

This article concentrates on making informa-
tion available to an improved page-breaking algo-

rithm, but has little to say on the internals of such
an algorithm. As in the line-breaking algorithm,
the page-breaking algorithm selects one sequence of
possibilities from the many presented to it

The line-breaking algorithm has look-ahead. Its
context is the current paragraph. To avoid hyphen-
ating the last word on the last line of a page, the
algorithm needs to know where that last line will fall
(unless it suppresses all hyphenation, and so is done
with the problem). Therefore, the page-breaking al-
gorithm will have to feed information back to the
line-breaking algorithm.

Once the location of the page break is known,
this information can be fed to the line-breaking al-
gorithm (in the form of a custom paragraph shape).
Provided a suitable horizontal list is constructed, the
algorithm will suppress hyphenation at the required
point. How this is done will be shown later in this
article.

Discrete dynamic programming

The purpose of this section is to describe those parts
of TEX’s line-breaking algorithm that are specially
relevant to this article. This has two aspects. The
first is those features that are relevant to suppres-
sion of hyphenation of the last word on some spec-
ified line of a paragraph. The second is those fea-
tures that help us to understand what can be done
for global optimisation of page breaks, and for es-
tablishing communication between the line-breaking
and page-breaking algorithms.

In our simplified model, a horizontal list con-
tains character boxes, glue, penalties and discre-
tionary hyphens. Glue and penalties are what are
known as discardable items. They can disappear at
a line break. The other items are non-discardable.
They will never disappear.

A legal breakpoint is any (finite) penalty, any
discretionary hyphen, and any glue item, provided
the glue is immediately preceded by something that
is non-discardable. For any sequence of breakpoints,
there is quantity called the total demerits, that de-
pends on both the chosen breakpoints and on pa-
rameters that can be set by the macro programmer.

For example, when breaking at a penalty, the
amount of the penalty is part of the sum that is
the total demerits. Similarly, the \hyphenpenalty
and \exhyphenpenalty parameters are the contri-
butions made by discretionary and explicit hyphens
respectively. If the line had been set loose or tight
(shorter or longer than its optimum width) then a
badness for the line contributes to the total demer-
its.

212 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




Of all the possible sequences of breakpoints for
a given paragraph, TEX chooses one that has the
smallest possible value for the total demerits. It does
not choose the breakpoints line by line, or in other
words locally. The breakpoints are chosen with a
view to the whole paragraph, or in other words glob-
ally.

The way in which it does this is interesting,
because in general there are so many possible se-
quences of breakpoints, that it is impossible for them
to be considered individually. The method used
is known as discrete dynamic programming. This
method allows the last line of a paragraph to ‘com-
municate’ with the first. (It is communication not
in the sense of sending a message, but in the sense
of being part a common larger whole.)

To save time, TEX tries first to make the para-
graph without using any hyphenation. The param-
eters \pretolerance and \tolerance are limits on
how bad a line can be respectively before and after
hyphenation. For simplicity, we will assume that
hyphenation is alway tried, say because the pretol-
erance is zero.

A sequence of breakpoints is said to be feasi-
ble if no line has badness exceeding the tolerance.
The line-breaking algorithm considers only feasible
sequences of break points. For formal reasons, the
end of the paragraph is considered to be a break-
point. It is, after all, the end of a line.

The formula the algorithm uses to compute the
total demerits has the following useful property. Sup-
pose an optimal sequence of breakpoints is selected,
and say lines 5 to 9 are of the horizontal list are con-
sidered in isolation from the remainder of the hori-
zontal list. The optimal sequence of breakpoints for
the whole paragraph, when restricted to the isolated
lines, is also optimal for the line-breaking problem
represented by the isolated problem. This is called
the property of locality. It is a property of the for-
mula for total demerits.

Discrete dynamic programming, as applied to
line-breaking, consists of the following. Start at the
beginning of the paragraph. Calculate the feasi-
ble breakpoints for the end of the first line. From
these breakpoints calculate the feasible breakpoints
for the end of the second line. We now prune the list
of feasible sequences of breakpoints. If two or more
sequences end the second line at the same point,
keep only the best one. (If several are joint first,
keep only one.) For each of the remaining two-line
breakpoint sequences, compute all the feasible ex-
tensions to three-line sequences, and prune as be-
fore.

Line breaking and page breaking

As this process continues, so the number of both
feasible and locally optimal sequences will in general
grow. However, the growth will not be too rapid.
Consider the spread in the location of the breakpoint
that is the end of, say, the nth line. If the first n
lines contain as little set matter as is possible, then
we get one location in the horizontal list. If they
contain as much as is possible, we get another. This
is the spread. It is roughly linear in n. The number
of breakpoints in this spread is the number of locally
optimal breakpoints that the algorithm must carry
along to the n + 1 stage.

This analysis limits the running time to of the
order of n?. However, we can do better. When
the spread gets large, it will cover the the length
of a whole line, and so some of the calculations for
n + 2 will have been done as part of n 4+ 1. This
also shows why using a custom paragraph shape is
computationally expensive. There is no longer such
a sharing of computations between lines.

The line-breaking and the page-breaking algo-
rithms have a certain amount in common. This is

how Don Knuth puts it in The TEXbook (page 100):

TEX breaks lists of lines into pages by com-
puting badness ratings and penalties, more
or less as it does when breaking paragraphs
into lines. But pages are made up one at a
time and removed from TEX’s memory; there
is no looking ahead to see how one page break
will affect the next one. In other words, TEX
uses a special method to find the optimum
breakpoints for the lines in an entire para-
graph, but it doesn’t attempt to find the op-
timum breakpoints for the pages in an en-
tire document. The computer doesn’t have
enough high-speed memory capacity to re-
member the contents of several pages, so TEX
simply chooses each page break as best it can,
by a process of “local” rather than “global”
optimisation.

The situation is not impossible though. In Ap-
pendix D (page 400) Don Knuth writes:

An output routine can also write notes on a
file, based on what occurs in a manuscript. A
two-pass system can be devised where TEX
simply gathers information during the first
pass; the actual typesetting can be done dur-
ing the second pass, using \read to recover
information that was written during the first.

Provided sufficient information can be gathered
in the first pass, it can then be presented to TEX’s
line-breaking algorithm, or some other program, so
that an optimal choice can be made from amongst

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 213




Jonathan Fine

those which are feasible. The second pass can then
do the actual typesetting.

Avoiding ‘last-word’ hyphenation

In this section we explain how a suitable horizon-
tal list and paragraph shape specification taken to-
gether will cause the line-breaking algorithm to sup-
press hyphenation of the word at the end of some
specified line.

The basic idea is quite simple. Hyphenation
places matter on the next line. Indeed, this is the
very purpose of hyphenation. However, if the next
line is not long enough to hold even the smallest
fragment of a word, then the word at the end of the
previous line will not be hyphenated. (It is possi-
ble for a very long word to be hyphenated two or
more times. Each hyphenation point is a legitimate
breakpoint.)

The sixth line has zero width. This pre-
vents hyphenation of the word at the e-
nd of the fifth line. This is because whe-
n a word is hyphenated, part of the wor-
d is placed on the next line. (This is the

very purpose of hyphenation.) A specia-
1 sequence of items of glue and penalti-
es is placed between words. This allow-
s the interword glue to span the zero-w-
idth line.

Figure 1: Example of suppressed hyphenation

We can achieve this effect on say the fifth line
by making the width of the sixth line equal to zero.
This however creates a problem. If we use ordinary
glue between words, then between any two words
there will be only one breakpoint, namely the glue
that was between the words. For some word to be
allowed to occur at the end of the fifth line, it must
be followed by a special piece of ‘glue’, that is capa-
ble of spanning the zero width sixth line.

Recall that in our simplified model (which is
all we need), breaks can occur at penalties, at dis-
cretionary hyphens, and at glue that is preceded by
something that is not discardable. To go further, we
need to understand exactly what happens at a line
break.

According to The TEXbook (page 97):

When a line break actually does occur,
TEX removes all discardable items that
follow the break, until coming to something
non-discardable, or until coming to another
chosen breakpoint. For example, a sequence

of glue and penalty items will vanish as
a unit, if no boxes intervene, unless the
optimum breakpoint sequence includes one
or more of the penalties.

In other words, most of the time discardable
items are discarded, but any (finite) penalties are
allowed to be part of the breakpoint sequence, if that
is what the algorithm decided to do. In other words,
when moving on to the next feasible breakpoint, it
has something of a free choice in the discarding of
discardables.

Therefore, each piece of ‘glue’ between words
will have to contain two legitimate break points, as
well as an ordinary piece of interword glue. The way
to get this is to place two penalties of zero, followed
by the ordinary interword glue. (The penalty for
breaking at glue preceded by a non-discardable, such
as a word, is zero. Thus, in ordinary cases we get
the same behaviour as before.)

Something similar arises in ordinary practice.
Sometimes a line is deliberately left short, say be-
cause the next word is too long to fit on the line,
and it cannot be hyphenated. The standard way
to achieve this is to insert \hfil \break in the line.
The \break is just a shorthand for a penalty of zero,
and the \hfil is glue that stretches to fill the line.
When the line has zero width, no glue is required to
fill it.

In August 1999, the author posted to the news-
group comp.text.tex example code that suppressed
hyphenation. A lively debate followed, but not until
the author came to write this article did he discover,
to his shock and horror, that the code he posted last
summer did not work in many cases. In the first ver-
sion of this paper, his solution had an unnecessary
but harmless zero-width piece of glue between the
two penalties. This was not noticed until after the
paper had been refereed. Clearly, some of us have
something to learn about penalties and glue.

The echowords environment

Figure 1 shows the result of applying the methods
of the previous section. So that there are many hy-
phens, a discretionary hyphen has been placed be-
tween adjacent letters of a word. The spaces be-
tween words contribute, as described in the previ-
ous section, two penalties of zero and an ordinary
interword space. Although it is clearly possible to
construct such a horizontal list by hand, doing so is
laborious and prone to error.

Instead, the author has used Active TEX to sim-
plify the form of the example’s input. In fact the
author wrote

214 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




\begin{hyphdemo}{5}

The sixth line has zero width.
[...]

zero-width line.
\end{hyphdemo}

and it is the purpose of this section and the next to
describe the macros that were used.

By way of an example, this section contains the
complete source for a INTEX environment that echoes
its content to the console, word by word. Here a
word is a maximal sequence of visible characters.
White space separates words. The next section gives
the listing for the hyphdemo environment.

In the header of the source for this article the
author wrote:

\RequirePackage{atcode} [2000/07/22]
\RequirePackage{atlatex}[2000/07/22]

and this loads two Active TEX macro packages.

The first of these packages defines a program-
ming environment in which it much easier to write
macros that make extensive use of active characters.
It has other advantages, which make it useful even
when writing macros that have no special features.
One uses the command \@code to enter the environ-
ment, and 1] to exit it. Later in this section there
will be examples of the input syntax and program-
ming style for the package.

The first section also define macros for mak-
ing all ASCII characters active, and giving them
standard meanings. More exactly, the active char-
acter ‘a’ is a macro whose expansion is the con-
trol sequence \active:1lcletter followed be the ac-
tive character ‘a’. This apparent recursion is very
useful, for it allows each active character to know
its own identity. By letting the prefix control se-
quence \active:lcletter be \string, for exam-
ple, a character can be made to typeset itself.

The second of these packages defines a new com-
mand, \active:latex, that makes it possible for
IXTEX macro programmers to access the facilities of
Active TEX. The hyphdemo environment above is
coded using this command, within an \@code pro-
gramming environment.

First we enter the atcode environment. What
follows is the most general way, for it does not as-
sume that the ASCII character @ has category code
letter. There must be a space before the @, and no
space after the code.

\csname @code\endcsname
Now all ASCII characters are active, and we are
in the atcode environment. Here, control sequences

do not need to be prefixed by a backslash. You can
use a backslash as a prefix, but it is neater to omit

Line breaking and page breaking

the backslash whenever possible. Strings, however,
have to be enclosed in double quote marks. Here is
an example. (This semi-colon is not syntactic sugar.
It tells atcode that it is safe to release the tokens it
has been accumulating. Semi-colons within braces,
however, are syntactic sugar. The same goes for
commas. )

message { "Hello world" } ;

Next we set up a shorthand feature. This allows
us to type .digit instead of active:digit, and so
on. From now on we will drop the backslash before
control sequence names, in both text and in atcode
source. We will also drop the active: prefix. Thus,
active:latex is .latex.

def active:prefix { "active" } ;

The macro get.word parses the.word from the
input stream, and calls do.word to process it. It
depends on init.get.word, whose value will be set
by the calling context. It also relies on some system
macros that have not yet been described. In the
atcode environment white space is ignored, unless it
is part of a string or the like.

def get.word
{
begingroup ; aftergroup do.word ;
init.get.word ;
.suspend.white.space ;
let .suspend .end.xdef ;
xdef the.word { iffalse } fi ;

Here is the definition of the echowords environ-
ment. It provides an example of the .latex com-
mand. The ]] closes the atcode environment. All
is as it was before except that the macro get.word
and the environment echowords have been defined.

newenvironment { "echowords" }
{
begingroup ;
let .lcletter get.word ;
let .ucletter get.word ;
let .digit get.word ;
(default) ; let .symbol get.word ;
let .rs relax ; let .re relax ;
let .re-sp relax ;
let ! relax ; let |D09 relax ;
let init.get.word .string.visible ;
def do.word
{ message { the.word } } ;
.latex ; // must come last
}
{ endgroup } ;

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 215




Jonathan Fine

11 %% now back to the usual catcodes

We will now explain what is going on. First, the
.latex command. This command opens a group, in
which all ASCII characters are active. It looks for a
line that begins with the (active) characters \end{.
When it finds this, it closes the all-active group, and
pretends that it had read the \end{ with KTEX’s
normal category codes. Thus, the first and last of
the input lines

\begin{echowords}

These words are echoed,
one by omne.
\end{echowords}

are processed by the begin and end commands of
the echowords environment. The two lines in the
middle are read and processed with all characters
active, and with the values set by the environment.

We simplify slightly. To avoid needlessly filling
TEX’s macro processor (the mouth) with a long list
of tokens, this looking for the \end{ is done on a
line by line basis. However, this makes no difference
in practice.

The first three assignment commands tell Ac-
tive TEX how to process letters (upper- and lower-
case) and digits. Symbols are rather different. Most
if not all of the time, all lowercase letters are dealt
with by the same rules. The same goes for upper-
case letters, and for digits. It often happens, how-
ever, that each symbol has a specific meaning. For
example, in the atcode environment, each symbol
has a distinct meaning of its own.

For this reason, Active TEX uses the concept of
symbol sets. Within its realm, it ‘owns’ all the ac-
tive symbols. (This is done in a way that does not
interfere with their use outside of its realm.) Instead
of directly assigning a value to a symbol, one selects
a symbol set, perhaps of one’s own creation. The
owner of a symbol set is free to change the meaning
of symbols in that set. For as long as that symbol set
is selected, for almost all practical purposes chang-
ing the meaning of a symbol in a set is the same
as changing the meaning of the active symbol itself.
However, when a different symbol set is selected, the
meaning of all the symbols changes to those of the
newly selected set.

Parentheses, as above, are used to select a sym-
bol set. The (default) symbol set is part of the
atcode package, and in it every symbol expands to
the control sequence .symbol, followed the active
symbol itself. Thus the line of code:

(default) ; let .symbol get.word ;

causes all symbols to call get.word. In short, all
visible characters are to call the get.word command
we just defined.

The .latex command ‘owns’ the active end-of-
line character. Only when one knows for sure that
it is safe to do so, should one change its meaning.
It is used by .latex to inspect the next line for the
\end{ characters.

At the start and end of each non-blank input
line, .latex generates .rs and .re events. Blank
input lines generate the .rs-re event. These events
are control sequences, whose values can be set by
the macro programmer. Here we are setting them
to do nothing. (One can think of the visible char-
acters as similarly being events, but this time with
parameters.)

We have now initialised all the ASCII characters
except for space and tab. The next line sets them
both to relax. (The construction |ABC generates
a character whose category code is hexadecimal A,
and whose character code is hexadecimal BC. Thus,
[DO9 is active tab.)

The low-level events (reading a character from
the input stream) have now been dealt with. They
create higher level events, namely the initialisation
of the parsing of a word, and the processing of the
word once parsed. The .string.visible macro is
a low-level system macro that causes all visible char-
acters to behave as if they were characters of cate-
gory code other. This system macro by-passes the
symbol set mechanism. It runs quicker, but must be
used with care.

We are almost done. There are some commands
in get.word that need explanation. The command
.suspend.white.space cause the active form of the
white space characters (space, tab and end-of-line)
to expand to .suspend followed by the active white
space character. This should only be done within a
group, which is closed by white space. The parsing
of a word is exactly such a context.

Finally, the atlatex package contains a helper
macro that is very useful for closing a ‘flying xdef’.
Here is its definition.

def .end.xdef
{ iffalse { fi ; } ; endgroup } ;

To conclude, we reconsider the get . word macro.

def get.word
{
begingroup ; aftergroup do.word ;
init.get.word ;
.suspend.white.space ;
let .suspend .end.xdef ;
xdef the.word { iffalse } fi ;

216 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




It opens a group. After the group, we call
do.word. The variable part of the initialisation rou-
tine, namely init.get.word is defined to make all
visible characters ‘other’. Thus, when the xdef which
closes the macro executes, it simply accumulates vis-
ible characters in the.word. (The iffalse is a hack
that allows a macro to ‘contain’ unbalanced braces.)
The two suspend commands cause white space to
close the xdef, and thereby trigger the processing
of the word.

The reader may find it instructive to run these
macros with tracingall on, and examine the re-
sulting log file.

The hyphdemo environment

Our next example is more substantial. The sup-
pression of hyphenation on the last line of a page
requires the construction of a fairly special horizon-
tal list. Here is the sequence of penalties and glue
that is to be placed between words. (We use hd as a
two letter prefix for ‘hyphenation demonstration’.)
But first we enter the atcode environment.

\csname Q@code\endcsname
def hd:iwspace

{

unskip ;

penalty "O " ; pemnalty "O "

~ ; // ordinary interword space
b

The unskip is in case we get two spaces in a
row. This is not rigorous, but in the context it is
good enough. Then we put down two penalties,
which allows hd:iwspace to span a blank line. Fi-
nally, we put down an ordinary piece of interword
glue. In Active TEX, ~ produces an ordinary space
character.

So that we get lots of hyphens, we will place a
discretionary hyphen between adjacent letters in a
word. To do this, we use a variant of the get.word
command. This macro applies string to the first
character in the word. Each subsequent character
is then responsible for putting down a discretionary
hyphen before stringing itself. To avoid hyphen-
ating just before punctuation at the end of a word,
symbols do not insert a discretionary hyphen.

def hd:get.word { get.word ; string } ;
def hd:init.get.word
{

def .lcletter { \- ; string } ;

let .ucletter .lcletter ;

let .digit .lcletter ;

let .symbol string ;

Line breaking and page breaking

The hyphdemo environment takes a single pa-
rameter, namely the number of the line, at the end of
which hyphenation is to be suppressed. This param-
eter controls the construction of a custom parshape,
which will be coded later. If the parameter is zero,
no suppression is offered.

The parameters encourage hyphenation. The
large value of the line penalty is to stop the line-
breaking from making the lines very loose, just so it
can get the reward (negative penalty) for the addi-
tional hyphen.

newvenvironment { "hyphdemo" } [1]
{
par ;
begingroup ;
hyphenpenalty "-100" ;
doublehyphendemerits "0 " ;
linepenalty "200 " ;
leftskip "2pc " ;
rightskip leftskip ;
hd:set.parshape { #1 } ;

let .lcletter hd:get.word ;
let .ucletter .lcletter ;
let .digit .lcletter ;
(default) ; let .symbol .lcletter ;
let ! hd:iwspace ;
let |DO9 ! ; let .re ! ;
let init.get.word hd:init.get.word ;
def .re-sp { par } ;
def do.word { the.word } ;
.latex ; // don’t forget this
}
{ par ; endgroup }

The remainder of the definition of this environ-
ment sets up the conditions for the parsing and pro-
cessing of words, in much the same way as in the
previous section. Note that let do.word the.word
would be very wrong. This would cause the macro
to continually process the value of the.word that
was current at the start of the environment.

The difficult part of setting the parameters is to
feed the parameters to TEX’s parshape primitive. It
takes 2n + 1 parameters, where n is the number of
lines, whose width we are specifying. These are TEX
number and dimension parameters, and not macro
or token parameters. We use aftergroup accumula-
tion to build up this list. Scratch counters are used
to hold the values of parameters whose values have
to be calculated.

def hd:set.parshape #1
{

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 217




Jonathan Fine

count@ #1~ ;
ifcase count@ ,
else
advance count@ tw@ ;
dimen z@ leftskip ;
advance dimen z@ rightskip ;
def temp { z@ ; hsize } ;
begingroup ;
aftergroup parshape ;
aftergroup count@ ;
count@ #1~ ;
loop ; ifnum count@ > zQ ,
aftergroup temp ;
advance count@ m@ne ;
repeat ;
endgroup ;
// accumulated tokens released here
z@ ; dimen z@ ; // =zero-width line
temp ; // remaining lines normal
fi
X

Some words of explanation. If the parameter is
zero, we do nothing, otherwise we store in scratch
registers the number of lines in the parshape, and
the sum of the leftskip and the rightskip (the
actual width of a ‘zero-width’ line). We then store in
temp the specification for a normal line. A process
of ‘aftergroup accumulation’ is then used to build
up the parshape along with its parameters. (The
@code environment uses the same method to gain
its power. The asterisks problem in Appendix D of
The TgXbook (page 373) is a simpler example of
this.)

Outside the group, count@ is n+ 2, the number
of lines in the paragraph shape. Inside the group
it is set to m, which is the number of lines before
the zero width line. (Grouping ensures that the two
values do not interfere with each other.) The loop
accumulates n temp tokens. At the end of the group,
the accumulated aftergroup tokens re-appear. The
zero-width line and the final temp complete the para-
graph specification.

All that remains now is to close the atcode en-
vironment.

1]

Flexible paragraphs

Sometimes it is helpful, for purposes of page make-
up, to set a paragraph slightly longer or shorter
than is optimal. For this purpose TEX provides the
looseness parameter. Negative values of looseness
can be thought of as tightness. If the looseness is 1,
then TEX will try to make the paragraph one line

longer than it would otherwise. Traditionally, in
the TEX world, looseness is applied by hand, when
fine-tuning the document for publication.

Let us consider now how it might be done auto-
matically. Ahead of time, we will not know how long
we will want the paragraph to be. Nor will we know
where the paragraph appears on the page, and thus
which custom paragraph shape to use. Therefore,
we shall consider all possibilities.

We might find, for example, that a given para-
graph can be set using 9, 10 or 11 lines. We might
also find that when 9 lines are used, we can suppress
hyphenation at the line breaks 4, 6, 7 and 8. (We
are lucky if we can suppress hyphenation early on in
a paragraph.)

The following table represents this data about
9-line versions of the paragraph. Each line gives
a way of breaking the paragraph, and the number
pointed to by the arrow is the total demerits for the
optimal way of so breaking the paragraph. Simi-
lar tables can be constructed for the 10 and 11 line
versions of the paragraph. Such a report, on the
flexibility of all paragraphs in the document, will
be the input for the global optimisation algorithm
considered in the next section.

4+5->3489
6+3->2748
7+2->2956
9->2413

The reader may object that to prepare such a
report, even by computer, will take a long time.
This may be true, but the situation is not hopeless.
First, if the document is in its final form, this report
need be prepared only once. The page-breaking al-
gorithm, by design, requires no knowledge of the
document, other than this report.

Second, even if the document is not in its final
form, changes are likely to be confined to a small
proportion of its paragraphs. Matters can be con-
figured, provided macros have been written with this
in mind, so that fresh report data need only be gen-
erated for the paragraphs that have changed. This is
probably something that could be done in real time
on the entry-level hardware available today.

What is true is that much more time will be
spent on trial paragraph breaking, to generate the
report, as is spent on breaking the paragraphs for
the final triumphant globally optimised version. The
same is true, however, of the line-breaking algo-
rithm.

Indeed, the two are yet more similar than this.
Discrete dynamic programming depends on the prin-
ciple of local optimality, which is a property of the

218 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




formula for total demerits. One consequence of this
property is the following. If an optimal sequence of
breakpoints takes in the feasible breakpoints A and
B, then over the range A to B this sequence is also
optimal for this local form of the problem.

Now suppose A is ‘sufficiently distant’ from the
start of the paragraph, and that B is ‘sufficiently
distant’ from A. Here, ‘sufficiently distant’ means
that there is a feasible (but not necessarily optimal)
sequence of breakpoints linking the two points. If
enough set matter of random width intervenes be-
tween the two points, the concept has its intuitive
meaning. In these circumstances the line-breaking
algorithm will find an optimal sequence of break-
points between A and B. It will do this whether
or not this is part of the finally chosen optimal se-
quence.

Thus, the line-breaking algorithm finds not only
the best breaking for the whole paragraph, but also
for a great many portions of the paragraph. In the
same way, any worthwhile discrete dynamic pro-
gramming solution to the problem of global opti-
misation will consider most or all possible feasible
ways of breaking the paragraphs that constitute the
document. The strength of Knuth and Plass’s al-
gorithm is not that it runs quickly in abstract, but
that the running time is roughly linear, rather than
quadratic, in the size of the problem. Because of
linearity, in time hardware will be able to catch up,
even if the problems are large.

Global optimisation

This section describes briefly how a report on para-
graph, as in the previous section, can be used as the
input for a global optimisation process. For simplic-
ity, we assume that we are setting straight text on
a grid, and that hyphenation is to be suppressed on
the last word of each page. We also assume that no
paragraph is longer than a page, or in other words,
that it cannot span two page breaks.

First, it is convenient to recast each paragraph’s
report into the following form. We give the possi-
bilities in order first of the number of lines before
the potential page boundary, and then in order of
the number after. Thus, a fragment of paragraph’s
report might look like the following. (The values for
total demerits are fictional, and are chosen to make
the rest of the exposition clearer. The right hand
column will be explained later.)

4+5->4050 ; wibble 4050, O ;
4+6->4060 ; wibble 4060, 1 ;
4+7->4070 ; wibble 4070, 2 ;
; wobble ;
5+4->5040 ; wibble 5040, O ;

Line breaking and page breaking

5+5->56050 ; wibble 5050, 1 ;

Given such a sequence of paragraph reports,
and the requirement that there be, say, exactly 12
lines on each page, there is an associated optimi-
sation problem. First, for each paragraph report
choose one of its entries. Call this a selection (of
paragraphs). Write the selection in the form

B)+B)+@d+7)+(B+2)+10+...

and say that the selection is feasible if, when sum-
ming from left to right, successive exact multiples
of 12 are reached during the progress of the sum.
The above selection is feasible (as far as it goes).
For every feasible selection, define the grand total
demerits to be the sum of demerits associated with
the terms of the form (a+0b). Thus, the (4+7) terms
contributes 4070 to the grand total demerits.

The optimisation problem is to find a feasible
selection that minimises the grand-total demerits.
This is one way (there are many others) of defining
a global optimisation for the line and page breaks
of a document. If such a problem is to be solved
using discrete dynamic programming, the global op-
timisation data might take a more elaborate form,
but the general structure will be the same. (The
interested reader might wish to look at how TEX’s
line-breaking algorithm supplies demerits for adja-
cent lines whose looseness is visually incompatible.
It is done by providing each partial problem with a
context.)

It is both interesting and fortunate that the
global problem, as described above, can be solved
using TEX’s line-breaking algorithm. It is a mat-
ter of ‘putting the book on its side’, and thinking of
each line as a ‘word’ in a paragraph. The problem is
to construct a suitable list of boxes, glue and penal-
ties. So that we can get nice diagrams, we will let
one pica represent one line.

Discardable items can vanish at line breaks, and
with trickery this allows the problem to be solved.
Consider for example the sequence of horizontal list
items,

penalty "4070 "
kern "-2pc " ;
noalign {7} ;

kern "2pc H

Kerns are discardable items. If the line break
is taken at the penalty, the first kern will be dis-
carded. The noalign is non-discardable, and it pre-
vents the second kern from being discarded. Thus,
if the penalty is not a break-point, the kerns can-
cel, but if the penalty is a break point, it effectively
inserts a kern of two pica.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 219




Jonathan Fine

Denote such a sequence of horizontal list items
by wibble 4070, 2;, and let wobble represent a
kern by one pica. This procedure translates the
sequence of paragraph reports into a horizontal list.
When the line-breaking algorithm is applied to this
list, with a hsize of twelve pica, the result is a global
optimisation of the line and page breaks. If we are
not typesetting on a grid, then some ‘interword glue’
(representing interline glue) should be added to the
above construction.

As mentioned earlier, the line-breaking algo-
rithm introduce penalties between the lines, in order
to help TEX’s page-breaking algorithm. These pre-
vent, or discourage, page breaks just after the first
line of a paragraph, and just before the last line.
In the algorithm described here, the potential page
break is part of the paragraph’s specification. The
club penalty thus becomes an extra demerit charged
for paragraph specifications of the form (1+n), and
similarly the widow penalty applies to (n + 1).

Although there are some difficulties of a tech-
nical nature in implementing such a solution, there
is a more fundamental problem. In 1989 [6], when
Don Knuth released version 3 of TEX, he introduced
several new primitives. One of them, the \badness,
records the badness of the box that was most re-
cently constructed. Thus, this quantity is made
available to the macro programmer. Sadly, he did
not at the same time introduce \totaldemerits,
and so there is no ready access to this quantity.

Summary and conclusions

When Don Knuth announced [8] in 1990 that his
work on developing TEX had come to an end, he
pointed out that improved macro packages could
be added on the input side, and improved device
drivers added on the output side. This article shows
that ten years after the event, there is still plenty of
room for improvement on the macro package side.
(However, the lack of a \totaldemerits command
is unfortunate.)

The problem of suppressing hyphenation at the
end of a page is relatively simple, particularly if a
macro package such as Active TEX is used to con-
struct the horizontal list. What has not been dis-
cussed is how to rearrange the resulting sequence of
lines, so that the blank amongst them can be dis-
carded. In abstract this is not difficult, but in the
context of an existing macro package one may find
assumptions being made that are inconsistent with
this goal.

The problem of page make-up is much harder,
particularly where there are multiple columns and
floating material. TEX was not designed to do such

work, although it can readily typeset the paragraphs
that will go into the pages. As in shown in the pre-
vious section, it is possible to use the line-breaking
algorithm to solve simple page make-up problems.
For more complicated problems, an external pro-
gram might be more suitable.

TEX is not good at complicated page makeup,
but that is no reason to ‘improve’ it. Complicated
page make-up was never a design goal of TEX. In-
stead, TEX can be used to feed paragraphs and para-
graph reports to an external make-up program. Such
can be thought of as an improved device driver, in
the same way as Active TEX is intended to be an
improved macro package.

Postscript

Prior to the TUG 2000 meeting I sent an earlier
version of this paper to Don Knuth, and invited his
comments. He told me that I should cite and read
Michael Plass’s thesis [10]. The citing is done, and
I hope soon to read this work. He also says that he
cannot add \totaldemerits, as that would mean
changing TEX and suggests instead that I approach
the authors of extensions to TEX.

In his essay on the errors of TEX, [7] Don Knuth
wrote:

Of course I don’t mean to imply that all prob-
lems of computational typography have been
solved. Far from it! There are still countless
important issues to be studied, relating espe-
cially to the many classes of documents that
go far beyond what I ever intended TEX to
handle.

I hope that this article shows that a few judi-
cious extensions to TEX will produce a new system
that can handle well many new classes of documents,
and that even TEX can make a fair attempt at doing
the job. What seems to be required, above all, is an
understanding of the problem, and the development
of suitable algorithms. From then on, the program-
ming of the extensions should be straightforward.

The article by Frank Mittelbach in these pro-
ceedings addresses a different aspect of the page
makeup problem. His concern is with placement of
floats. Combining his work with mine, even at the
level of algorithms, is already a challenge. When it
comes to implementation, the widespread use of ac-
tive space characters is likely to present A TEX with
many problems. Assumptions about category codes
are built into its input syntax.

So much for output. On the input side the pa-
pers by David Carlisle and by Pedro Palao Gostanza
in these proceedings have significant overlap with

220 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting




this paper. I am delighted that others are taking
steps in the direction of making all characters active.
However, we now have three incompatible systems
of values for the meaning of active letters and digits.

Active TEX provides a powerful and effective
programming environment, especially for defining
active characters. Without such a device, the pro-
grammer has to resort to ad hoc tricks, time and
time again. For example, of the 1,936 lines of xml-
tex (v0.07), exactly 194 contain the string catcode.
By contrast, of the 6,361 lines of my sgmlbase pack-
age (v0.00), exactly 23 contain the string catcode.
Perhaps if Carlisle had used Active TEX, his work
would have been easier.

For this area to flourish, standards are required.
Without standards, incompatible versions of the ba-
sic macros will be re-invented. Application program-
mers will then have to work harder, to cope with this
unhelpful diversity. There is also be the danger of
schisms within the community.

To understand this, imagine what life would be
like if there we used incompatible mechanisms for
register allocation (\newcount and the like). In The
TEXbook (page 346), Don Knuth addressed pre-
cisely this problem:

Allocation of registers. The second major
part of the plain.tex file provides a founda-
tion on which systems of independently de-
veloped macros can coexist peacefully with-
out interfering in their usage of registers.

We need the same for active characters. The
packages atcode.sty and atlatex.sty have been
written to be a fixed point that opens this area to
the plain and IATEX macro programmer. They differ
only in a small but significant detail (colon instead
of prefix is used to segment the name space) from
the version announced at TUG 1999.

Line breaking and page breaking

I offer these packages to the community, and
hope for the rapid and widespread adoption of a
standard for the use of active characters. I would
of course prefer that my own macros were the stan-
dard, but more important both to me and to the
community as a whole, I believe, is that a standard
acceptable to all is adopted.

References

[1] David P. Carlisle, zmlitex: A non validating (and
not 100% conforming) namespace aware XML
parser implemented in TEX, these proceedings

[2] Jonathan Fine, Active TEX and the DOT input
syntax, TUGboat, 20, (1999), 248-254

[3] Pedro Palao Gostanza, Fast scanners and self-
parsing in TEX, these proceedings

[4] Donald E. Knuth, Michael F. Plass, Breaking
paragraphs into lines, Software — Practice and
Ezperience, 11 (1981), 1119-1184.

[5] Donald E. Knuth, The TgXbook, Addison-
Wesley (1984).

6] , The new versions of TEX and META-
FONT, TUGboat, 10 (3) (1989), 325-328
[7] , The Errors of TEX, Software — Practice

and Ezxperience, 19 (1989), 605-685; reprinted
with additions and corrections as Chapter 10 of
Literate Programming.

8] ——, The future of TEX and METAFONT,
TUGboat, 11 (4) (1990), 489.

[9] Frank Mittelbach, Formatting documents with
floats, these proceedings

[10] Michael F. Plass, Optimal Pagination Tech-
niques for Automatic Typesetting Systems,
Ph.D. thesis, Stanford University (1981). Pub-
lished also as Xerox Palo Alto Research Center
report ISL-81-1

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 221




