
TUGboat, Volume 23 (2002), No. 3/4 249

Donald Knuth: All questions answered
University of Oslo, 30 August 2002

Tom Lyche: It is a great pleasure for me to in-
troduce Professor Donald Knuth. Professor Knuth
is a Professor Emeritus in The Art of Computer
Programming at Stanford University. He is one of
the leading researchers in computer science, and has
made many fundamental contributions in many ar-
eas, including combinatorial algorithms and discrete
mathematics. His monumental books, The Art of
Computer Programming, have been seminal in com-
puter science, and his typographical system TEX is
used heavily, especially in journals requiring math-
ematical typography.

He has many honors. He is a member of three
national academies in the United States, and he is
a foreign associate of the French, Norwegian and
Bavarian science academies. He has received the
Turing Award, the National Medal of Science, the
John von Neumann Medal, the Steele Prize, the
Adelsköld Medal, and the Kyoto Prize from Japan,
moreover the Harvey Prize, . . . , I hope I get them
all. He holds honorary doctorates from Oxford Uni-
versity, the University of Paris, the Royal Institute
of Technology in Stockholm, the University of St.
Petersburg, the University of Marne-la-Valée, Masa-
ryk University, St. Andrews University, Athens Uni-
versity of Economics and Business, the University of
Tübingen, and from Monday, also from the Univer-
sity of Oslo. [applause]

Professor Knuth has a long-lasting and close re-
lationship to Norway. In ’67 he came to an IFIP

conference in Oslo where, among other things, SIM-

ULA67 was presented. He spent the academic year
’72–73 at the Univerity of Oslo, and this visit was
influential for further development of computer sci-
ence in Norway.

So, a little bit now about this session. The for-
mat of this session is informal. Anybody who has
questions will ask them directly to Professor Knuth;
also, those who had sent me questions before can
pose them directly to Professor Knuth, and he will
repeat the question for the recording. And I’ll start
by asking a question myself. [laughter]

This Q&A session was held in conjunction with the celebration
of the bicentennial of the birth of Niels Henrik Abel, as well
as the 25th anniversary of Oslo University’s computer science
department.

Thanks to Dag Langmyhr for providing a copy of the
recording and especially for correcting the Norwegian refer-
ences.

The video can be accessed at http://www.ifiuio.no/

aktuelt/arkiv/2002/09/allquestions.html.

When you came here in 1972, you gave a proof
that Norway should not become a member of the
European Union. [laughter]
DEK: yeah, yeah, yeah . . .
Lyche: Is this proof still valid?
DEK: [laughs] Okay, very good question, Tom. Yes,
I came, and I gave a tongue-in-cheek lecture — it was
my first lecture at the University— and I didn’t re-
alize that it was something that you shouldn’t joke
about, because as I rode the trikk1 back to my apart-
ment, I noticed that I was moving from “Stem nei”
to “Stem ja”2 country.

The idea of the lecture was really mathematical.
It’s interesting to economists, the study of a three-
way duel, where there are three players. And in
my presentation, if I remember correctly from 1972,
there were three players; they were named Petersen,
Quisling, and Rasmussen, and they had probability
p, q, and r that when they fire a gun, they would hit
the person they shoot at. So I worked out the theory
of what’s the probability of survival as a function of
p, q, and r. And the answer was that the one who
had the smallest probability had the best chance of
living, that the big powers were shooting each other,
and then the other one would be left. Anyway, that
was my “proof”, and it had nothing really to do
with the Common Market. And I’m not sure I’m
glad you brought it up or not. [laughter]

It does, in fact, seem to happen only with three
players; the phenomenon doesn’t occur with two or
with four, and economists are still unsure about this,
but maybe that’s the reason . . . In English we have
a word “truce”, and it seems to start with “tr”,
which is the prefix for “three”. There’s this uneasy
truce, where actually all players do best by firing in
the air, every time it’s their turn to fire. But the
result doesn’t seem to be true for other numbers.3

We’re trying here to get the connection to the
Internet going, so that I can show you my home
page. Before I start with more questions, I just want
to say how much “jeg elsker dette landet.”4 [laugh-
ter] My ancestors came from Schleswig-Holstein,
which is a little bit close to Scandinavia, but my
academic ancestors are almost entirely Norwegian.
The first time I came to Norway, in 1967, I fell in
love with the country and decided I wanted to be
here a lot. My academic ancestors . . . my thesis

1 electric tram
2 “Vote no”, “Vote yes”; this refers to the 1972 referendum

on whether to join the European Union.
3 Journal of Recreational Mathematics 6 (1973), 1–7.
4 “I love this country” —a play on the Norwegian national

anthem, which begins, “Yes, we love this country.”

http://www.ifiuio.no/aktuelt/arkiv/2002/09/allquestions.html
http://www.ifiuio.no/aktuelt/arkiv/2002/09/allquestions.html

250 TUGboat, Volume 23 (2002), No. 3/4

adviser was an American, but his adviser was Øys-
tein Ore, at Yale University, and Ore was a student
of [Thoralf] Skolem, Skolem was a student of [Axel]
Thue, Thue was a student of Elling Holst, who was
a student of Sophus Lie, and Sophus Lie was a stu-
dent of [Carl] Bjerknes, and next week I’m going to
find out who Bjerknes was a student of,5 and so on.
[laughter] But anyway, in that sense I’m a son of
Norway.

And pretty soon we’re going to be able to see
my home page . . .

The other thing I should say before we start
out is that I want to pay respect to Ole-Johan Dahl.
We had, of course, a special memorial session for him
this morning, and both Dahl and [Kristen] Nygaard
are extremely important in computer science. I had
a very close relationship with Ole-Johan; he’s one of
the five people who had the strongest influence on
my whole life. We were very close personally, and
I invited him to Stanford for a year after he had
invited me to Norway for a year. I looked at my
diary before coming here, and found out that on my
previous trip to Norway, which was 1994, I spent
five nights at his house playing piano with him.

[laughter; DEK looks at screen at the front of
the room, which shows a regular television channel.]

So we have a real hacker here getting us to the
outside world. Well this is great — maybe I can get
a copy of this video.

When this building was dedicated, Ole-Johan
and I played the piano in the lounge, and we . . .
[looks at screen again] X-watch —all I want is Net-
scape!
Eskil Brun (AV technician): I’ll log in as me, in
case you don’t remember your password. You only
got your account yesterday.
DEK: This is true. You don’t have to log in. Just
get me Netscape, and I’ll destroy your files.
Brun: It’s only 4.75.
DEK: The reason I wanted to know is if I can use
Ghostview if necessary.

Let’s get to my home page. Let’s just see what
you’ve got here under bookmarks. You don’t have
any bookmarks. [laughter] [up comes Google on the
screen, then DEK’s home page6]

Today my subject is called “All questions an-
swered”, and it’s based on an idea that was started
at Caltech when I was on the faculty there. It was
started by Professor Feynman. At the end of all his

5 The list is given on DEK’s web page. Bjerknes was a
student of Bernt Holmboe, who was a student of Søren Ras-
mussen, who was self-taught.

6 http://www-cs-faculty.stanford.edu/~knuth/

physics classes, the last day of class was optional;
students didn’t have to come if they didn’t want to,
but if they came, he would answer any questions
they had, on any subject except religion or politics.
I liked that idea too, and I kept it up when I went to
Stanford. If any of you ever were there in one of my
classes, you’ll know that the last day of my class was
always called “All questions answered” on anything
except religion or politics. Or the final exam — that
was the other excluded thing.

Now today I already talked about politics, and
it was a disaster. [laughter] I’ll talk about religion
only if there’s a strong feeling for it, but basically,
I want to answer any question that anyone in this
room wants to ask— except the “Frequently asked
questions”, because you can always look up the an-
swers on my home page. So ask me an “Unfre-
quently asked question” preferably. [looks at mon-
itor] What else have we got here . . . Recent news
. . . I was a million years old at the beginning of
the year [Web page for 1 000 0002 year Knuthfest7

pops onto screen] , if you use binary notation. And
there are other things that are on this page — you
can explore these things to your heart’s content.

This page8 shows all the books that I’ve got
out there, with errors in them, and anybody who
finds an error the first time, I really want to know
about it. Then I write you a check if you’re the
first one, and if I believe that it’s an error. And
unfortunately, it usually is. [laughter] But the way I
write books, I try to maximize my chance for error.
I mean, a book is more useful when there are more
ways that it could have been wrong. And so, instead
of saying that something is better, I say, “oh, it’s
12.8% better.” And maybe it really is 12.7% better,
so that’s an error. So there’s many chances all the
way through to be wrong, and I try to get it right
the first time, but the fact is, when I was a college
student, I did not get 100% on all of my exams.
Sometimes I would get 99, you know. Now, with
several hundred chances to make an error on every
page, you can see how many errors there probably
are in my books. I’m trying to get them fixed. And
also the errors in software — there’s a rumor that
somebody found the first error in TEX since 1994,
and if so, I have to pay $327.68, which is an amount
that kept doubling until it reached 215, and then I
froze it at that point. [laughter] So anyway, now I’m
ready for real questions. If you ask in Norwegian,
somebody here will translate, so don’t be afraid.

7 http://forum.stanford.edu/events/knuthfest02.

html
8 http://www-cs-faculty.stanford.edu/~knuth/books.

html

http://www-cs-faculty.stanford.edu/~knuth/
http://forum.stanford.edu/events/knuthfest02.html
http://forum.stanford.edu/events/knuthfest02.html
http://www-cs-faculty.stanford.edu/~knuth/books.html
http://www-cs-faculty.stanford.edu/~knuth/books.html

TUGboat, Volume 23 (2002), No. 3/4 251

[Q]: [in Norwegian; translated]
DEK: Do I think Sweden is a better country than
Norway?

No, but it’s interesting.
They have some good . . . What was the name

of the . . . I was a fan of one of the skiers. Goodness,
I’m forgetting . . . [some prompting] In the winter
Olympics that were held in Lillehammer, there was
. . . I sort of fell in love with this one Swedish skier.9

[more prompting and laughter] I can’t even remem-
ber any more, so I . . . but I never got to meet her.
I did meet the king once; that was nice, and he said
that his daughter likes computers. To me, when I
was here, living in Norway, we went to all parts of
the country, and it’s certainly the greatest year in
my life.
[Q]: [paraphrased by DEK] The question is about
generic libraries, what is the role of little toy algo-
rithms, instead of staying on the high level?
DEK: I think, in all fields, not only computer sci-
ence, people can make the mistake of saying you
should always stay on the high level. Everyone who
is best at their field seems to forget the way they
learned it, and they’ll find out that some parts of
the things they learned are more useful to them in
later life. So then they’ll say, I won’t bother my
students; they won’t have to learn all the stuff I
had to do when I started. And as a result, I think
their students are missing a lot. And I think that
even more so in computer science, it’s very impor-
tant to keep track of many levels at once. What was
the word that your professor had for this? Good-
ness, now I can’t even remember the name of the
man who spoke about it,10 but he had coined a new
word, which sort of means “look at things at all lev-
els”. The professor on information design. [prompt-
ing from audience] “Polyscopic”. It’s more than a
telescope — it’s a polyscope. So you see, the people
who are the best computer scientists have a certain
kind of talent that is not very strong in the general
population. I think one of the properties of this tal-
ent is the ability to shift levels, to see something in
the small at the same time you’re seeing it in the
large — to know that in order to solve a big prob-
lem you want to add 1 to a little counter. And in
order to add 1 to a counter, it’s actually better to
have it in a certain cache or something like this — to
understand what’s going on at many levels at once,
and effortlessly to convert, to chain. So the high
levels are great, but in principle, the more that part
of our brain is also able, if necessary, to open the

9 Pernilla Wiberg
10 Dino Karabeg

box and look under the covers and see what’s there,
the better we are. And the people who have that
skill discover that it also correlates well with being
able to make computers do tricks, and they can re-
ally resonate with computers. I mean, like Eskil here
had to go back into a config file and change all kinds
of settings on monitor and things like this, so he had
to dive down into rather low levels of the system in
order to get these pictures on the screen. That’s
not an isolated event. Every day, I’m still going to
things that are at low level, even though I’m using
high-level stuff all the time too. So I believe when
you build a building, you start from the foundation
and you build up. You don’t start at the roof and
build down.

I spent a lot of time five years ago designing a
computer to replace the MIX computer in my books.
My book, The Art of Computer Programming, when
I started writing it— that was 1962, 40 years ago — I
knew that I had to have a low-level machine in there,
and I took all the machines that I could find in the
world in 1962 and I found something that would be
nicer than all of them but similar to all of them. I
put that into the book, and now it’s extremely ob-
vious that’s it’s quite different from the machines of
today. And machines, in fact, . . . computers went
through a period where they got to be horrible to
program at the low level, because people stopped
doing much assembly programming. When almost
all the programs were being written by compilers,
then people changed the design of the machines so
that only compilers could enjoy writing programs.
But when RISC computers came out, and I read the
book of Hennessy and Patterson about ten years
ago, I was so happy, because all of a sudden you
could have a real . . . today’s computers were actu-
ally beautiful. You could look at the programs and
you could enjoy seeing what the bits were actually
doing in the low level. And so there was a window
in time when machine language was nice again, al-
though it will probably get bad before long. I mean,
the Itanium seems to be a disaster from this point
of view. But I was glad that I could find a computer
for the present time and explain its low-level opera-
tion, and give an entire machine design that I could
use instead of MIX, and that’s this MMIX machine.

If you look here [displays MMIX web page11 on
screen] this book is just the documentation of all the
software that goes with it and makes it appear as if
it was a real computer. It’s just a textbook com-
puter, but I had a lot of people helping me on the

11 http://www-cs-faculty.stanford.edu/~knuth/

mmixware.html

http://www-cs-faculty.stanford.edu/~knuth/mmixware.html
http://www-cs-faculty.stanford.edu/~knuth/mmixware.html

252 TUGboat, Volume 23 (2002), No. 3/4

design of it —people who designed the MIPS chip
and the Alpha chip both worked with me on MMIX. I
believe that the future will prove that students who
learn something about what’s going on at this low
level are going to turn out to be the ones who are
going to be important in their careers, and the stu-
dent who never learns about those levels and only
learns how to apply somebody else’s generic meth-
ods is not going to be of fundamental importance.
The number of people who have the skill that I men-
tioned, of going through all these levels, is a small
part of the population. The percentage seems to
have been constant, as far as I know, at about 2% —
one person out of 50 who’s born seems to have this
combination of abilities that makes them really res-
onate with computing. That’s not enough people
to solve all the problems that computers are able to
solve. So those who have it should be sure to buy my
books [laughter] and to use it. But the rest of the
world, they should make friends with geeks like us,
and then the other people can use these things. But
just staying on the top level is as bad as a mathe-
matician who only knows the statement of theorems
and not the proof of theorems.

I gave too long an answer to that question, but
it’s something I feel rather strongly about, that you
don’t want to cut out either the low level or the high
level.
[Q]: Is it true that you believe that it’s not desir-
able to have bugs in programs? And what do you
think about a new law in the United States that
companies should be able to say that they don’t take
responsibility for any [problems]?
DEK: I didn’t know about this law, but there have
been a lot of worse laws passed, probably. As I said,
politics — I have no talent for it whatsoever. I like to
try to think, though, what is the best for the world
eventually, and I came to the conclusion that it’s al-
most impossible to get a program that doesn’t have
bugs in it. The reason is, I’ve never seen a program
that exceeds a certain size that I could really say
was bug-free. So we have to learn to live with pro-
grams that aren’t 100% debugged, no matter how
much I love to have programs that are bug-free. I
would love to have TEX be one of the first exam-
ples of a program of more than a hundred lines —
it’s 15,000 lines of code or something is all —but I
would love to say that this is one program that is
absolutely solid. It hasn’t been proved correct, but
that doesn’t mean anything. Well, it means some-
thing, but it doesn’t mean that you’re at the end,
because there might be a mistake in your proof.

When I looked at the first published papers on
proving correctness of programs, Tony Hoare’s pa-
per12 on proving that the find program was correct,
there were two bugs in it. He had proved it correct,
but there were two bugs in his original proof. So
I’m a strong believer that formal methods are help-
ful, but I don’t ever want to say that now I’ve done
this and I’ve got it right. You can prove the pro-
gram meets its specifications, but how do you know
the specifications are correct? It’s almost as hard to
write specifications as to write a program. So when
you get to saying that something has no bugs in it,
it seems to be impossible to get to that level. We
could just say we want to get as close to that as
humanly possible, or something. A friend of mine
works for the government —he’s the head of all the
software that goes into air traffic control; there’s a
team, but he’s the leader of it. He’s based in Califor-
nia — he’s being mandated by Congress that these
programs have to be completely bug-free. And the
Senators don’t want to believe that this is impos-
sible, so they’ll only listen to the people who tell
them it’s possible, and the people who tell them it’s
possible just are saying this because they know that
it’ll pay their salary.

I wrote a paper called “The Errors of TEX”,13

which was the entire history of the debugging of
this small-scale program that I wrote for typeset-
ting. The beginning of the paper said, “I make mis-
takes. I always have made mistakes and I probably
always will.” I have to learn how to live with a life
where I’ll never be sure that I’ve got it right, but
still get better and better.

Another friend of mine works for what we call
BART around San Francisco; it’s the subway system.
They’re building a new extension that goes to the
San Francisco airport. And his boss is requiring him
to have no bugs in this software. I don’t know . . .
you’ve seen the movies, you hear the message that
says “This airplane is being flown completely auto-
matically, but don’t worry, it can’t go wrong, can’t
go wrong, can’t go wrong. . . ” The thing is, Norway
has a history of innovative ways to improve the . . .
The man (wasn’t he in Bergen?) 20 years ago who in-
troduced “bebugging”,14 where he would say I have
a program, and you want to see how robust it is, so
you introduce random errors in it and see actually
how long it takes before anybody notices. As a way
to get some feeling as to how well you’ve checked
out a program —I can’t remember the name of the
product — but anyway, that was quite influential.

12 Communications of the ACM 14 (1971), 39–45.
13 Software—Practice & Experience 19 (1989), 607–685.
14 Tom Gilb, Software Metrics (1967).

TUGboat, Volume 23 (2002), No. 3/4 253

So anyway, I think if lawyers have to get into
it, they should have some way so that an insurance
company can’t say it doesn’t have to take a risk for
being sued that somebody’s saying, “Well, my child
died because of a bug in this program, and you’re
at fault.” There’s a certain level of care that is rea-
sonable to expect, but another level that I would
say is unreasonable. So it’s not necessarily impossi-
ble to have some reasonable law around the problem
that you describe. But I would say the chances that
we’ve found the right balance at the beginning are
very low. I don’t know the details of the law.

Okay, good questions.
[Q]: Relating to a problem in the Norwegian gov-
ernment where there are a lot of legacy systems,
where they want to have them cooperate and work
together, is it better to start over from scratch
instead of trying to run the programs that were
patched together over the years?
DEK: In my personal experience, every time I
started over from scratch I was happier afterward
that I did it. In fact, TEX I scrapped entirely. Af-
ter five years I took everything I learned and said,
okay, let me start over again, and I’m not going to
try to be compatible with the other. If this system
is going to be important, it won’t be more than a
year or two before there will be more users of the
new system than ever care about the old system,
never heard about it. So no matter how much time
had been invested in the other, it would be a small
percentage compared to how much better the new
one would be. I know many, many anecdotes over
the years where this is true, and very few of the op-
posite, where preserving the past turned out to be
successful. And part of is because of this problem
of bugs. Every time you look at the old programs,
you see that they don’t really do what you thought
they were doing.

Ken Thompson15 told me, at Bell Labs he went
through one of Bell Labs’ most important applica-
tions that had been built up over a period of years —
I don’t remember if it was something about how they
charge for telephone lines, or what it was —but he
took this program and took a look at it and within
one month he had identified several serious bugs and
he had also been able to make it much smaller, more
reliable, give more flexibility to it, and so on.

When I was a college student, one of my first
jobs was to . . . There was a company in Cleve-
land, Ohio, that made what they called bearings;
it’s part of the motor of a car. This company had
what they called a “load study” program that would

15 In the talk, DEK mistakenly said Ken Knowlton.

study . . . the engineers would put in the design of
one of the bearings and they would simulate on the
machine whether it would be strong enough to take
the pressure of the thing. This was one of the leading
manufacturing companies in the United States, and
they had been using this program for some years. I
was hired by Burroughs Corporation, who wanted
to sell a Burroughs machine, because the engineers
had an IBM computer before. So I took the program
that was running on their IBM computer, and all I
had to do was convert it to the Burroughs language.
I thought, okay, it paid $200 or $300, I can make
some money, I’m a student; but I didn’t realize that
the Burroughs computer didn’t have floating point
subroutines, so I had to take a month to write pro-
grams to calculate arctangent and everything else
that Burroughs didn’t have in its library. I finally
got to the point that I could take the program from
the IBM and put it into the Burroughs machine; and
I didn’t get the same answer as they did.

I figured out how their program worked, and I
made it run . . . supposedly it was running faster;
instead of being able to have four parameters, I was
able to give it ten parameters; and so on. But
I didn’t get the same answer. I was going nuts
about it, so I finally found a place that had an
IBM machine, and it traced the program line by line,
through thousands of instructions, and printed it out
on an old line printer —nowadays you can’t imag-
ine what people had to cope with back then —and
I compared the intermediate results with my pro-
gram on the Burroughs machine, until I finally got
to a point in the middle of the thing where the en-
gineers’ IBM program was overlaying some of their
floating point data with a machine language instruc-
tion. I hadn’t realized this conflict of the code. So
what happened was that they were . . . if I had to
get the same answer as their program, I would have
to clobber a Burroughs floating point number with
some IBM machine language instruction. [laughter]
So I had to come to the engineers and say, “Well,
you know, do you realize that your answers have
been more than 10% off all the time you’ve been
using this program? And wouldn’t you prefer to
have the correct answer?” [laughter] I should have
charged another $50 probably for this [laughter] but
this was just my first experience of many where, ev-
ery time I took an existing program, I found that it
was less work and a better result— you know, total
work— to redesign it and to not . . . Now, you still
have to deal with the problem of old data files, and
being able to deal with different formats, but that’s
as far as I would go, and I would get out of the old
data format as soon as possible.

254 TUGboat, Volume 23 (2002), No. 3/4

[Q]: How does “second system syndrome” impact
on the answer to this question?
DEK: You must define for me “second system syn-
drome”, which sounds like a great thing I should
have known. [laughter]
[Q]: It’s something that Frederick Brooks wrote in
the Mythical Man Month.16 The “second system
syndrome” is the tendency of the person who has
written a system once and is trying to rewrite an
equivalent system a second time, to try to do all the
things that he didn’t do in the first one, so Brooks’s
theory is that the second system of one particular
type that you write is almost always a disaster. The
first one works, but is limited, and the second one
is a disaster, and the third one, you learn from both
the first and the second.
DEK: Okay. I knew that Mythical Man Month was
sort of a “three-M”, but I didn’t realize that he also
had his “three s”s in there. Of course, I read that
book so I should have remembered. I have a great
admiration for Fred Brooks, and he has lots of ex-
perience as a manager, which is orthogonal to mine,
because my experience has been with small groups
of people. I mean, to me, having a group as large
as two —Dahl and Nygaard— is impossible; it’s the
only example I know in the whole world where you
have two people with a strong personality comple-
menting each other and working together to make a
great product.

But it is certainly true that if you . . . When
I went, for example, to make the second version of
TEX, I did not want to go much further than the
first. It’s very easy to be tempted, after you’ve un-
derstood one problem, to say okay now, that’ll scale
up, and in my new project I will be able to, now
that I understand the small thing, now I know ev-
erything and so I can try a much bigger project, and
my superior knowledge is going to make this bigger
project really fly. So that’s an important danger to
watch, to extrapolate on your own knowledge. Like
my MMIX computer, which I have here now, is my sec-
ond system, actually. I started out with the design
of MMIX ten years ago and it was a 32-bit computer;
I realized it should be a 64-bit computer. But then I
tried to hold back on things that I was putting into
it just because they seemed to be cute. It’s a strong
tempation to do that, so I had to have a large focus
group sort of keeping the control on.

Before I stop on this screen, by the way, I want
to mention MMIX to people who are doing curriculum

16 Frederick P. Brooks, The Mythical Man Month: Essays
on Software Engineering (Addison-Wesley, 1975). Second
edition, 1995.

here. I would hope that somebody here would take
a look at this, because it’s become quite a . . . There
are several universities in Germany that are using it
thoroughly in their teaching now, and a new book is
coming out in German next month— introduction
to computer programming, where they learn MMIX
before they learn Java. They learn how to do sim-
ple programming, they get a feeling for how caches
behave, and so on. Because in this computer you
can design computers that we don’t know yet how
to build. You put in not only your program, but
you put in a specification, a configuration of the ma-
chine. You say how many types of cache you have
with different caching strategies, how many func-
tional units you have, how much parallelism you’re
going to have, how many instructions are you go-
ing to execute simultaneously, and find out if that
speeds up your programs very much. It’s a meta-
computer; it’s a computer that has many parame-
ters in it, and, well, John Hennessy said it was the
cleanest design he ever saw of a machine language.
I tried to make it so that it wasn’t hard to learn
and to keep in your mind. And the programs are
kind of fun to write. So it’s also a machine that
I still think is five or ten years ahead of the state
of the art, as far as actually building the chip for
it. But the main idea was to make it of maximum
use in the educational environment and for experi-
mental purposes, so that people could play around
with it. Now we’ve got a C compiler — it’s in the
gcc standard distribution now —to get code for it,
as I understand, and a lot of good tools have been
made for simulating it, and we had some experimen-
tal tools for visualizing the pipeline. It’s something
I recommend people here taking a look at, because I
think it has use especially in pedagogy and learning
things that are going to stay with people who make
a career of computing.
[Q]: You commented that you haven’t worked in
many very large groups. But a lot of modern soft-
ware development, especially in the open source
world, is done by very, very large groups if a lot of
people are contributing source, and basically [. . .]
each other. How do you view the success of these
projects, especially from the scale of the projects
themselves.
DEK: So the question is about large projects. I
mentioned that in my own case, I was the only coder
of the TEX system. I was more restrictive in that
sense. I mean, Linus Torvalds is still supposed to
approve every line of code for the kernel, right? And
I was even more of a filter than that. But people
would suggest code. I’m not even sure how many

TUGboat, Volume 23 (2002), No. 3/4 255

lines of code are in TEX and METAFONT compared
to the Linux kernel, but he doesn’t have to read
through all the drivers, I’m sure.

But the question is, how does this work with the
open source movement. Now, I’ve had nothing but
great personal success in the dealings I’ve had with
open source, but other cases where you have a large
number of programmers working have tended to be
less successful, in my experience. So somehow, open
source is doing it better than all these other things
that I had met in my life before. And certainly, when
Fred Brooks wrote his book, he was reflecting on
IBM’s experience of trying just to throw more people
at the job of writing software without realizing that
this might make the project get worse instead of
better. So there’s something . . . Part of it is the
pattern that has developed for communicating, but
I think still, in the open source world, you still have
somebody who’s the czar, you know. I met the guy
who is gdb, and I met the man who’s in charge of the
C library. And, you know, I’ve met various people
over the years who are really the gurus of individual
parts of GNU Linux. So, my experience with open
source has been, as I say, it was very good. I would
find a problem in one of the programs; one of the
examples was — oh, gosh, what’s it called— rtf, the
alternative to xterm, and it wasn’t behaving the way
it said in the man pages, and so on, and so I sent out
a message. Within three hours, I had three answers
from people who said one of my problems, oh yes,
that’s already been discovered, and it’s fixed in our
beta version if you want to try it. Pretty much all
my experiences except for the GNU Pascal compiler
have been a success. The GNU Pascal compiler has
not yet been . . . I decided to give up on that for the
moment.

It’s depressing if we have to come to the con-
clusion that no large-scale software efforts could be
successful. But I found that developing a first-gener-
ation system, the fewer people, the better. A system
like SIMULA couldn’t have been developed— I just
refuse to believe that it could have been developed
by more than two people — the very first. After it’s
understood, then it’s ready for a larger thing. But
the closer something is to the source, and to being
a breakthrough idea, the amount of bandwidth that
you need to communicate what you’re doing will eas-
ily swamp things. I can explain, for example, with
TEX.

My very first draft of TEX I wrote in a long, . . .
I stayed up late, all night, and I wrote this thing,
and I thought I had specified it completely. I gave it
to two students, and they were going to implement
it while I went to China for a month. So I came back

from China, and they hadn’t finished implementing
TEX. I couldn’t believe it —what’s wrong? They
had gotten a subset going, and they could typeset
one line on one page, or something like that. But
then my sabbatical year began, and immediately af-
ter starting to write the implementation myself I
realized what the problem was. Because this was
breaking new ground, this was a totally different
system than had been before. And I found out as I
started to write it, when I had written the specifi-
cations, I thought it was clear, but there’s a million
things you don’t realize when you write in natu-
ral language; you don’t understand that you’re only
answering a small part of the thing, and when you
start writing code, then you realize all kind of things
come up. So I started to write the system myself—
I’m on my sabbatical— and instantly I discover, oh
yeah, that question isn’t answered. I have to make
a decision. Now if my students . . . So here’s why a
lot of projects have failed this way — the students,
suppose I had farmed that out to them and I’m not
on sabbatical. But I give it to the students, and
I’m not in China, so they come to this point where
they say, “Oh, what did he mean? What should I
do there? Okay, I’ll schedule an appointment with
Professor Knuth, and I’ll see him next Tuesday.” So
they’ll come to my office, and then they’ll start to
explain the problem to me. And in fifteen minutes
they’ll tell me, and I’ll say “Oh yeah, that’s right. I
meant to say this.” So then I can send them back to
work, and they can start again. And then, another
five minutes later, they would come up with another
question and would start to make another appoint-
ment with me. The thing is, these questions are
coming up all the time, so if I’m the one who gets
to ask the questions and answer them, I’m saving
a factor of 10, 20, . . . So a first-generation system
really needs to have a small number of things, and
the people, the lines of authority that they have to
make decisions, and then publish them afterwards,
has to be chopped up so that there’s very little com-
munication needed.
[Q]: In the U.S., you have laws like the DMCA

Copyright Act and so on. These laws encourage
not full disclosure [sic] on bugs and problems, and
so on, and you have several researchers in several
countries not especially wanting to say what kinds
of bugs they have come into their programs. Tell me
about these problems.
DEK: Everything I know about the Digital Millen-
nium Copyright Act, it’s apparently a total disaster
from start to finish. I just hope that, you know,
that we recover from it, and come to our senses.

256 TUGboat, Volume 23 (2002), No. 3/4

One ray of hope was that they did scrap the ini-
tial idea for the Clipper chip and such things for en-
cryption, after they thought about some of the more
subtle issues. So what happened then? This Rus-
sian man found a very weak encryption in Adobe’s
book-reading program, or something like that, and
then he got thrown in prison and certainly lost a lot
of time and had to pay all kind of legal fees and so
on— it was horrible. And even after Adobe said we
made a mistake, we didn’t mean to sue.

There are many parts of life where I like to say
well, gosh, I’m so glad I’m only a scientist, and I
don’t have to think about how to interface with all
the lawyers of the world. I had only once so far
to do anything associated with the law, and it was
because of the public key encryption. Apparently,
since I was at Stanford University at the time, I
could be forced to spend a lot of time being what
they called “deposed”.

But I have a standing offer for consulting fee
with respect to legal issues. In my own life, I con-
sider the thing that I do best is write The Art of
Computer Programming. I’ve got at least 20 years of
work to do on that, and if I’m lucky, I’ll live another
20 years, so why should I do anything else? Well, I
like to get an honorary doctorate, okay, so I come
to Norway. But otherwise, I’d be home writing The
Art of Computer Programming, and so if Bill Gates
wants me to be a consultant to Microsoft, I say well,
okay, but this costs $10 million a day, payable to
Stanford University. But my fee for lawyers is $20
million a day. So you have to understand, I don’t
have this great connection with anything that has
to do with suing people and things like that.

And I’m not a big fan of patents, either. I wrote
an open letter to the U.S. Patent Office at Richard
Stallman’s request about ten years ago, and it was
published with the CWEB manual; and basically I
was saying, look, with software, if everything in the
world is patented, then progress starts to go to zero,
and almost none of the programs that are used ev-
ery day would have even existed if they had been
created in an environment of patenting. And I espe-
cially dislike patents on trivial ideas, that we would
expect any student to come up with. I can under-
stand patents for tough stuff, for difficult ideas. So
when it comes to intellectual property, I see that the
system is bad for reimbursing people. In some pro-
fessions, people have to rely on getting paid because
of royalties, because they aren’t well compensated.
As a scientist, I have a job where I can be paid,
you know, to do research, by the government, be-
cause science is good for the community. But if I’m
a musician, I can’t be paid for practicing my music,

or if I’m an author of novels, I’m not supported —a
novelist isn’t considered good for the community the
way a scientist is. A font designer —we have a Na-
tional Science Foundation; we don’t have a National
Font Foundation. So somebody who wants to design
the things that we use all the time for reading, and
do them better, has to rely on royalties somehow. I
think that there are some flaws in the way people
are compensated.

Then when we get to royalties, then it becomes
one of these things where it’s feast or famine. When
you get a royalty for something, or you get a patent
on something, then all of a sudden you’re supposed
to be rewarded to such an effect that you don’t have
to do anything more in your life — the money is sup-
posed to come in for fifty years for an idea you had,
for some work that you did in one year. So things
are kind of mixed up in that area. I don’t have the
answers; all I know is that lots of stuff isn’t fair and
to me, it’s better to pay people for what they do and
the services they provide, instead of how lucky they
were in doing something once.

I don’t have all answers to all questions, I guess.
[Q]: What do you think about the Microsoft .Net
strategy? Would you support it?
DEK: I don’t know what the Microsoft .Net strat-
egy is . . . [applause]

I have to limit my . . . I don’t think I’ll need
to write about it in the The Art of Computer Pro-
gramming. [laughter] As I say, I only have 20 years
to go.
[Q]: What is your thought about quality in today’s
operating systems? Do you think there can be any
huge development in the next 20 years, any break-
through?
DEK: First of all, I have to say that the main rea-
son why I’m happy with Linux is that my computer
hasn’t crashed. I haven’t had to do anything special
since last October, when I think it was because the
electricity went down in the building, or something
like that. It’s very robust for the kind of things
that I do. So I tell my friend— we were at a picnic
a week ago — and the man’s wife said, “okay, why
aren’t computers easier to use, and more reliable,”
and things like that. I said, “you should get Linux.”
“Oh! What’s that?” And then we talked a little bit
more, and she said, “but how am I going to use . . . I
have to use Intuit software” (which is a proprietary
system I don’t think works with Linux). I didn’t
have an answer for her on that.

But now you’re talking really about the operat-
ing system, which lies underneath. I think . . . I’ve
never been involved with operating system research.

TUGboat, Volume 23 (2002), No. 3/4 257

I think in MMIX probably the Achilles’ heel at the mo-
ment is that with the machine design I have right
now, it’s not easy to make a virtual operating sys-
tem, where somebody could have their own oper-
ating system and pretend to have authority to do
privileged instructions. The machine, it’s actually
very similar to the Alpha design as far as the pro-
tection mechanism goes, but it’s enough different
that it might . . . , anyway. I have a dream though,
that if there’s gonna . . .

If a brand new breakthrough is going to come
through in operating systems, I think it would be, it
would probably come from a small group of people
who start from scratch, and just say, let’s re-examine
all the old assumptions. Is it really true that what
we should have is, you know, shared libraries of a
certain kind, or something like that, when programs
are running. What if we . . . you know, all kind of as-
sumptions. The operating systems we use today are
based on the operating systems we used ten years
ago, and those were based on the previous ones, and
they’re based on hardware assumptions, as to what
is cheap and what is fast, and so on. So all the pa-
rameters are changing so rapidly, I think it would
be worthwhile to rethink everything. For example,
with MMIX I designed an assembler for it that is very
primitive, so that anything can be assembled in one
pass. And the assembler goes so fast that it com-
petes with the loader. So what if you kept your pro-
gram in source form instead of in binary? Because
then you could have conditional instructions in there
saying, you know, well I can allocate registers dif-
ferently; I might give myself more global registers in
this routine, depending on how many other routines
have been loaded with it. All kind of things can be
done, if your assembler is fast.

And so it might be a good idea to rethink the
whole idea of an operating system, saying, well, let’s
say we don’t have loading routines the way loading
routines have worked for 40 years. And if you don’t
do that, then you probably aren’t going to come
up with major breakthroughs. Also if you do it, you
might find out that, well, the old way is really better.
But I think that would be an interesting thing for a
group of people who have tenure, so that they don’t
have to risk their career on it, to spend five or six
years just seeing what would happen if they could
start over, all the way. Klaus Wirth did that fifteen
years ago with his group in Zürich and Utah.

Other questions? Nobody’s going to ask me
about Volume 4?

Let me preempt the one question that I was
thinking somebody would certainly ask. Let’s see,
here we go. [looks at monitor and starts to type]

Oh, we don’t have much here . . . Anyway, let me
just say something that’s new, because I’ve actually
been working this year on The Art of Computer Pro-
gramming and getting pages out of Volume 4 that
are ready for beta test. So anybody who’s interested
in seeing what might appear in Volume 4 someday
is welcome to try looking at these pages. In fact,
before coming here I also finished 40 more pages
that I haven’t announced yet, so if you can figure
out how to get at them —there is a way —but the
thing is, I’ve put here on my news page, I’ve put
a list of exercises that nobody yet has commented
on in the ones that I’ve put on line. I’m extremely
grateful, hundreds of you have taken time to read
these drafts, to detect and report the errors that
you find, . . . I’m getting . . . the Internet is amaz-
ing! Within a week of posting these pages I had
mail from all over the world; a fourteen-year-old boy
in Nuremberg, Germany, wrote to me and told me
I had spelled ‘Nuremburg’ wrong. [laughter] But
some of the parts I worked the hardest on, nobody
yet has commented on, so either I got it right the
first time, or they’re saying, well, this is too hard
for me. So I’m soliciting here for people to tell me
that they’ve actually looked at it and they think it’s
okay. If they have time.

In order to finish my book in 20 years, I’m go-
ing to have to be able to write a page a day, and I
haven’t been able to reach that rate. I’m only get-
ting about 60% of a page in a day. So I have to lower
the standard of quality, to do less original work on
the pages that I’m writing. But these pages I regard
as a fundamental section, so I’ve put more time into
it; I’ve got original material in there that hasn’t ap-
peared in any other publication, and I’d like to have
somebody vet it, and check it out.
[Q]: Are you surprised that TEX is still used, that
no new system has come along that has surpassed
the quality of TEX?
DEK: Actually, there are systems that surpass the
quality of TEX but they still haven’t apparently
taken over. Now the one that’s most . . . There’s
the ε-TEX, which has greatly improved features for
things like combining right-to-left typesetting with
left-to-right typesetting. So I imagine people who
are doing typesetting in Hebrew or Arabic are mak-
ing use of these improvements. And there’s Omega,
which is Unicode-based and it’s a work in progress.
There’s pdfTEX, I think a lot of you know. But
those are still 100% compatible with TEX if you
don’t use the extra features. I can understand why
it’s difficult for any other system to displace it, be-
cause a lot of the things that have been improved

258 TUGboat, Volume 23 (2002), No. 3/4

over TEX really don’t matter that much to other
people. So TEX only goes 99% of the way. Still,
that 1% is like noise, as far as . . . So why should
I switch to another system if I only have to work a
little harder 1% of the time?

I’m totally surprised that TEX has been used
as much as it has in so many different parts of the
world. I mean, I downloaded a paper two weeks
ago from a new journal in mathematics called the
Moscow Mathematical Journal. I got this paper,
and I printed it out, and I have to admit really feel-
ing a thrill that it looked so good. [laughter] You
know, here were people halfway around the world
and they were using this system that I had done
years ago, and what had come out was something
that was aesthetically pleasing to me as well as the
mathematics — it was what I wanted to read. And
there are fifty chapters of TEX user groups around so
many parts of the world. And I’m getting newslet-
ters that are published, you know, in Greek, in In-
dian languages, it’s a thrill, and that’s a big surprise
to me. But I’m not surprised that it’s been harder
to improve on TEX, because I know how much work
there was to get it going.

Excuse me, I haven’t been paying attention to
people in this part of the world . . . [goes to another
part of the audience to ask for a question]
[Q]: What do you think is the single most impor-
tant problem that is left unsolved in computer sci-
ence?
DEK: Well, computer science has so many sub-
fields that it’s really hard to . . . Now, if we want to
compare it to what Abel did, however, since that’s
timely, well, Abel solved, you know, the major open
problem of his time: Can you express the solution to
every polynomial equation of fifth degree with plus,
minus, times, and taking roots? And he showed no,
you can’t. And it’s very hard to prove that some-
thing is impossible. After he worked on that, Abel
worked on Fermat’s Last Theorem, he worked on
xn + yn 6= zn when n > 2, and he proved that if
x and y and z do exist, they are so huge you could
never write them down. He worked on that.

So the question is, if you wanted to be Abel
now, and solve the most important problem, it has
to be the question about whether P = NP or not.
And that is whether or not all the things that we
can do with a polynomial number of guesses can be
done in polynomial time without guessing. Now, I
know only one person who is really working on that
seriously at the moment and has a chance of suc-
ceeding. In my opinion, that’s Andy Yao, who’s a
professor at Princeton, and inspired by another fa-

mous Princeton professor who solved Fermat’s Last
Theorem. And Andy might very well get it in the
next five years. There’s a man in Russia who sent
me e-mail saying that he has a proof, but, as I say,
my life is too short to check everything that comes
in.

There was a proof in a Chinese journal a couple
of years ago that P = NP, and at first I couldn’t find
a mistake in it. I worked on it for three hours with
some students until we found a bug, and I wrote to
the author; still, he didn’t believe that I’d found any
bug.

But the thing is, that experience made me re-
alize that the problem is academic; it’s not going
to really be practical. He had given an algorithm to
solve the clique problem: If you’re given a graph and
certain pairs of vertices are adjacent, others aren’t,
you want to find the largest set of vertices that are
mutually adjacent to each other. And he had an al-
gorithm that supposedly solved the clique problem
in n12 steps. And it was very hard to test that algo-
rithm out because, even if n = 100 that’s 10012 and
that’s way bigger than I could . . . And in order to
send him a counterexample, to show that he hadn’t
got it right, I had to send him an example that we
couldn’t really run on a computer. Still, n12, that’s
a polynomial of terribly low degree.

Now, it might very well be that the follow-
ing scenario happens. Somebody proves . . . Ac-
tually, there was a big questionnaire sent out to all
members of SIGACT, the Special Interest Group on
Theory in the ACM, and saying, what did people
think is going to happen, you know, how long be-
fore somebody resolves this problem? And so on.
And I encourage you to read it, it was in the cur-
rent issue of SIGACT News, or the second-last is-
sue.17 And the opinions went all over the map. But
my opinion— which was shared by one other person
independently— was that probably in the next fifty
years, somebody will prove that P = NP, because
there are only finitely many obstructions that would
keep it from being unequal. So that means that
there exists a polynomial time way to solve every-
thing, but that we don’t know what the polynomial
is. We might just know that there’s some exponent
so that everything can be solved in N to that ex-
ponent time. However, we may never know what
the algorithm is, or the exponent. All we know is
that P = NP. Now, that would be the worst possi-
ble solution to the problem, because it could never,

17 William I. Gasarch, “The P = ?NP poll”, SIGACT News
33, 2 (June 2002), 34–47.

TUGboat, Volume 23 (2002), No. 3/4 259

ever have any use at all, it just would mean that the
question was the wrong question to ask.

People make mistakes all the time of misunder-
standing the connection between finite things and
infinite things. And even computer scientists have
trouble understanding that things don’t always ap-
proach infinity the same way. And when we make
judgments about something that’s true in the limit,
it might have absolutely no connection with our life-
times.

In the back . . .
[Q]: As advice to the young people here, if you
were given a second chance and you were starting
out fresh in computer science as a graduate student,
with all your present experience, what would you
do, which things would you go for, and how would
you organize your life to achieve that? [laughter]
DEK: That’s a great question.

Suppose I’m starting all over completely, how
would I reorganize my life? One of the things Abel
said, and I guess he got inspired by Lagrange, he
said, “Read the masters.” He said, in order to learn
stuff, don’t try to look at everything by yourself, but
do look at what other people have done, written in
their own words, through the years. But follow your
own inclination for sure.

Now, Abel made a bit of a mistake: He didn’t
take care of having a job, and there is a problem.
I was very lucky that I was riding on the crest of
waves, so I could get scholarships to go . . . I mean,
I came from a family where nobody had gotten an
advanced degree in college, but I passed exams okay
in high school so I was able to get a scholarship to
go to a university. Then at the university I could
get into computers —computers were just new. So,
exciting thing, I found out that I was in this 2% of
people who had the ability to think about comput-
ers, so I could get jobs, I could get $200 for con-
verting a computer program. Then in the middle of
graduate school I was offered to drop out of college
and write compilers for a living at an annual salary
of $100,000 in 1962 dollars. That would correspond
to about $10,000,000 a year now or something like
that, not quite as much as a CEO — but anyway I
was offered, leave graduate school and get rich, and
I decided, you know, I really wanted to spend my
life not maximizing the total amount of money that
I got. I wanted to do things that were interesting to
me, that I thought would be useful to others. And I
found that money was a threshold function. If you
don’t have enough of it, you need it; but after that
point, then it’s just a problem because you really
have to enjoy having money and figuring out what

to do with it responsibly, which is something that I
never wanted to do.

So my basic idea is to say, whoever you are,
you’ve got a unique combination of talents that’s
been given to you. Don’t decide . . . Your life is
kind of like a binary search, you try things and find
out you did well in this, you try other things, you
find out you didn’t do so well in that, you go on and
continue discovering what are the best ways to use
the abilities that you were born with instead of what
you think they ought to have been. And you also
read what other people have done, and try to learn
from that and extend abilities that you have in ways
that appeal to you. And then, . . . My experience
was, once things start to click, then you can start
producing and other people will be able to make use
of what you did, and you can help them along in
the same way. It sounds idealistic, but that’s really
been the pattern all the way through my life, and
it was based on this sort of idea, saying, well, just
learn what you’re good at, and what you can do that
other people might be able to use, that’s fun for you.
[Q]: Why can’t I type floating point numbers in my
MMIX assembly code?
DEK: The reason was, it was too hard for me to
. . . , although I do have the subroutine in there that
reads them, I wanted to keep the assembler simple.
I didn’t see any reason to . . . Basically, I was over
my page budget; I didn’t have that much room to
explain what the rules were, so I decided not . . . I
really believe that an assembler should be stripped
down, and that it should be considered as a . . . Cer-
tainly the second system syndrome could affect as-
semblers, and I didn’t want to get caught with that.
[Q]: Do you see the concept of design patterns as
important for programming in the future?
DEK: Design patterns . . . I think of all these
things as . . . In my own experience I don’t follow
them religiously, but I follow them as motivating
ideas for things that I do without using the official
tools. I react negatively to somebody who presents
me with a tool that’s supposed to solve all of my
problems, because there are too many people doing
these tools, and each one is . . . I mean, Linux is a
great system, but it’s also Unix. Another definition
of Unix is “200 definitions of regular expressions sit-
ting in one box”. Every part of it is slightly different
from every other, and I remember when I first got
the manuals for XView and Motif, and you know
there were all these things in there; and my reac-
tion was, they call these open systems because the
only way to use them is to have twelve books open
simultaneously. [laughter]

260 TUGboat, Volume 23 (2002), No. 3/4

So the mistake that I see people making is that
they say, oh, I’m able to find some pattern, and
then I provide hooks so people can plug in, and
then they’ll be able to use this and it’ll do every-
thing. And that, I find, is much less useful than it
seems. It’s like the analogy I made before, where
you place too much reliance on a mathematical the-
orem, you’re not supposed to have to know anything
about the proof. My experience is the opposite, my
experience is that it is a great surprise to me when
I come across a mathematical problem that exactly
fits the hypothesis of a mathematical theorem. Usu-
ally, it matches almost perfectly to something that
I find in a book, but then I have to see how to cus-
tomize it to my problem. And this . . . When I see
reusable code, it should be reusable with a little bit
of editing, is the way it seems to work for me. I re-
alize my opinion is heretical, but I just have to tell
you the way it has been in my own experience.

The architect in Berkeley who came up with the
inspiration for design patterns,18 I’ve read a couple
of books of his, and I think they’re quite inspiring.
But that doesn’t mean I just adopt everything he
says. I think everybody adapts what they learn to
the things that they were destined to do in their life.
[Q]: I see that you have problems, in your texts,
with level 50. How many of these problems have
you solved.
DEK: In The Art of Computer Programming I
have some problems listed at level 50 —these are
research problems. How many have been solved?
Well, actually, the only one I can remember is Fer-
mat’s Last Theorem, so I’ve replaced it by another
one, which is wn + xn + yn = zn, for n ≥ 5. So I
think that will last for awhile.

But anything more than 45 is an unsolved prob-
lem. And some of the 46’s and 47’s have gone down.
And one I just changed two weeks ago; the man in
Poland, Marcin Petkovic19 — I can’t remember his
name for sure — but he . . . The question was, the
smallest number of comparisons needed to sort 13 el-
ements, and I had conjectured that it could be done
in 33 comparisons. No way was known to do it in
better than 34; he proved 34 is the best. See, it’s
kind of a scandal. If you look at optimum sorting,
the very fewest comparisons in a comparison-based
method of sorting, there’s a bound from informa-
tion theory that says the number of comparisons
you need is at least the binary logarithm of n!, be-
cause if you make binary decisions and you have 13!

18 Christopher Alexander, A Pattern Language (1979)
19 Marcin Peczarski, Lecture Notes in Computer Science

2461 (2002), 785-794.

possibilities, then you have to make log 13! compar-
isons, and that was 33. And the best-known way
to do even 16 elements is the following: Pick 10 of
them; sort those 10 elements by a way that takes
log 10! steps, and that way is known. Then take the
other 6, and one by one, insert them among the 10
by a binary search. So that’s four more comparisons
for each one. And I didn’t believe that by the time
you got up to 13 you wouldn’t be able to think of
something better than to put in numbers 11, 12 and
13 each with four. And I still don’t think you have
to go all the way to 16 this way, but nobody knows
a better way to sort 16 elements than to start with
10 and to plug in the other six one by one. But that
was a research problem that recently got upgraded.
And this guy was a student, and he won the best stu-
dent award paper in the ESA — what is it called?—
the European Symposium on Algorithms; I think
it’s being held this week or next week.

Another question is, when do you folks get to
go home? [laughter]
[Q]: I’m a person that doesn’t have an operating
system question to ask. What do you think of the
quality of today’s programming languages?
DEK: The quality of today’s programming lan-
guages . . .

Well, they always seem to be . . . All program-
ming languages have this nth-system syndrome,
where they take what they know how to do well,
and they clean it up, and then they add a new fea-
ture, that they don’t understand. [laughter] And
all the time this has been true. Nobody has ever
said, no, I’m not going to add any new features in
my new language, I’m just going to do everything
better. I mean, like if you take the subset of Ada
that corresponds to Pascal, you have a beautiful lan-
guage compared to Pascal. And there’s a big prob-
lem with Java being inherently unstable, because
the library, if I understand it correctly, it’s impos-
sible for a user program to create a subroutine that
isn’t in the main Java library, for which the peo-
ple to whom you want to distribute this program
can use exactly the same syntax they would use if
it were in the standard library. They have to use a
different syntax for your system than when they’re
using a real certified subroutine. And so every time
somebody finds that there’s a gap in the standard
library, they have to add to the standard library,
and every year the standard library is going to have
to get bigger and bigger, unless they . . .

I worked hard in METAFONT so that this would
never happen, that somebody could add an exten-
sion to METAFONT in such a way that a primitive

TUGboat, Volume 23 (2002), No. 3/4 261

would look as if it had been built in. Apparently
the designers of Java did not do this. But I’m not
an authority on that because I never read all the
details of Java. My experience is that there’s never
been any stability in the programming language I
need to use, so I started writing programs in C−−,
which is the subset of C that I like. [laughter] And
then I discipline myself to keep information private
that’s supposed to be private, and things like this.
But I’m not using . . . All of today’s languages suf-
fer from some serious problems, and I don’t see that
the situation will stabilize unless developers come to
a situation where they don’t want to do something
new, they just want to take the things that they
really understand . . .

With TEX it was a different . . . Why did TEX
become stable? The reason was kind of stupid, but
because I didn’t want TEX to do everything. You
know, I wanted most of all to find the cheapest way,
to implement the least I could possibly do, so that
I could get out of it without being totally irrespon-
sible, and go back to writing The Art of Computer
Programming . But quite seriously, I didn’t want
to spend my life coming out with something better
and better and better for typesetting. I wanted to
get something that would go only to a certain level,
and I spent five years on the endgame, always asking
“How am I going to stop, to keep it so that I don’t
have to do it again?”

I thought I had found a stopping point, and
then I learned about Europe. No, not really. [laugh-
ter] But I hadn’t made it easy to do the Norwegian
alphabet, and other things that needed 8-bit codes.
I had assumed that nobody would ever design key-
boards where it was easy to enter 8-bit codes. And
as soon as it became easy to enter such codes, there
was pressure from all over the world saying, well,
let’s be able to do that with TEX, so I had to spend
another six months making TEX as if it had been
designed for 8-bit codes in the beginning. That was
a big . . . But my attitude was never to wake up in
the morning and say, well, how can I improve TEX
to make it typeset better? No, my attitude in the
morning was, how can I finish this and get it off my
back? [laughter]

That’s the only recipe that I have for having a
system that’s going to become stable.
Tom Lyche: Well, I think we’re ready for this to
come to an end. I’d like to thank you very much
for this lecture, and I won’t ask if there are any
questions. [DEK laughs, along with the audience]

Professor Knuth will also be here on Tuesday,
where I will remind you that he is giving a lecture,

a scientific lecture here on Tuesday. I hope many of
you will attend that. So I think we give him a big
round of applause.

[extended applause]
Narve Trædal:20 Here is a little symbolic gift from
the University: two small wine glasses, with the Uni-
versity logo on them. [DEK: Oh, great!] Thank
you for your support today and through many years.
We are deeply honored and grateful. Thank you so
much. [applause]

20 head of department administration

