
TUGboat, Volume 30 (2009), No. 2 209

A short introduction to METAPOST

Klaus Höppner

Abstract
METAPOST is a program strongly related to Knuth’s
orginal METAFONT. It uses nearly the same graph-
ics language and syntax, but instead of bitmap fonts
it produces PostScript output. So it can be used
to create high quality graphics. In METAPOST,
points and paths may be described by a set of linear
equations that are solved by the program. Thus,
METAPOST is unique compared to other tools like
PSTricks or commercial applications (e. g. Corel-
Draw). Additionally, the PostScript subset created
by METAPOST can be interpreted by pdfTEX. So
METAPOST figures can be directly included with
e. g. the standard graphics package, while normal
EPS images have to be converted first to be usable
with pdfLATEX.

1 History
When Knuth developed TEX, he also created a set of
new fonts, Computer Modern. For this, he created
his own font description language and the program
METAFONT, which converts a METAFONT source
file into a bitmap, usually stored in a file with the
extension .gf or more often .pk. The major feature
of METAFONT is that paths may be described with
a set of linear equations that determine how the sin-
gle points of the path are related, and this equation
set is solved by the METAFONT program. Addi-
tionally, Knuth extensively used parameters within
these equations, so different font series (e. g. bold
and medium) could be produced from the same
equations by changing parameters.

John D. Hobby created METAPOST as a system
using (nearly) the same programming language, but
with PostScript output. It was presented first in
TUGboat [2], while the first public versions were re-
leased in the early 1990s. Some new features were
added to the Meta language, e. g. the ability to in-
clude stuff typeset by TEX into a METAPOST draw-
ing (something that wasn’t needed in METAFONT

for creating glyphs of a font, but is very useful to
put text labels into graphics).

At present, METAPOST is maintained by the
METAPOST team, with Taco Hoekwater as chief de-
veloper. Since then, many improvements have been
made. For the future, they plan to release MPlib,
a component library that contains the METAPOST

engine and can be reused in other applications.

2 Basics
As mentioned before, METAPOST defines its own
programming language. It consists of the following
elements:
• points,
• pens,
• paths,
• numbers,
• colors (originally RGB only; now CMYK is also
supported)
Points are normally named by the letter z, rep-

resented by a pair (x, y).
Paths may contain geometrical elements (e. g.

fullcircle) or may consist of points that are con-
nected by lines or Bézier curves.

Colors are tuples of three (in case of RGB) or
four (in case of CMYK) numbers.

For a short example let’s have a look at the
following example:

Listing 1: First example

filenametemplate "%j-%3c.mps";
beginfig(1);
pickup pencircle scaled 1bp;
draw origin--(2cm,1cm)

..(1.3cm,0.3cm)..cycle;
endfig;
end

Figure 1: Example figure, as defined in listing 1

This shows that each METAPOST figure is put
between beginfig and endfig, with a number iden-
tifying the figure. So, a METAPOST source may con-
tain several figures. Originally, when processing the
source (e. g. ex.mp) with METAPOST (mpost ex),
the figure numbers were used as file extensions for
the resulting PostScript files. In later releases, the
command filenametemplate was introduced, that
uses a syntax something like the printf command
in C. In the example above, we would get a Post-
Script file with the name ex-001.mps (and if we add
a figure with number 2, the PostScript output would
be written into ex-002.mps).

Since pdfTEX recognizes files with the exten-
sion .mps as METAPOST output, the graphic can
be used in a LATEX document with a straight-
forward \includegraphics{ex-001.mps} and the
document may be processed either by pdfTEX or,

Introduction to METAPOST

210 TUGboat, Volume 30 (2009), No. 2

using the original workflow, by compiling to DVI
and using dvips.

As in C, all statements may span multiple lines
and are finished by the “;” character.

The example figure itself shows a straight line
(since two dashes were used in the source) from the
origin to the point (2cm, 1cm). Then, the path is
closed by a Bézier curve (because two dots were
used in the path definition) via the point located
at (1.3cm, .3cm). For drawing, a round pen with di-
ameter of one PostScript point is used. METAPOST

knows the same units as TEX, like bp for PS points,
cm, mm or in. The result is shown in fig. 1.

3 Defining points by linear equations
While there is nothing exciting about our first exam-
ple above, we will now see what makes METAPOST

special. Assume you want to draw a simple rectan-
gle. Then you know it consists of four corners (e. g.
with the lower left one in the origin), that we will
describe by the following equations:

Listing 2: Rectangle

path p[];
z0 = origin;
x0 = x3;
x1 = x2;
y1 = y0;
y3 = y2;
x1-x0 = 3cm;
y3-y0 = 2cm;
p0 = z0--z1--z2--z3--cycle;
fill p0 withcolor blue;
draw p0 withpen pencircle scaled 1bp;

You see, all corners except for z0 aren’t defined
directly as (x, y) pairs but described by their rela-
tions. While describing a rectangle with linear equa-
tions seems rather like overkill, this METAPOST fea-
ture becomes really powerful for the construction of
complex paths.

z0 z1

z2z3

3cm

2cm

Figure 2: Rectangle, resulting from code in listing 2

4 Transformations of paths
METAPOST supports the following transformations
of paths:

• Translations:
p0 shifted (x1, x2)

• Rotation:
p0 rotated alpha

• Scaling (in both directions, or in x or y direction
individually):
p0 scaled factor
p0 xscaled xfactor
p0 yscaled yfactor

• Slanting:
p0 slanted alpha

For example, the following ellipse

is the output of the code:

draw fullcircle xscaled 3cm
yscaled 2cm rotated 30;

5 Intersection points
Finding the intersection points of paths is another
nice METAPOST feature.

Assume you have a triangle. Mathematical the-
ory says that if you draw three lines, each of them
from one corner of the triangle to the midpoint of
the opposite side, all these lines will intersect at the
same point.

The following code shows how this can be
demonstrated in a METAPOST drawing:

Listing 3: Triangle 1

pickup pencircle scaled 1bp;
path p[];
z0 = origin;
z1 - z0 = 3cm*right;
z2 - z0 = 2.7cm*dir(40);
p0 = z0--z1--z2--cycle;
p1 = .5[z0,z1]--z2;
p2 = .5[z1,z2]--z0;
p3 = .5[z2,z0]--z1;
draw p1 withcolor blue;
draw p2 withcolor blue;
draw p3 withcolor blue;
draw p1 intersectionpoint p2

withpen pencircle scaled 3bp;
draw p0;

This code is more straightforward than it may ap-
pear. It consists of three parts.

Klaus Höppner

TUGboat, Volume 30 (2009), No. 2 211

First, the three points z0 . . . z2 are defined and
path p0 is defined as the triangle with these points
as corners.

Second, the paths p1 . . . p3 are defined. Each
consists of a line from one corner to the midpoint of
the opposite side, named a median of the triangle.
This may be easily expressed in METAPOST, since
e. g. the statement .5[z1,z2] is just the point on
halfway along the line from z1 to z2.

Finally, after drawing all the paths defined
above, we mark the intersection point of p1 and p2.
This is directly given by the command

p1 intersectionpoint p2

It may be a bit more complicated if two paths have
more than one intersection point.

The result of this drawing is shown in fig. 3.

z0 z1

z2

Figure 3: Construction of a triangle

6 Whatever it is . . .
Coming back to the triangle in the latest example,
another interesting task is the following: draw the
altitude of the triangle, that is perpendicular line to
the base line through the opposite vertex z2.

Thus, the altitude line has to fulfill the following
conditions:
1. It is orthogonal to the base line (connection of
z0 and z1).

2. The starting point is in z2, the end point shall
be on the base line.

This may be directly expressed in METAPOST:

Listing 4: Triangle 2
z10-z2= whatever*((z1-z0) rotated 90);
z10 = whatever[z0,z1];

In the code above the end point of the altitude
on the base line is named z10.

Here we see both conditions listed before: first,
the distance vector between z10 and z2 is given by
the distance vector between z1 and z0 (i. e. the base
line), rotated by 90 degrees, scaled by an arbitrary
factor.

Second, z10 is located somewhere on the line
defined by the points z0 and z1.

In both cases, I used a numerical value named
whatever. This may become an arbitrary number.
In fact, the value may change from statement to
statement, since the variable whatever is encapsu-
lated per statement.

z0 z1

z2

z10

Figure 4: Triangle 2

As shown in fig. 4, METAPOST finds the correct
position for z10 as starting point of a perpendicular
line to the base line, with z2 as end point.

7 Time variables
A path in METAPOST may be imagined as the travel
of a vehicle. Paths are parameterized by a time
variable (which might be a bit misleading, since of
course the drawing is static). So a path has a start
and end time, and any point is correlated to a time
in between (and vice versa).

Here is an example where time variables are
used:

Listing 5: Time variables and subpaths
pickup pencircle scaled 1bp;
path p[];
p0 = origin{up}..(3cm,2cm);
p1 = (-5mm,2cm)--(3cm,5mm);
draw p0 dashed withdots;
draw p1 dashed withdots;
(t0,t1) = p0 intersectiontimes p1;
draw subpath (0,t0) of p0

-- subpath (t1,length(p1)) of p1;

We have two paths, p0 and p1: a Bézier curve
from lower left to upper right, and a straight line
from upper left to lower right, drawn with dotted
lines.

To combine the subpath of p0 before the inter-
section point with the subpath of p1 after this point,
as drawn with a solid line in fig. 5, it is not sufficient
just to know the intersection point ot p0 and p1.

In this case, we need the time values of both
paths in the intersection point. For this, the state-
ment p0 intersectiontimes p1 is used. The re-
sult of this is a pair (thus a point), with the time
value of p0 in the intersection point as the first part
(x-part) and the time value of p1 as the second part
(y-part).

Introduction to METAPOST

212 TUGboat, Volume 30 (2009), No. 2

As soon as these time values are known, the
desired path is constructed using subpath. This
is a perfect example showing that METAPOST as a
standalone program has full control over the paths,
contrary to other tools like PSTricks that let Post-
Script do the job of drawing the paths.

Figure 5: Using time variables and subpaths

8 Text and labels
METAPOST supports placing labels into a figure. In
the simplest form, the text may be included directly,
without any typesetting done by TEX:
defaultfont := "ptmr8r";
defaultscale := 1.2;
label("this is a label",z0);

It will just add the text commands to write the label
text in 12pt Times Roman (a font scaling factor of
one refers to 10pt) into the PostScript code. Please
note that := is used in the code above, since new
values are assigned to the variables, while = is used
in linear equations.

The action of placing a label at z0 in the exam-
ple is rather straightforward. The label command
centers the label at the given point. In many cases,
a suffix is appended to the label command to de-
fine how the label is placed in relation to the given
point, i. e. top, bot (bottom), lft (left), rt (right)
or ulft, llft, urt, lrt (e. g. ulft means upper left
and lrt means lower right). The label command
may be replaced by dotlabel, that draws a dot at
the given point in addition to the label. For exam-
ple, the code
dotlabel.urt("this is a label",z0)

draws a dot at z0 and places the given text in upper
right direction from z0.

Only simple text may be used for labels that are
included by METAPOST directly. But for real type-
setting, we may use one of the best typesetting pro-
grams we know, TEX itself. We may include nearly
arbitrary TEX stuff into labels. All TEX snippets
that occur in the METAPOST source are extracted
and typeset with TEX, before the result is included
into the figure by METAPOST.

All the TEX stuff has to be embedded into an
environment btex ... etex, e. g.

label(btex z_0 etex, z0)

will center the label “z0” at this point. Normally,
the plain TEX compiler is used for typesetting the
btex ... etex fragments. But the name of the
program may be passed on the command line when
calling METAPOST, so to use LATEX we can give the
command

mpost --tex=latex ex1

Let’s have a look how we can typeset a label
with LATEX, using Euler math fonts to typeset a for-
mula:

Listing 6: Typesetting a label with LATEX
filenametemplate "%j-%3c.mps";
verbatimtex
\documentclass{article}
\usepackage{euler}
\begin{document}
etex
beginfig(1);
dotlabel.urt(

btex $\sqrt{\frac{1}{1+x^2}}$ etex,
origin);

endfig;

Since typesetting with LATEX requires a preamble
loading a document class and maybe some extra
packages, the example contains an environment

verbatimtex ... etex
which is included as verbatim code before typeset-
ting all the labels. In this example, we load the
article class and the euler package. While we
had to explicitly write the \begin{document}, the
closing \end{document} is inserted automatically!

The result of this code, when compiled by
METAPOST with LATEX used as typesetter—as ex-
plained above— is shown in fig. 6.√

1
1+x2

Figure 6: Using LATEX for typesetting a label in Euler

Including labels causes some difficulties with
fonts. Normally, METAPOST doesn’t embed fonts
but just adds a reference to the used fonts into
the PostScript output. This isn’t a problem when
METAPOST is included in a TEX document, since
TEX will resolve all of these font references. But the
figures won’t be usable standalone, since PostScript
interpreters like Ghostscript will complain about un-
known fonts.

In recent versions of METAPOST it is possi-
ble to run METAPOST in a mode that will produce

Klaus Höppner

TUGboat, Volume 30 (2009), No. 2 213

standalone PostScript output that contains a “real”
EPS with all fonts embedded, that can be displayed
in any PS interpreter or may be used in other appli-
cations besides TEX documents.

A switch named prologues defines whether
METAPOST will embed fonts or not. The defini-
tion prologues:=3; at the start of your METAPOST

file will produce a standalone EPS figure. The de-
fault value of prologues is 0, which means that no
fonts will be embedded. The meaning of other values
of prologues may be looked up in the METAPOST

manual; they are relevant only for special cases.

9 Loops
The METAPOST language offers the usual features
of programming languages, like macros, loops and
conditional expressions. For illustration I present
an example where a path is constructed within a
loop (the result is shown in fig. 7):

Listing 7: Typesetting a label with LATEX
z0 = 2cm*right;
draw origin withpen

pencircle scaled 2bp;
pickup pencircle scaled 1bp;
draw

for i:=0 upto 5:
z0 rotated (i*60) --

endfor
cycle;

The syntax of the for loop is quite easy to un-
derstand, it just uses a variable i that is incremented
stepwise from zero until 5. The loop is expanded
within the definition of the path to be drawn. Please
note that the loop is ended by endfor without a
semicolon. If a semicolon were present, it would be
interpreted as end of the draw statement, leading to
a syntax error.

Figure 7: Figure constructed by a loop

10 Conclusion
This article was intended to just give a short intro-
duction to METAPOST. I left out several things,
e. g. how to use colors, defining macros, conditional
expressions, etc. Since the article is originally based
on a talk that was part of a comparison of tools, it is
focused on what makes METAPOST unique among
other drawing tools: solving linear equations and
having direct access on intersection points and time
variables of paths.

If you are interested in learning METAPOST,
please have a look into the METAPOST manual [3]
and/or the LATEX Graphics Companion [1], which
describes METAPOST (among many other tools).

References
[1] Michel Goossens, Frank Mittelbach, Sebastian

Rahtz, Denis Roegel, and Herbert Voss. The
LATEX Graphics Companion, 2nd Edition.
Addison-Wesley Professional, 2007.

[2] John D. Hobby. A METAFONT-like System
with PostScript Output. TUGboat, 10(4), 1989.
http://www.tug.org/TUGboat/Articles/
tb10-4/tb26hobby.pdf.

[3] John D. Hobby. METAPOST—A User’s
Manual, 2008. http://www.tug.org/docs/
metapost/mpman.pdf.

� Klaus Höppner
Haardtring 230 a
64295 Darmstadt, Germany
klaus dot hoeppner (at) gmx dot de

Introduction to METAPOST

