88

ConTEXt basics for users:
Conditional processing

Aditya Mahajan

Abstract

Very often, you want to generate multiple versions
of the same document: one version for printing and
one for viewing on the screen, one version for stu-
dents and one version for the instructor, and so on.
You can do this in a simple but naive way: create
different files set up for the different versions and
\input the common material, or create some new
conditional flags using \newif and set them appro-
priately for conditional processing. Or you could use
modes — the ConTEXt way of doing conditional pro-
cessing.

1 Introduction

A mode is similar to a conditional flag, but with
a few advantages: new modes need not be explic-
itly defined (no need for something like \newif),
multiple modes can be simultaneously enabled or
disabled, and the status of multiple modes can be
checked easily. Moreover, modes can be set from a
command line switch. As a result, multiple versions
of a document can be generated without changing
the source file.

The name or identifier of a mode can be any
combination of letters, digits, or spaces. Names
starting with * are reserved for system modes.

In this article I explain how to activate a mode
and how to check if a mode is active or not.

2 Setting modes
ConTEXt has three commands for setting modes:

e \enablemode [...]
e \disablemodel...]
e \preventmodel...]

The names are self-descriptive. \enablemode acti-
vates a mode, \disablemode deactivates a mode,
and \preventmode permanently deactivates a mode.
All three commands take a list of modes as an argu-
ment. For example, you can activate modes named
screen and solution with

\enablemode [screen,solution]

Modes can also be activated by a command line
switch —--modes to texexec or context. For exam-
ple, another way to activate the screen and solu-
tion modes, to run ConTEXt using one of:

texexec --mode=screen,solution ...
context —--mode=screen,solution ...

TUGboat, Volume 31 (2010), No. 1

3 Conditional processing based on modes

You may want to process or ignore a chunk of code
if a particular mode is enabled or disabled. Such
a chunk of code is specified using \startmode and
\startnotmode environments. Their usage is best
explained by an example.
Suppose you want to change the paper size of
a document depending on whether it is for print or
screen. This can be done in multiple ways. You
could set the default paper size for print and change
it in screen mode:
\setuppapersize[letter] [letter]
\startmode [screen]
\setuppapersize [S6] [S6]
\stopmode
(S6 is one of the screen-optimized paper sizes in Con-
TEXt; the paper size has a 4:3 aspect ratio and a
width equal to the width of A4 paper.)
Alternatively, you could set a default paper size
for the screen and change it if screen mode is not
enabled:
\setuppapersize [S6] [S6]
\startnotmode [screen]
\setuppapersize[letter] [letter]
\stopnotmode

\startmode and \startnotmode can check for
multiple modes, by giving a list of modes as their ar-
guments. \startmode processes its contents (every-
thing until the next \stopmode, thus \startmode
cannot be nested) if any of the modes are enabled,
otherwise (i.e., when all the modes are disabled)
\startmode ignores its contents. The opposite is
\startnotmode: it processes its contents (every-
thing until the next \stopnotmode) if any of the
modes are disabled, otherwise — when all the modes
are enabled — the contents are ignored.

\startmode and \startnotmode are “or” envi-
ronments. They process their contents if any of the
modes satisfy the required condition. Their “and”
counterparts are also available: \startallmodes
and \startnotallmodes process their contents only
if all the given modes satisfy the required condition.
For example, suppose you want to enable interac-
tion (e.g., hyperlinks) only when both screen and
solution modes are enabled. Then you can use:

\startallmodes[screen,solution]
\setupinteraction[state=start]
\stopallmodes

To summarize, the four start-stop environments
for checking modes are:
\startmode [model, mode2, ...]

% Processed if any of the modes is enabled
\stopmode

TUGboat, Volume 31 (2010), No. 1

\startnotmode [model, mode2, ...]
% Processed if any of the modes is disabled
\stopnotmode

\startallmodes[model, mode2, ...]
% Processed if all the modes are enabled
\stopallmodes

\startnotallmodes [model, mode2, ...]
% Processed if all the modes are disabled
\stopnotallmodes

These environments have \doif. .. alternatives

that are useful for short setups. Also, they can be
nested.

\doifmode {modes} {content}
\doifnotmode {modes} {content}
\doifallmodes {modes} {content}

\doifnotallmodes {modes} {content}

The logic for determining when the content is
processed is exactly the same as for the start-stop
commands.

These \doif commands each have a variant to
process alternative code if the conditions are not sat-
isfied (like the \else branch of \if).

\doifmodeelse {modes} {content} {alt}
\doifnotmodeelse {modes} {content} {alt}
\doifallmodeselse {modes} {content} {alt}

\doifnotallmodeselse{modes} {content} {alt}

4 System modes

Besides allowing user-definable modes, ConTEXt
provides some system modes. These modes start
with a * character. Here I will explain only the more
commonly used system modes; see the ConTEXt
modes manual (http://pragma-ade.com/general/
manuals/mmodes.pdf) for a complete list.

Perhaps the most useful system modes are
*mkii and *mkiv which determine whether MKII or
MKIV is being used. These modes are handy when
you want different setups for MKII and MKIV.

Other modes are useful for very specific situa-
tions. Some of these are described below.

A document must be run multiple times to get
the cross referencing, table of contents, etc. right.
However, sometimes you need to do some external
processing (e.g., graphic conversion) that only needs
to be done once. In such cases, the *first mode
is handy —it is active only on the first run of the
document.

You can use the project-product-component
structure for managing large projects like a book se-

89

ries. See the ConTEXt wiki article (http://wiki.
contextgarden.net/Project_structure) for de-
tails of this approach. A product or its components
may be compiled separately, and you may want to do
something different when a product is compiled or
when a component is compiled. To do so, you need
to check for modes *project, *product, *compo-—
nent, and *environment; these modes are set when
the corresponding structure file is processed. For ex-
ample, the *product mode is set whenever a product
file is read; more specifically, when \startproduct
is encountered. Similarly, a mode *text is enabled
when \starttext is encountered, and likewise for
the others.

A large document is typically broken down into
different section blocks: frontmatter, bodymatter,
appendices, and backmatter. Internally, these sec-
tion blocks are referred to as frontpart, bodypart,
appendix, and backpart. Each section block sets
a system mode with the same name. So, if you
want macros that work differently in different sec-
tion blocks, you can check for modes *frontpart,
*bodypart, and so on.

ConTEXt provides support for multiple lan-
guages. Languages are recognized by their IETF
language tags, like en-us for US English, en-gb for
British English, nl for Dutch, de for German, etc.
A document has a main language, set with the com-
mand \mainlanguagel[...], that is used for trans-
lated labels like chapter and figure. You can also
switch the current language using \languagel...]
to change the hyphenation rules. Whenever a lan-
guage is chosen, its identifier is set as a mode. The
mode for the main language starts with two *. For
example, when the main language is US English and
the current language is Dutch, the modes **en-us
and *nl are set (notice the extra * in **en-us).

Other system modes: *figure is set when a
graphic is found, *interaction is set when interac-
tion is enabled, *grid is set when grid typesetting is
enabled, and *pdf and *dvi are set when the output
is PDF or DVI. Others are too esoteric to describe
here. If you are interested, see the modes manual
mentioned earlier.

In summary, modes provide generalized condi-
tional processing. A rich set of built-in modes is
available.

o Aditya Mahajan
adityam (at) ieee dot org

