
— 1—

Practical TEX 2004— program and information
Sunday
July 18

3–5 pm registration
5–7 pm reception

Track 2: Introduction to LATEX class. Starting at 10:30 am Monday, and 9 am Tuesday and Wednesday,
and ending at lunchtime each day, Sue DeMeritt and Cheryl Ponchin will teach a continuing class on
beginning and intermediate LATEX, with no prerequisites. Participants can choose whether to attend this class
or the morning talks.
MacOS X & TEX session. Starting at lunch time Monday and continuing into the afternoon, a round-

table discussion on Mac OS X will be held in the Napa room, led by Hans Hagen, Wendy McKay, and Ernest
Prabhakar from Apple.

Monday
July 19

9 am Karl Berry, TEX Users Group Welcome
9:15 am Peter Flynn, Silmaril Consultants Keynote address: TEX and the interface

10:15 am break
10:30 am Eitan Gurari, Ohio State University TeX4ht: HTML production
11:15 am Kaveh Bazargan, River Valley

Technologies
LATEX to MathML and back: A case study of Elsevier

journals

11:45 pm Hans Hagen, NTG, Pragma ADE The pros and cons of PDF

12:30 pm lunch
2:00 pm Jenny Levine, Duke University Press Label replacement in graphics
2:30 pm David Allen, University of Kentucky Screen presentations, manuscripts, and posters from

the same LATEX source

3:15 pm break
3:30 pm Baden Hughes, University of Melbourne TEX and XML

4 pm Hàn Thé̂ Thành, University of Education,
Ho Chi Minh City

Micro-typographic extensions of pdfTEX in practice

4:45 pm q &a moderator: Lance Carnes

Tuesday
July 20

9 am Volker R.W. Schaa, Dante e.V. pdfTEX and XML workflow for conference proceedings
9:45 am Anita Schwartz, University of Delaware Paperless dissertations at the University of Delaware

10:30 am break
10:45 am Hans Hagen MetaPost: More than math and fonts
11:45 am Brooks Moses, Stanford University MetaPlot, MetaContour, and other collaborations with

MetaPost

12:30 pm lunch
1:30 pm Cheryl Ponchin, Ctr. for Comm. Research LATEX survey
2:15 pm Steve Grathwohl, Duke University Press What is ConTEXt, that we should be mindful of it?

3 pm break
3:15 pm William Richter, Texas Life Insurance Co. TEX and scripting languages

4 pm q &a moderator: Karl Berry
social events (see next page)

5 pm treasure hunt
7:30 pm banquet

Wednesday
July 21

9 am Nelson Beebe, University of Utah A bibliographer’s toolbox
9:45 am David Jones, American Mathematical Soc. The amsrefs package

10:30 am break
10:45 am Steve Peter, Beech Stave Press TEX and linguistics
11:30 am Hans Hagen ConTEXt
12:30 pm lunch
1:30 pm Steve Grathwohl 70 years of the Duke Mathematical Journal online
2:15 pm q &a moderator: Baden Hughes

3 pm break
3:15 pm panel: Digital Publishing moderator: Lance Carnes; Kaveh Bazargan, Karl

Berry, Peter Flynn, David Fuchs, Hans Hagen.

4 pm end

Thursday
July 22

additional courses
Peter Flynn Practical TEX on the Web
Sue DeMeritt, Cheryl Ponchin Intermediate and Advanced LATEX
Hans Hagen Introduction to ConTEXt



— 2—

Treasure hunt
After the conference sessions on Tuesday, Lance Carnes will host a treasure hunt in San Francisco
North Beach/Chinatown. Armed with clues, a street map, and keen problem solving ability, treasure
hunt teams will look for eight solutions, starting at the conference hotel. The clues will lead hunters
to landmarks, pubs, historic and notorious places. The solutions are a place name, a detail from
a historic plaque, or some other minutiae. The winning teams will be the ones who arrive at the
banquet restaurant at the end of the hunt with the most correct answers in the least amount of time.
More information on a separate page near the end of this booklet.

Banquet
At 7:30 pm Tuesday, the conference will hold a banquet at the Empress of China restaurant. This will
be a multi-course Chinese dinner, including Sizzling Rice Soup, Peking Duck, Manchurian Beef, and
Walnut Prawns. The banquet room has a commanding view of downtown San Francisco, Alcatraz
and the bay, and Telegraph Hill. Several celebrity TEX guests will be attending the banquet!

Conference logistics
Registration is in the ‘reception and pre-function area’ at the top of the stairs, Sunday 3–5 pm.
Please come and pick up your name tag, conference information, and other goodies at this time if
possible. Otherwise, see Robin Laakso to register.
The reception is in the same area, Sunday evening 5 pm–7 pm.
Lunches will be served in the Bristol Bar Grill, downstairs off the lobby. This hotel restaurant is
open to the public for breakfast and dinner but reserved for our group for lunch.
Breaks will be served in the reception area.
The main conference sessions are in the combined Mendocino/Tiburon space.
The Track 2 introductory LATEX class is in Sausalito, starting Monday 10:30 am and Tuesday,
Wednesday 9 am, and ending at lunch time.
The Mac OS X session is in Napa, starting Monday lunchtime.
Internet access is available in Sonoma, ≈ 7:30 am–9 pm. See Robin Laakso for emergency access
outside regular hours. General wireless access is available throughout the conference area and
lobby.
Thursday classes will be held in Tiburon, Sausalito, and Mendocino.

Mendocino

Tiburon

Pacific Ballroom

Sausalito

Napa

Sonoma

Registration
and

Reception

Telephones

Stairs to

LobbyRest

Room

Rest

Room

Mezzanine Level



— 3—

PracTEX Treasure Hunt
Tuesday, July 20, ≈ 5–7:30 pm

How does it work?
First, form a team of 3–6 people. You can assemble a team prior to the conference, or join a team the
evening of the hunt. Some clues may require knowledge of American idioms, while other clues can be
solved with keen observation and logic. All participants, whether from the US or abroad, can play a
role in solving clues.

The hunt begins at the Holiday Inn. You will be given a set of clues, a map, and an answer sheet.
You may solve the clues in any order; it’s best to try to figure out the locations before setting out on
foot, to avoid backtracking.

The clues will lead you to a location, and from there you look for the solution. In most cases, you
will have to get to a location before the rest of the clue makes sense.

You have a maximum of two hours for the hunt. You may not be able to solve all the clues in
that time, so if you cannot get the solution within a few minutes, move on to the next clue. Submit
answers at the banquet restaurant (Empress of China) before the designated ending time (≈ 7:30).

Sample clues
The first part of a clue guides you to the location. The other part of the clue can only be solved once
you are at the location. The location part of these sample clues can be solved by referring to the
map, along with some shrewd reasoning. Since the answer to the clue can be solved only when you
are at the location, for now see if you can find the locations for these clues. Answers are below. (The
Holiday Inn is at the corner of Columbus Ave. and North Point St.)

Sample Clue 1. Roman seamen will think
of this landing place as XXXIX. To the west
hundreds of sea creatures have made their
home where sailboats once berthed. What are
these creatures that have a name like the TEX
mascot, but whose cry is like a dog’s?

Sample Clue 2. At the corner where a 15th
century sailor crosses a small body of water,
this place’s name includes circular items which
have become smaller in size over the past 20
years, yet their price has certainly not shrunk.

Rules
The hunt is best when all team members contribute. Teams must collaborate in solving the clues and
must stay together at all times. Individuals may not leave the team and solve clues on their own.

You must travel on foot. All team members must be willing to travel at the same pace, so consider
this when joining a team.

All team members must be present when the answers are submitted at the end of the hunt.
The solutions to the clues will be distributed after the hunt. The top three teams will receive

prizes (not to mention bragging rights).

Acknowledgments
The PracTEX Treasure Hunt is based on the popular Chinese New Year Treasure Hunt created by
Jayson Wechter.

Answers
Answer to Sample Clue 1: The place is Pier 39 (we’re assuming Roman seamen think in roman
numerals). Next to this pier are floating berths that have become a permanent home to sea lions.
Answer to Sample Clue 2: The corner is Columbus (15th century sailor) and Bay (small body of
water), and the place is Tower Records (which once sold vinyl records but now sells CD’s).



— 4—

LATEX to MathML and back: A case study
of Elsevier journals
Kaveh Bazargan
Our main business is typesetting and content
management for mathematical journals. One
of our clients is Elsevier. As of this year, all of
their journals will be archived in XML, with
mathematics in MathML. In this presentation
I will outline and give a live demonstration
of how we tackled the automatic conversion
between LATEX and MathML. This has led to
a workflow which we have standardized for all
journals we handle.

A bibliographer’s toolbox
Nelson Beebe
This article surveys a portion of a set
of software tools that I have developed
over the last decade for the production,
maintenance, testing, and validation of very
large bibliographic archives. It provides
resource locations for all them, and shows how
they can make bibliography preparation and
maintenance more productive, and much more
reliable.

TEX and the interface
Peter Flynn
TEX systems have been a cornerstone of
research and academic publishing for a long
time. Development of how it interfaces
with different classes of user or potential
user, however, has been uneven. Recent
developments in other areas of text processing
are opening up new opportunities for TEX-
based systems. Should TEX development
become involved in these areas, or should
it be restricted to those areas where it has
traditionally been a strong player?

What is ConTEXt, that we should be
mindful of it?
Steve Grathwohl
ConTEXt can not only be considered a LATEX
for the 21st century, but, more generally, an
evolving platform for document engineering,
if we take a very expansive view of what
constitutes a ‘document’. But in this
presentation I want to cover how ConTEXt
handles some document features with which
we are all familiar. In order to demonstrate
ConTEXt’s powerful and intuitive key-value
setups for document structures, I will then show
how I implemented a simple book design, a type
of project I always undertake when trying to
learn a new system. The book is A Voyage to
Arcturus by David Lindsay.

70 years of the Duke Mathematical
Journal
Steve Grathwohl
The Duke Mathematical Journal published
its first issue in 1935. Since the 1980s, it has
been one of the leading independent general
mathematics journals. Over the last year, we at
Duke have finished putting the entire corpus on
the World Wide Web, in appropriately indexed
and searchable form. I give in this presentation
a short overview of DMJ Online, which is hosted
by Project Euclid at Cornell University, and
make a few remarks about the management
of metadata for the project, which involves
an intersection of the TEX and XML worlds
mediated by Perl.

TeX4ht: HTML production
Eitan Gurari
TeX4ht is a highly configurable system for
producing hypertext from TeX-based sources.
The system is distributed with a large set of
configuration files. The most commonly used
configurations are those supporting LATEX
inputs and HTML, MathML, OpenOffice,
and DocBook targets. The first part of the
presentation will describe how the system can
be used for different applications.

ConTEXt is a new addition to the style files
being supported by TeX4ht. The second part
of the presentation will describe the work done
to provide TeX4ht configurations for ConTEXt,
with the objective of providing insight into the
inner working of TeX4ht.

How to use micro-typographic extensions
of pdfTEX in practice
Hàn Thé̂ Thành
Micro-typographic extensions of pdftex like
margin kerning and font expansion have been
around for a while. While the demos show
interesting results, applying those extensions to
daily use is not that simple for an average user.
In this article I will share some experiences in
using those extensions in practice, and give a
few simple and useful recommendations for a
quick start for newcomers.



— 5—

TEX and XML
Baden Hughes
With the growing prevalence of XML data,
it is logical to consider ways in which XML

and processing engines such as TEX can be
integrated efficiently to produce high quality
typographic output. In this session, we will
first review the history of approaches to the
integration of TEX with other structured
data types; and motivate the work here by
considering a range of typical use cases.
Adopting a typological approach, we will
consider: XML in TEX documents; XML as
input to TEX processes; XML as output from
TEX processes; and XML as an intermediary
between other processes and TEX itself. we
conclude with a review of the state of the art
of TEX and XML integration, and a survey of
current directions.

The amsrefs package
David Jones
The amsrefs LATEX package extends the
benefits of BIBTEX’s structural markup to
all stages of a document’s life cycle while
simultaneously ameliorating a large class of
problems that frequently plague BIBTEX users.
Using amsrefs—either in conjunction with
BIBTEX or independently of it—an author can
easily create a self-contained LATEX file that
retains all the semantic information that is
typically lost when converting BIBTEX database
records into LATEX source code, making it
easier, for example, to reuse LATEX documents
in other contexts, such as on the Web. At the
same time, issues such as non-Latin characters
in names and capitalization of titles are
supported more naturally, eliminating the need
for many of the special markup conventions of
BIBTEX databases that trip up authors.

The amsrefs package is compatible with
the hyperref and showkeys packages and
provides support for sorted and compressed
citation lists (à la the citesort and cite
packages) and multiple bibliographies. It can
also emulate the standard plain, abbrv, alpha
and unsrt BIBTEX styles, and supports a rich
set of author-year citation schemes.

This talk will demonstrate how to use
amsrefs to solve common problems and
compare and contrast amsrefs with existing
solutions.

Label replacement in graphics
Jenny Levine
In this presentation I show how graphics are
manipulated to the Duke Mathematical Journal
style. I give some examples and a step-by-step
approach to assessing a figure file, removing its
labels, and placing new ones using graphicx
and overpic.

This is done to maintain a consistent style.
Our labels should be in a compatible font and
match the look of the journal as well as that of
the article (size, placement, emphasis, etc.).

Paperless dissertations at the University
of Delaware
Anita Schwartz
The Office of Graduate studies at the
University of Delaware decided to do their
part in meeting our campus goal of a paperless
environment by registering with UMI ProQuest
as one of the first test universities to allow
electronic submissions of dissertations. This
means no more binding hard copies, only PDF

(Portable Document Format) files. Eventually
we plan to includes theses, so we must make
this first phase of the project a success. We
choose to use the service at UMI because it
fit well into our current campus requirements
for UDThesis and it would require very little
technical support. The plan is to go live
in September 2004. This paper will briefly
describe our current environment and the
necssary steps to support UDThesis in our
future environment. The primary goal of this
paper will explain our support issues for the
software aplications (Word, TEX and LATEX)
used to generate theses and dissertations and
options for generating a PDF file.

The overall goal of this project is to provide
an enjoyable and successful experience for
our graduate students and at the same time
fulfill our campus goal of being a paperless
environment.



— 6—

TEX and Linguistics
Steve Peter

Beech Stave Press

Linguistics is a field that stands at the intersection of numerous other disciplines.
Therefore it has a number of notational systems, some of which are quite diffi-
cult to work with in traditional word processors. However, since many of these
notations are based on mathematics, TEX is a natural typesetting system for lin-
guistics.

For example, the following lexical entry for the verb sees in Head-driven
Phrase Structure Grammar is a nightmare to type and maintain in Word, yet it
is quite straightforward in TEX. (I use a scan here here because in the talk I want
to show how TEX may be used to typeset real linguistic examples, not to show
what in linguistics is generally done via or influenced by TEX.)

The talk begins with an overview of the field of linguistics, showing the
different notational systems each subfield uses. Following that, I show how
(many of) these examples may be typeset in TEX, citing its advantages over
other typesetting systems (and to be fair, its drawbacks as well), drawn from
my own practical experience as a linguist and a publisher of linguistics.



— 7— ../preprints/allen.pdf

Screen Presentations, Manuscripts, and Posters
from the Same LATEX Source

David M. Allen
University of Kentucky

http://www.ms.uky.edu/∼allen/

June 9, 2004

Contents

1 Introduction 1

2 Should we do it? 2

3 The Building Blocks 2

4 Sectioning Commands 3

5 Switches for Selective Input 3

6 Listing of Packages and a Sample Application 3

7 Sample output 6

1 Introduction

This presentation describes three small packages, screen.sty, manuscript.sty, and poster.sty.
The screen package is used to format the output for a screen presentation; the manuscript
package for a manuscript; and the poster package for a poster. With a little care, the same
input file can be processed with any of the three packages. These packages are used with
the article class.

Each of these packages loads the geometry package and the TEXpower package with
options appropriate for the type of output. The package poster.sty also loads the multicol
package. All features of article class are available unless there is a conflict with the
TEXpower, geometry, or multicol packages. For example, floats cannot be used with the
multicol package.



— 8— ../preprints/allen.pdf

Each of the packages defines two new commands, newscreen and titledscreen, but in
different ways. The article sectioning commands are redefined in screen.sty and poster.sty
to be more pleasing for those types of output.

This presentation gives the implementation details of the screen, manuscript, and
poster packages. It will also demonstrate the use of the packages. One demonstration
illustrates novel incremental building of PSTricks graphics.

2 Should we do it?

I anticipate the question: Does it make sense to have the same content in a screen
presentation and a manuscript? Books on presentation style say there should be just a
few talking points on each screen. However, there are some reasons to the contrary.

Different rules apply for scientific presentations. Often technical presentations are not
immediately comprehended. If the audience is given a handout having some detail, then
the handout can be studied later.

Composing a paper in nearly self-contained segments forces an author to use more
structure. A theme and its discussion have to be kept together in a screen presentation.
The screen presentation and the corresponding article for publication do diverge, but this
happens toward the end of the composition process.

3 The Building Blocks

The packages TEXpower, geometry, and multicol are the building blocks for the packages
screen, manuscript, and poster. Here the building blocks and their options are briefly
discussed.

The TEXpower package is used for incremental displays and for color emphasis. Use
the display option to activate the pause and stepwise incremental displays used with
screen presentations. The printout option is used with posters and manuscripts to show
only the final result of the incremental build. The option lightbackground, by default, gives
black text on a pale yellow background. I use the lightbackground option for screen pre-
sentations and posters and the whitebackground option for manuscripts.

There are other options for color emphasis and color math. The user chooses the the
options to suit his own taste. For example, he may use the darkbackground option which,
by default, uses yellow text on a dark blue background.

The geometry package is used to set page dimensions, margins, and magnification.
Since I live in the USA, I use the letterpaper option to specify the paper size for screen
presentations and manuscripts. Outside the USA, one would likely use the a4paper op-
tion.

At the University of Kentucky, the printer used for posters takes rolls of paper that
are 36 inches wide. One uses the paperwidth and paperheight commands for the desired
poster size. It may be necessary to adjust these sizes to offset magnification. The a0paper
option would likely be used for posters outside the USA.

2



— 9— ../preprints/allen.pdf

The option mag=\magstep4 (magnify by a factor of 1.24) for screen presentations and
mag=\magstep3 (magnify by a factor of 1.23) for posters seem to give pleasing results.
Magnification is not used for manuscripts.

The margins I use may be seen in the code listings that follow. The author can set
margins to his taste.

The multicol package is used to have multiple columns for posters. There are lengths
for the amount of space between columns, the width of the rule separating columns, etc.
My settings are shown in the listing of poster.sty.

4 Sectioning Commands

The screen and poster packages redefine the section, subsection, and subsubsection
commands to make titles centered and colored. The color is emcolor defined in texpower
for color emphasis.

When there is too much material for a single screen the material just spills over to the
next screen. The place at which the material breaks across screen boundaries may not
be pleasing, and you might want to break the material at a earlier point. The newscreen
command is defined as \newpage in screen.sty and is defined to do nothing in the other
two styles.

If the text at the beginning of a screen coincides with the beginning of a paragraph you
may want to have a screen title that indicates the theme of the paragraph. The command
\titledscreen has the screen title as its argument. In screen presentations, the title has the
appearance of a sectioning command except that it is not numbered and will not appear
in a table of contents. For the manuscript and poster styles, \titledscreen is defined as
\par.

5 Switches for Selective Input

The TEXpower package loads the ifthen package. The packages screen, manuscript, and
poster define Boolean strings: screen, manuscript, and poster. In each case, the Boolean
with the same name of the file is set to true, and the other two are set to false. The
\ifthenelse command can be used for selective inclusion of parts of the input file.

6 Listing of Packages and a Sample Application

This section contains listings of screen.sty, manuscript.sty, poster.sty, and an example
LATEX file.

The content of screen.sty is

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

\ProvidesPackage{screen}[2004/04/10 David Allen,%

3



— 10— ../preprints/allen.pdf

version 0.0]

\RequirePackage[display,lightbackground,colorhighlight,

coloremph,colormath]{texpower}

\newboolean{manuscript}

\newboolean{screen}

\newboolean{poster}

\setboolean{manuscript}{false}

\setboolean{poster}{false}

\setboolean{screen}{true}

\RequirePackage[landscape,letterpaper,nohead,mag=\magstep4,

hmargin=0.5in,vmargin=0.25in,truedimen,footskip=1em]

{geometry}

\renewcommand{\section}{\@startsection{section}{1}{0pt}

{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\large\bfseries}}

\renewcommand{\subsection}{\@startsection{subsection}

{2}{0pt}{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\large\bfseries}}

\renewcommand{\subsubsection}{\@startsection{subsubsection}

{3}{0pt}{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\normalsize\bfseries}}

\newcommand{\newscreen}{\newpage}

\newcommand{\titledscreen}[1]{\newpage{\large%

\bfseries\centering\color{emcolor} #1\\[1ex]} \par}

\setlength{\parindent}{0.0em}

\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}

\raggedright

\pagestyle{plain}

The content of manuscript.sty is

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

\ProvidesPackage{manuscript}[2004/04/10 David Allen,%

version 0.0]

\RequirePackage[printout,whitebackground]{texpower}

\newboolean{manuscript}

\newboolean{screen}

\newboolean{poster}

\setboolean{manuscript}{true}

\setboolean{poster}{false}

\setboolean{screen}{false}

\RequirePackage[letterpaper,nohead,margin=1in,

footskip=1.5em]{geometry}

\pagestyle{plain}

\newcommand{\newscreen}{}

\newcommand{\titledscreen}[1]{\par}

The content of poster.sty is

4



— 11— ../preprints/allen.pdf

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

\ProvidesPackage{poster}[2004/04/10 David Allen,%

version 0.0]

\RequirePackage[printout,lightbackground,colorhighlight,

coloremph,colormath]{texpower}

\newboolean{manuscript}

\newboolean{screen}

\newboolean{poster}

\setboolean{manuscript}{false}

\setboolean{poster}{true}

\setboolean{screen}{false}

\RequirePackage[paperwidth=27.78in,paperheight=20.83in,

margin=0.5in,truedimen,mag=\magstep3,nohead,nofoot]

{geometry}

\RequirePackage{multicol}

\setlength{\columnsep}{.75truein}

\setlength{\columnseprule}{2truept}

\raggedcolumns

\pagestyle{empty}

\setlength{\parindent}{0.0em}

\newcommand{\newscreen}{}

\newcommand{\titledscreen}[1]{\par}

\raggedright

\renewcommand{\section}{\@startsection{section}{1}{0pt}

{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\large\bfseries}}

\renewcommand{\subsection}{\@startsection{subsection}

{2}{0pt}{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\large\bfseries}}

\renewcommand{\subsubsection}{\@startsection{subsubsection}

{3}{0pt}{-2ex plus 1ex minus 1ex}{2ex plus 1ex minus 1ex}

{\color{emcolor}\centering\normalsize\bfseries}}

The source code for an example is shown here. The input file, body.tex, is the same
for all cases. One of the packages discussed here must be used. The begin and end
multicols* must be active for poster output.

\documentclass[12pt]{article}

\usepackage{graphicx}

\usepackage{verbatim}

\usepackage{color}

% Un-comment one of the next three lines

%\usepackage{screen}

\usepackage{manuscript}

%\usepackage{poster}

\pagestyle{plain}

\bibliographystyle{plain}

5



— 12— ../preprints/allen.pdf

\begin{document}

%\title{\color{emcolor}Screen Presentations, Manuscripts,

\title{Screen Presentations, Manuscripts,

and Posters from the Same \LaTeX\ Source}

\author{David M. Allen\\University of Kentucky\\

http://www.ms.uky.edu/$\sim$allen/}

\maketitle

\thispagestyle{empty}

\ifthenelse{\boolean{poster}}{\begin{multicols*}{5}}{}

\tableofcontents

\input{body} % input or include your stuff here

%\newscreen

%\bibliography{latex} % list your bib files here

\ifthenelse{\boolean{poster}}{\end{multicols*}}{}

\end{document}

7 Sample output

This is a reduced image of a screen in my LATEX tutorial:

Continued fractions

The input

\[

a_0 + \frac{1}{a_1 + \frac{1}{a_2 +

\frac{1}{a_3 + \cdots}}}

\]

gives the continued fraction

a0 +
1

a1 +
1

a2+
1

a3+···

22

The actual size is 11 by 8.5 inches.

6



— 13— ../preprints/allen.pdf

This is a reduced image of my LATEX tutorial as a poster:

An Introduction to LATEX

David M. Allen
University of Kentucky

June 9, 2004

1 Introduction

LATEX is a language for typesetting text and mathematics. Due to its
flexibility, ease of use, and professional typographic quality, LATEX is
currently used in almost all areas of science and the humanities.
LATEX offers a high level of mathematical typesetting capabilities, so it
is used by mathematicians and statisticians for word processing.
This document is illustrate how to do a few things with LATEX. To use
LATEX you will need to get a book or download one of several
instruction manuals on the Web.
Most things about LATEX are found at the TEX Users Group (TUG)
web page1. You should read about the history of TEX and LATEX.
Explore this site for free LATEX systems, manuals, and add-ons.
The original book on LATEX is by Leslie Lamport [4]. If you plan to do
a lot of graphics, you should obtain Goossens, etal, [1]. My
recommended book for a rank beginner is Griffiths and Higham [2].
My favorite general book is Kopka and Daly, [3].
A tex file is file with a file extension .tex. For our purposes, a tex file
contains text and commands for the LATEX system. A simple example
of the contents of a tex file is

\documentclass{article}

\begin{document}

This is some text.

\end{document}

Everything you type in will be neatly formatted and typeset.
Separate paragraphs by blank lines. Of course changing spacing,
type styles, and using formulas requires additional commands.

2 Document classes

A document classes determines the layout, style for headings, and
other elements of the document. Some classes are standard (built
in) and others have been contributed by users.
The class is specified in the first line of a tex file as

\documentclass{name}

where name is the name of the style
There are five standard document classes, namely, article, report,
book, slides, and letter. A specified class determines a special
format. When you declare the class option, LATEX will compile your
tex source file by using your specified format.
Users have developed many other classes and contributed them for
all to use. Many of these are so popular that they are included with
every LATEX distribution. One might not be aware of whether a class
is standard or contributed.
Ph.D.students will want to use a thesis class approved by their
graduate school. This will guarantee that style will conform to the
required format.
See the TUG web site for more classes.

3 Packages

A package is a collection of commands that add additional
functionality to the document class. You should declare the package
as

\usepackage{name}

just after the documentclass command. Substitute the name of the
package for name. For example,

\documentclass{article}

\usepackage{graphicx}

\begin{document}

Document contents go here.

\end{document}

loads the graphicx package that allows for inclusion of external
graphic files.
If you have a Postscript file such as a R graphics output or
something written directly in PostScript language, you can reference
it in your LATEX file. You need to load the graphicx as shown above.
At the point where a graphic is to appear, put

\includegraphics[options]{file name}

Options are commands that re-size or rotate the graphic. File name
is the name of the file containing the graphic. Several graphic types,
jpeg, gif, PostScript, etc., are supported.
The input

\[\includegraphics[width=4truein]{membrane.ps}\]

A fish tank separated into three compartments

by membranes is an example of a compartmental

model.

The tank is filled with a medium, and a

substance is placed in the medium.

We are interested in the movement of the

substance from compartment to compartment.

gives

A fish tank separated into three compartments by membranes is an
example of a compartmental model. The tank is filled with a
medium, and a substance is placed in the medium. We are
interested in the movement of the substance from compartment to
compartment.
There is a package color to allow coloring various elements of a
document. To change the text color, use the \color{color}
command. For example, the commands

\color{blue}

\begin{center}

{\Huge\bf Go Cats}

\end{center}

\color{textcolor}

produces

Go Cats
To change the background color use \colorbox{color}{stuff}. For
example,

\colorbox{yellow}{high lighted phrase}

produces: high lighted phrase .
For making slides, I like the combination of the texpower and
geometry packages. These provide many more features than the
standard document class slides.

4 Typesetting Mathematics

As statisticians, we often need to type mathematical formulas. LATEX
can make very elegant formulas.
There are two math modes, in line and display. For the in line mode,
a $ signals the start of math mode, and another $ signals the end.
For the display mode, a \[ signals the start of math mode and \]
signals the end. In display mode, formulas are set apart on their
own line, and larger symbols are used. The commands to produce a
formula are placed between these delimiters.
The LATEX code for the average of X1, · · · , Xn is

\bar{X} = \frac{1}{n}\sum_{i=1}^n X_i

This formula is displayed in inline mode in the following sentence.
The average of X1, · · · , Xn is X̄ = 1

n

∑n
i=1 Xi . X̄ is the common

estimator of the population mean.
This formula is displayed in display mode in the following sentence.
The average of X1, · · · , Xn is

X̄ =
1
n

n∑
i=1

Xi.

X̄ is the common estimator of the population mean.
Here we illustrate a few of the commands that produce
mathematical formulas. You can get a full list from a book or the
Web. Most things are easy to remember. For example, to get β
while in math mode you type \beta. To get ŷ you type \hat{y}.
The input

\[

a_0 + \frac{1}{a_1 + \frac{1}{a_2 +

\frac{1}{a_3 + \cdots}}}

\]

gives the continued fraction

a0 +
1

a1 +
1

a2+
1

a3+···

The input

\[

F(x) = \int_{-\infty}^x

\frac{1}{\sqrt{2\pi\sigma^2}}

e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt

\]

gives the integral

F (x) =
∫ x

−∞

1√
2πσ2

e− (t−µ)2

2σ2 dt

5 Tabular displays and arrays

The tabular environment is good for making tables. The code

\begin{tabular}{|c|c|ccc|}

\multicolumn{2}{c}{}&\multicolumn{3}{c}{Drugs} \\

\cline{3-5}

\multicolumn{1}{c}{Alcohol}

&\multicolumn{1}{c|}{Subject} &

\multicolumn{1}{c}{A} &\multicolumn{1}{c}{ B} &

\multicolumn{1}{c|}{C} \\

\hline

Yes & RST & 3.56 & 4.04 & 3.26 \\

Yes & JBM & 3.79 & 3.88 & 3.49 \\

Yes & DGH & 4.09 & 5.32 & 3.79 \\

Yes & WJT & 3.33 & 3.63 & 3.03 \\

Yes & EEA & 3.35 & 3.63 & 3.05 \\

\hline

No & DCJ & 2.83 & 2.55 & 2.63 \\

No & CJW & 2.93 & 2.42 & 2.73 \\

No & RLA & 2.98 & 3.07 & 2.78 \\

No & HEM & 2.32 & 2.15 & 2.12 \\

No & AMR & 2.73 & 3.23 & 2.53 \\

\hline

\end{tabular}

gives

Drugs
Alcohol Subject A B C

Yes RST 3.56 4.04 3.26
Yes JBM 3.79 3.88 3.49
Yes DGH 4.09 5.32 3.79
Yes WJT 3.33 3.63 3.03
Yes EEA 3.35 3.63 3.05
No DCJ 2.83 2.55 2.63
No CJW 2.93 2.42 2.73
No RLA 2.98 3.07 2.78
No HEM 2.32 2.15 2.12
No AMR 2.73 3.23 2.53

The array environment is just like the tabular environment except it
is in math mode.
The input

\[ \left[ \begin{array}{rrr}

12 & 13 & 24 \\

14 & 27 & 39 \\

20 & 29 & 11

\end{array} \right] \]

gives  12 13 24
14 27 39
20 29 11


The input

\[

-K^{-1} =

\left[

\renewcommand{\arraystretch}{1.5}

\begin{array}{ccc}

\frac{1}{\theta_1 } & 0 & 0 \\

\frac{1}{\theta_4 } & \frac{1}{\theta_4 }

& \frac{1}{\theta_4 } \\

\frac{\theta_2}{\theta_4 \theta_3 }

& \frac{\theta_2 }{\theta_4 \theta_3 }

& \frac{\theta_2 }{\theta_4 \theta_3 }+

\frac{1}{\theta_3 }

\end{array}

\right] .

\]

gives

−K−1 =


1
θ1

0 0
1
θ4

1
θ4

1
θ4

θ2
θ4θ3

θ2
θ4θ3

θ2
θ4θ3

+ 1
θ3

 .

The equation array is a special array with three columns. The
displays are aligned on the center column. The equation is
automatically in math mode.
The input

\begin{eqnarray}

(a+b)^3 & = & (a+b)(a+b)^2 \\

& = & (a+b)(a^2+2ab+b^2) \nonumber \\

& = & a^3+3a^2b+3ab^2+b^3 \label{eqn}

\end{eqnarray}

gives

(a + b)3 = (a + b)(a + b)2 (1)

= (a + b)(a2 + 2ab + b2)

= a3 + 3a2b + 3ab2 + b3 (2)

The equations without \nonumber are numbered.

6 Miscellaneous

Several other topics are briefly discussed in this section.
If you have a formula that appears multiple times you make the
formula into a new command with an expression like

\newcommand{\command name}{definition}.

For example

\newcommand{\polar}{\ensuremath{\left(

\begin{array}{l}\cos(\beta t)\\ \sin(\beta t)

\end{array}\right) \exp (\alpha t) }}

defines a command such that \polar produces(
cos(βt)
sin(βt)

)
exp(αt). If you have a formula that appears multiple

times but differs somewhat each time, you make the formula into a
new command with an expression like

\newcommand{\command name}[no. args]{definition}.

For example

\newcommand{\polarn}[2]{\ensuremath{\left(

\begin{array}{l} \cos(#1 t) \\ \sin(#1 t)

\end{array} \right) \exp (#2 t) }}

defines a command such that \polarn{4.2}{3.6} produces(
cos(4.2t)
sin(4.2t)

)
exp(3.6t).

LATEX makes bibliographies a snap. Prepare a data base along the
lines of

@book

{

goossens.rahtz.mittelbach,

author = "Michel Goossens and Sebastian Rahtz and

Frank Mittelbach",

title = "The \LaTeX\ Graphics Companion",

publisher = "Addison-Wesley Publishing Company",

address = "Reading, Massachusetts",

year = "1997"

}

@book

{

goossens.mittelbach.samarin,

author = "Michel Goossens and Frank Mittelbach

and Alexander Samarin",

title = "The \LaTeX\ Companion",

publisher = "Addison-Wesley Publishing Company",

address = "Reading, Massachusetts",

year = "1994"

}

@book

{

lamport,

author = "Leslie Lamport",

title = "\LaTeX: A Document Preparation System",

publisher = "Addison-Wesley Publishing Company",

address = "Reading, Massachusetts",

year = "1994",

Note = "List \$39.95"

}

With appropriate commands placed in the tex file and bibTEX
program, you get an automatic bibliography with all the works you
have cited. At the point of each citation you get the number of the
reference automatically. In section 1, I cited some books. The first
citation was obtained by the command \cite{lamport}.
Back on page 1 we put a label on equation 2. The reference to the
page number is by the command \pageref{eqn}. The reference to
the equation number is by the command \ref{eqn}.
We can add and delete equations, and page numbers change with
new material. But through the use of symbolic labels, the proper
referencing is automatic.
Sometimes you may want to include some statistical package output
or something else in its original form. You can do it by using
verbatim environment. The following is R output.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factor(treatment) 2 11.6035 5.8017 4.9957 0.0264 *

Residuals 12 13.9361 1.1613

References

[1] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The
LATEX Graphics Companion. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1997.

[2] David F. Griffiths and Desmond J. Higham. Learning LATEX.
SIAM, 1997. $17.00 or $13.60 for members.

[3] Helmut Kopka and Patrick W. Daly. A Guide to LATEX.
Addison-Wesley Publishing Company, Reading, Massachusetts,
fourth edition, 2004.

[4] Leslie Lamport. LATEX: A Document Preparation System.
Addison-Wesley Publishing Company, Reading, Massachusetts,
1994. List $39.95.

1http://www.tug.org

The actual size is 48 by 36 inches.

7



— 14— ../preprints/hughes-grey.pdf

�

��� ������	


�������
���
����������������������������������������������
�������


���������������� !�����
!�����"��#��#�$#��

%������� �����&''( &

)
����

� �����*��+�����
�+����������������

� ���� �
�������� ������	�,� ������

� �����������������)����������  ��
��

� ,���������� �������

� ���� �����



— 15— ../preprints/hughes-grey.pdf

�

%������� �����&''( -

�����*��+�����
�+���
�������������

� �����!��������	.���������������������������
�������������������� ����
����
�������  �������������������

� �������	������������� ����������������� ���������������
���/� ���
� �0�	�����	���� 123345
� �0�	�6�����	�����7������ 123345
� 
� 123385
� �������123345
� ��������123395
� ����123385
� ��������������/�����������������������:�����	���� 1233;5

� )����!<������ ����������������������
��������� �.��������������������
������	�� ���������������� ����������������� �����������.����� ���
�
���������� ������������������ �������� ������ �����������

� )���������	����������  ��=

%������� �����&''( (

�����*��+�����
�+���
��������������= ���  

� )���� ������������������%������������� �������� �����������
1�����<�>��������� ���5
� ��0!��� ����� ��

� &-125��������
� &&1-5�0�		��
� &21-5���	���.�%���������
� &'1(5�����	
� &'1-5�����	.�	���� �����	

� ?����������0�����7����� �����������������%��������
�
� �������0����!��
 -9<-8�1��
 ���.�@�����5
� 
������� &''-.�&'''������������%��������
��1��
 ���.�%� ���5
� �	��&''(.�&''-.�&''&.�&''2������������%��������
��1�$���5
� ������� &''2������������%��������
��1��
 ���5

� A���������� �������������
�����
���	�������������� ���������
�
���B������������ �
��� ������=



— 16— ../preprints/hughes-grey.pdf

�

%������� �����&''( 9

�������������C

� )����������� ��������������������������	�
������������������������ ������� ��������! ��
���!���� �����������������D ����  �/���������
��� ���������
������  ������ ������������>�
������C
� ���������������  ���������������������
���	�

����������������� �������������������������������
��� ��������������,:� =

� )���������� �����������������������������������
��	���� /���������� �! �� ���  ���������������

%������� �����&''( 8

���� �
�������� ������	
,� ������

� �����*�������
���������
����������������������
��� ������	

� �������*  �����������������������.����������E

� ��	������� ���������

� ��	����:�����������

� ��	����?��������������

� ��� �����	�:�����������



— 17— ../preprints/hughes-grey.pdf

�

%������� �����&''( ;

��	������� ���������

� %��!�! ��������������������������� ����������	E�
���������	�
���
�����

� 
�������������������F����������� � ����!���/��
.�� �
������
���.��������*����� �! �

� )�!�������������������������	����/�
�E�
���������	�
����

� ����EGG���#���#��#��#�/GH�B�G�������G���������G>� #���

� ) ������� �����	< �/������������D ���.����.���	����

� +
E���*������������
���������<������������������	�
������������������������
������������ ���������
� ����EGG����#���������
�#��� 1���/���������	����C5

%������� �����&''( 4

��	����:�����������

� ������� �������  ���� ����������������������
���������	������
� ����EGG���#���
��<���#���G

� >� ��> ����������������!� ���
� ��������  ��������������/�
��������	.�������

������������������!�������������

������
����������
�����

� +������>� ��> �>�����! ��������  ��������
�������
�����	����

� �������F������� ��� ����� ���/���
� ����EGG���#���� �� �#�����#��#�/G>� ��>G����� #��� 



— 18— ../preprints/hughes-grey.pdf

�

%������� �����&''( 3

��	����?��������������

� A����������������� ��������������������������
�����! ��������������F�����
� ��� ��������������������������������	�������� ����������

� ��>(�������������������������
� I� �
�����JK����� ���LM����� 0�����*� �� /���� ���IG� �
M
� ����EGG���#���#����<�����#���GH
�����G���(��G

� A�������� ������������������
��������������
��
���.������N:����%�@������������� ���
�������
� �������������� �����������D �>������������!�����
�� ��� ��

��������������������������
� %�@

� )%:E�%&������EGG���#���&��>�#���G�������<���<��<>� <���<
���������#���

� ?���������� �E����!���
����� ����EGG���#���!���
�����#���G

%������� �����&''( 2'

��� �����	�:�����������

� @���<
�����������
������������� ���������������� ��/���������� ������
��
������������������������������>��

� ��	G��	���������
���
���������*��������� ����������������������������
�������� ��� 

� @�������� �������*���������������	�������	����� �����
����� ���
����
!��������������


� ��	�6���	���������������������������������������������  ���
@��������
�?!B�����1@?*�5
� )����������������������>���������1���� �������N:�������������5
� �������������
��������@?*����� ����


� ��	�
� >� �� 1�����)��������	�%��B���5�6�>� 1!��7������ ��/5
� ����1!��7��������!��5
� ��!�������� ���������������)�����*��������

� %��������� ������������  ������
���������/��@?*�����������E<5
� ����EGG���#���#�>#��#�/G��:G��������G���������>G�



— 19— ../preprints/hughes-grey.pdf

�

%������� �����&''( 22

,���������� �������

� �������  <����������������!���������� ������	�����������������
��� ���
 �������
� I� �
�����JK����� ���LM�������
��*��� ���������������CIG� �
M

� ��� ������������������������������
������A�!������
��������� ���
� I� �
�����JK����� ���LM%�����@ ���*��� ���������������CIG� �
M

� ���� ���������������
�!���������� ��
�B����!�������	����������
��	<�������������	<������������������� ������������
� ��	<@?*�
� ,�@
� ����������

� ���� ���������������������������� ������������������������
���������	�������������������������
� ?��
��
� ����� ����EGG�������#�� #��
G>���>

%������� �����&''( 2&

�����������������)������
��������  ��
��

� +����� ����������!��������������������
����������������
�����	������������ ������� �������� ����������
��� ��!�� �����
��������������� ���������
�������
!���������	�������� ������������

� @���<
�����������
������������� �������������!�����
��������������� ������������D ����������
��������	*��
������ �������������������� ���������������

� ?�������������< ���������	�����������!������������
���������.�������
������������
������������� �
����
������!������� �
��������������! �

� ��������< ���������	�������������!������������
���� �>.��������!���������� �������!������� ������
 �����
���
�� ��������
����



— 20— ../preprints/hughes-grey.pdf

�

%������� �����&''( 2-

���� �����

� ��� ������	E������*�����������������������������=

� ��	����������������� �������
��������������������
������!�������������  �����
��


� ��� ������������  ��
��������
����������������	�
���������
������

� A������������������������� ������	�����
�������
���� ������������������ �.���!������	����� ��
�
��� ��������������������� ��� ����  �!�����������������
�����������

� ������� �.������*����������/��� ��F�����.�!���F�����
�� ���������/�����������E<5

%������� �����&''( 2(

O���������P



— 21— ../preprints/moses.pdf

MetaPlot, MetaContour, and Other Collaborations with METAPOST

Brooks Moses
Mechanical Engineering,
Stanford University,
Building 520,
Stanford, CA 94305
U.S.A.
bmoses@stanford.edu

Abstract

Most methods of creating plots in METAPOST work by doing all of their cal-
culations in METAPOST, or by doing all of their calculations in a preprocessing
program. There are advantages to dividing the work more equitably by doing the
mathematical and data-visualization calculations in a preprocessing program and
doing the graphical and layout calculations in METAPOST. The MetaPlot pack-
age provides a standard, flexible, interface for accomplishing such a collaboration
between programs, and includes a general-purpose set of formatting macros that
are applicable to a wide range of plot types. Examples are shown of linear plots
with idiosyncratic annotation and two-dimensional contour plots with lines and
filled contours on a non-cartesian mesh.

1 Introduction

One of the challenges of scientific writing in TEX
(or in LATEX) is producing figures that are of com-
parable quality to the typesetting. These fig-
ures often include plots and graphs that represent
mathematically-intense visualization of large data
files, implying that some form of specialized program
must be used to create them. They also typically
contain labels, notes, and other text that should be
typeset in a manner consistent the rest of the doc-
ument, which requires using TEX’s typesetting en-
gine.

Traditionally, programs that meet these goals
have taken one of two approaches. The first ap-
proach, used by programs such as ePiX[1] and
Gnuplot[2], is to implement the program in a “tradi-
tional” programming language such as C++ or for-
tran, and produce the complete figure as output in
TEX/eepic or METAPOST code, which is then post-
processed. The other approach, taken by META-
POST’s graph package and m3D[3], is to implement
the program directly in METAPOST’s macro lan-
guage.

There are advantages and tradeoffs related to
both of these approaches. Programming in META-
POST allows one to work directly with the language
features such as declarative equations and ability
to measure the size of typeset text, and thus al-
low the user to specify the figure layout in an in-
tuitive, simple, and flexible manner. However, pro-

gramming in a traditional language allows one to
write mathematically-intensive programs that use
floating-point numbers and can be compiled rather
than run slowly through an interpreter; in addition,
it may allow one to take advantage of existing visu-
alization libraries, or to provide an interactive user
interface.

This paper describes an intermediate approach,
which combines benefits from METAPOST programs
and programs in more traditional languages. The
initial data processing is done with a program writ-
ten in a traditional language, which produces a
METAPOST output file containing the processed
data in an encapsulated form. This processed data
is then fed into a set of METAPOST formatting
macros, and the scaling, drawing, and annotation
of the plots is all done by user-written commands
within METAPOST.

Creating plots in two steps in this manner has
several advantages: The initial data visualization
can be done in a special-purpose program that uses a
programming language and code libraries intended
for substantial computations, without the need to
implement more than a very simple output routine;
the METAPOST macros for formatting plots and ar-
ranging them within a figure are largely independent
of the details of the plots they are working with,
and can be written in a generic manner suitable for
widespread distribution; and the layout of any given

Preprint: Proceedings of PracticalTEX2004 July 1, 2004 12:21 1



— 22— ../preprints/moses.pdf

Brooks Moses

z

y
θ

Figure 1: A capillary surface on a liquid touching
a solid wall, after Batchelor [4].

figure can be done using the same processes as for a
native-METAPOST drawing.

2 A Simple Example

Consider, by way of example, a plot of the shape
of a meniscus formed by a liquid surface meeting a
solid wall as shown in Figure 1. The surface curve is
given by a somewhat complicated expression involv-
ing inverse hyperbolic cosines,1 and is representative
of calculations that would be easier to do with a tra-
ditional programming language.

The C++ program to produce this curve in a
METAPOST format is straightforward. The most
complicated part is the function to generate a string
containing a METAPOST representation of a point,
which we accomplish using the <sstream> standard
library.

string mpoint(double x, double y) {
ostringstream pointstring;

pointstring.setf(ios base::fixed,

ios base::floatfield);

pointstring.precision(5);

pointstring << ’(’ << x << ’,’ << y << ’)’;

return pointstring.str();

}

The setf and precision commands set the numeric
format for the stream (fixed-precision, five decimal
places), and then the coordinates are fed into the
stringstream with the appropriate punctuation, pro-
ducing a result like (0.01556,0.75006).

Given this and a capillary() function that com-
putes the equation for the surface, creating the
METAPOST command for the curve is simply a mat-
ter of looping through the points and dumping them
to the standard output, with appropriate text before

1 For those who are curious, the equation (from [4]) is

y

d
= cosh−1 2d

z
− cosh−1 2d

h
+

(
4−

h2

d2

) 1
2

−
(

4−
z2

d2

) 1
2

,

where h2 = 2d2(1 − sin θ) is the height of the meniscus, θ is
the contact angle, and d is a scaling parameter related to the
surface tension and liquid density.

and after the loop to define the picture variable and
close the curve into a cyclic path.

int main() {
double theta = pi/4.0;

double d = 1.0;

double h = sqrt(2.0 ∗ d∗d ∗ (1.0 − sin(theta)));

double y, z;

cout << "picture capillary;\n";

cout << "capillary := nullpicture;\n";

cout << "addto capillary contour "
<< mpoint(0.0, h);

for(int i = 99; i > 2; i-- ) {
z = (i/100.0) ∗ h;

y = capillary(z,h,d);

cout << " .. " << mpoint(y, z);

}
cout << " -- " << mpoint(y, −0.5);

cout << " -- " << mpoint(0.0, −0.5);

cout << " -- cycle;\n";

}

This produces the following METAPOST code
as output:

picture capillary; capillary := nullpicture;

addto capillary contour (0.00000,0.76537)

.. (0.00772,0.75771) .. (0.01556,0.75006)

% [...and so forth...]

.. (3.39322,0.02296) -- (3.39322,-0.50000)

-- (0.00000,-0.50000) -- cycle;

We can then follow this with additional META-
POST commands, which scale it to an appropriate
size for printing on the page and draw axes and la-
bels on it, in order to produce the plot shown in
Figure 1.

beginfig(1)

draw (capillary scaled 0.5in) withcolor

0.85white;

linecap := butt;

pickup pencircle scaled 1pt;

drawarrow (0,−0.25in) -- (0, 0.5in);

label.top(btex $z$ etex,(0, 0.5in));

x1 := (xpart(lrcorner capillary) ∗ 0.5in, 0)

+ (0.1in, 0);

drawarrow (0,0) -- x1;

label.rt(btex $y$ etex, x1);

pickup pencircle scaled 0.25pt;

x2 := ulcorner capillary scaled 0.5in;

draw ((0,0) -- (0.24in, −0.24in)) shifted x2;

label(btex $\theta$ etex,

x2 + (0.07in, −0.18in)));

endfig;

end

2 July 1, 2004 12:21 Preprint: Proceedings of PracticalTEX2004



— 23— ../preprints/moses.pdf

MetaPlot, MetaContour, and Other Collaborations with METAPOST

Although this example produces a perfectly ser-
viceable result, it has some noteworthy drawbacks.
The scale factor of 0.5in does not have a clear re-
lationship to the size of the plot, and producing a
plot of a particular size would require measurement
of the capillary picture and explicit computation of
the scale factor. The locations of the annotations
are likewise determined by explicit measurement, or
by being typed in directly. If we were to change one
of the parameters in the C++ program and re-run it,
many of the values in the METAPOST code would
need to be changed as well.

3 A more general example: the MetaPlot
package

The MetaPlot package is designed to address many
of the shortcomings of the example given in Sec-
tion 2. It provides a consistent way of transferring
the plot commands and associated metadata from
the generating program into METAPOST, and direct
handles for manipulating the plots within META-
POST using its normal idiom of declarative equa-
tions rather than procedural assignments.

To accomplish this in a general manner, we de-
fine two types of METAPOST data structures: plot
objects and plot instances. A plot object is a plot
“in the abstract,” containing paths, filled contours,
and metadata that make up the plot (or a set of
related plots), represented in a manner that is inde-
pendent of the details of how the plot is positioned.
By contrast, a plot instance is a plot “on the page,”
containing parameters for the scaling and position-
ing of a given plot, and a reference to a parent plot
object that gives the actual pictures to be drawn.

A typical preamble for a figure using MetaPlot
will consist of an input metaplot command to load
the MetaPlot macros, an input command to load
the METAPOST file that contains the plot objects
(typically an output file from the preprocessing pro-
gram), and calls to the MetaPlot macros to generate
plot instances from the plot objects.

3.1 The concept of a “plot-object”

Suffix arguments and multi-token variable names
in METAPOST allow us to define data structures
that approximate structures or objects in more tra-
ditional programming. The correspondence is not
exact; in particular, there is no data type associ-
ated with the overall object. METAPOST is simply
passing around a fragment of a variable name and
constructing complete variable names from it, so any
arbitrary element can be added to the class without
changing its type. Thus, the MetaPlot macros can
deal with arbitrary types of plots in a generic man-

ner, so long as they meet a few minimal requirements
that allow them to be scaled and positioned.

The paths and contours that make up a plot
object are not defined in terms of the native data
coordinates, but are rescaled to fit within a unit box
(that is, extending from 0 to 1 in both coordinate
directions), which is treated as the bounding box of
the plot for purposes of scaling and positioning. As
a result, the possibility of coordinates too small or
too large for METAPOST’s fixed-point number rep-
resentation is avoided; in addition, positioning the
plot on the page is a simple matter of scaling by
the final width and height and shifting by the fi-
nal position of the lower-left corner. The original
data scales are stored in four numeric components
that record the values corresponding to the extents
of the bounding box.2

The remaining details of the format can be
shown by rearranging the example from Section 2
into a plot object, as follows. For purposes of later
examples, we will presume that this has been saved
as capillary.mp.

% Definition of capillary plot−object

% Picture components

picture capillary.fplot;

capillary.fplot := nullpicture;

addto capillary.fplot contour (0.00000,1.00000)

.. (0.00227,0.99395) .. (0.00459,0.98790)

% [...and so forth...]

.. (1.00000,0.41329) -- (1.00000, 0.00000)

-- (0.00000, 0.00000) -- cycle;

picture capillary.lplot;

capillary.lplot := nullpicture;

addto capillary.lplot doublepath

(0.00000,1.00000) .. (0.00227,0.99395)

% [...and so forth...]

.. (1.00000,0.41329);

% Required metadata

numeric capillary.xleft; capillary.xleft = 0.0;

numeric capillary.xright;

capillary.xright = 3.39322;

numeric capillary.ybot; capillary.ybot = −0.5;

numeric capillary.ytop; capillary.ytop = 0.76537;

% Other metadata

pair capillary.contactpoint;

capillary.contactpoint = (0.0, 1.0);

numeric capillary.contactangle;

capillary.contactangle = 45.0;

2 Although these variables are represented here as numer-
ics and thus are still vulnerable to under- or overflow, it would
be a simple matter to replace them with string-represented
numbers from the sarith package.

Preprint: Proceedings of PracticalTEX2004 July 1, 2004 12:21 3



— 24— ../preprints/moses.pdf

Brooks Moses

In this case, I have also added an additional
component: this version of capillary contains a path
for the liquid surface line (capillary.lplot), as well as
the original filled contour (now capillary.fplot); the
decision about which of them to draw can be made
later. A plot object can contain any number of these
pictures (even zero), with arbitrary names.

The four required scale variables are capillary.
xleft, .xright, .ybot, and .ytop; these, for purposes of
the MetaPlot macros, must be named thus.

Finally, there are two metadata variables, capil-
lary.contactpoint and capillary.contactangle, which
will be useful in drawing the annotations on this
particular plot. These, again can be present in any
number, and have arbitrary names. Of note is that
.contactpoint is given in the same unit-box coordi-
nate system that the paths and contours are in, al-
lowing it to be positioned by the same macros that
scale and position the picture components.

3.2 Creation of a plot instance

The next step after creating plot objects is manipu-
lating them on the page by means of plot instances.
A plot instance thus needs to contain three sets of
components: coordinates and dimensions of the plot
as shown on the page, a representation of the plot’s
internal scale for use in alignment and producing
axes, and a means of accessing picture components
from its parent plot object. These are created by the
plot instantiate() macro, which is part of MetaPlot;
the version below is simplified somewhat.

% Args: inst is the new plot instance.

% plot object is the parent plot object.

def plot instantiate(suffix inst)

(suffix plot object) =

% Define (unknown) parameters for plot−instance

% location on page

numeric inst.pagewidth, inst.pageheight;

numeric inst.pageleft, inst.pageright,

inst.pagetop, inst.pagebottom;

inst.pageleft + inst.pagewidth = inst.pageright;

inst.pagebottom + inst.pageheight = inst.pagetop;

% Define (known) parameters for plot’s scaling

numeric inst.scaleleft, inst.scaleright,

inst.scaletop, inst.scalebottom;

inst.scaleleft := plot object.xleft;

inst.scaleright := plot object.xright;

inst.scalebottom := plot object.ybottom;

inst.scaletop := plot object.ytop;

% Pointer−function to plot object’s plots, scaled

Figure 2: The capillary surface, in its unadorned
form as plot object elements scaled to 2.0in by
0.75in.

% and positioned.

vardef inst.plot(suffix name) =

plot object.name xscaled inst.pagewidth

yscaled inst.pageheight

shifted (inst.pageleft, inst.pagebottom)

enddef;

enddef;

Note that, immediately after a plot instance is cre-
ated, the page information is unknown and the scale
information is known.

We can now start putting plot objects on the
page in a limited fashion, by assigning known values
to the unknown page information, and then drawing
the scaled picture elements.

input metaplot % MetaPlot macros

input capillary % capillary plot object

plot instantiate(plotA, capillary)

plotA.pageleft = 0.0;

plotA.pagebottom = 0.0;

plotA.pagewidth = 2.0in;

plotA.pageheight = 0.75in;

beginfig(2)

draw plotA.plot(fplot) withcolor 0.85white;

draw plotA.plot(lplot)

withpen pencircle scaled 1pt;

endfig;

end

The result of this is shown in Figure 2. Note that
the color of the filled plot and the line size for the
line plot are specified in the draw command, rather
than in the plot object.

3.3 Manipulation of plot-objects

The bare plot instances are of little use without a
set of macros for manipulating them. We start with
a macro to set the x-axis and y-axis scales to equal
values:

def plot setequalaxes(suffix inst) =

inst.pagewidth = inst.pageheight

∗ ((inst.scaleright − inst.scaleleft)

/ (inst.scaletop − inst.scalebottom));

4 July 1, 2004 12:21 Preprint: Proceedings of PracticalTEX2004



— 25— ../preprints/moses.pdf

MetaPlot, MetaContour, and Other Collaborations with METAPOST

enddef;

This is written so that the page-related variables do
not appear in the denominator of fractions, because
either one (or both) of them may be unknown when
the macro is called, and METAPOST can only solve
linear equations.

There are also a set of macros for converting
between locations expressed in the plot’s coordinates
and locations on the page. For example,

def plot xpageloc(suffix inst)(expr scalex) =

inst.pageleft + (scalex − inst.scaleleft)

∗ (inst.pagewidth

/ (inst.scaleright − inst.scaleleft));

enddef;

The additional macros in this series are ypageloc,
zpageloc (which takes an x and a y coordinate as in-
put, and returns a point), and xscaleloc and yscaleloc
for the reverse direction of converting from a page
location to a plot coordinate.

With these, we have most of what we need to
manipulate plots in an intuitive way. For instance,
consider the figure from Section 2, which can now
(with some small changes) be written in a much
more general way as

input metaplot % MetaPlot macros

input capillary % capillary plot object

plot instantiate(plotB, capillary)

plot setequalaxes(plotB);

plotB.pageleft = 0.0;

plotB.pagebottom = 0.0;

plotB.pageheight = 0.75in;

beginfig(3)

draw plotB.plot(fplot) withcolor 0.85white;

linecap := butt;

pickup pencircle scaled 1pt;

% z−axis (vertical)

z1 = (plotB.pageleft, plotB.pagebottom);

z2 = (plotB.pageleft, plotB.pagetop + 0.1in);

% y−axis (horizontal)

z3 = (plotB.pageleft, plot ypageloc(plotB,0.0));

z4 = (plotB.pageright + 0.1in,

plot ypageloc(plotB,0.0));

drawarrow z1 -- z2;

label.top(btex $z$ etex, z2);

drawarrow z3 -- z4;

label.rt(btex $y$ etex, z4);

pickup pencircle scaled 0.25pt;

% Label for contact angle

z5 = plotB.plot(contactpoint);

z6 = z5 + 0.24in

∗ dir(−90 + capillary.contactangle);

z

y

θ

Figure 3: The capillary surface, with equal y and
z scales, a page height of 0.75in, and appropriate
annotations.

z

y

θ

Figure 4: The capillary surface with parameters
and page height as in Figure 3, but with θ = π/6.

z7 = z5 + 0.18in

∗ dir(−90 + 0.5∗capillary.contactangle);

draw z5 -- z6;

label(btex $\theta$ etex, z7);

endfig;

end

The result of this is shown in Figure 3. We can
demonstrate that this is flexible by adjusting the
value of θ to π/6 rather than π/4, and recreating
the figure using exactly the same files; the result is
shown in Figure 4. Note that changing the contact
angle raises the contact point, making the plot taller
in scale coordinates; thus, it is drawn at a smaller
scale to maintain the 0.75-inch page height.

Having two figures in this way is not the clearest
way to compare the two plots, particularly with the
differences in scale. A better approach is to overlay
them at the same scale, making use of the existence
of the filled plot from one plot object and the line
plot from the other to provide a visually clear result.
A simple way of placing both plots on the same co-
ordinate axes is to require that their (0,0) and (1,1)
points coincide on the page, which we do by means
of the plot zpageloc command; the remainder of the
file is as much in the previous plots, although there
is a little additional code in making certain that the
axis-arrows cover both plots.

input metaplot % MetaPlot macros

input capillary % capillary plot object

input capillary2 % capillaryb plot object

Preprint: Proceedings of PracticalTEX2004 July 1, 2004 12:21 5



— 26— ../preprints/moses.pdf

Brooks Moses

z

y

Figure 5: Two capillary surfaces, as in Figure 3
and Figure 4, showing the difference in the curves
as a result of varying θ.

plot instantiate(plotB, capillary)

plot setequalaxes(plotB);

plotB.pageleft = 0.0;

plotB.pagebottom = 0.0;

plotB.pageheight = 0.75in;

plot instantiate(plotC, capillaryb)

plot zpageloc(plotB, 0.0, 0.0)

= plot zpageloc(plotC, 0.0, 0.0);

plot zpageloc(plotB, 1.0, 1.0)

= plot zpageloc(plotC, 1.0, 1.0);

beginfig(5)

linecap := butt;

pickup pencircle scaled 1pt;

draw plotB.plot(fplot) withcolor 0.85white;

draw plotC.plot(lplot) dashed evenly

withpen pencircle scaled 0.5pt;

% z−axis (vertical)

z1 = (plotB.pageleft, plotB.pagebottom);

x2 = plotB.pageleft;

y2 = max(plotB.pagetop, plotC.pagetop) + 0.1in;

% y−axis (horizontal)

z3 = (plotB.pageleft, plot ypageloc(plotB,0.0));

x4 = max(plotB.pageright, plotC.pageright) + 0.1

in;

y4 = plot ypageloc(plotB,0.0);

drawarrow z1 -- z2;

label.top(btex $z$ etex, z2);

drawarrow z3 -- z4;

label.rt(btex $y$ etex, z4);

endfig;

end

The result of this is shown in Figure 5.

3.4 Creation of axes

Any quantitative graph is meaningless without grid-
labels for the coordinate axes, and so MetaPlot in-
cludes macros to create them. Unlike METAPOST’s
graph.mp package, MetaPlot’s axis-drawing func-
tionality requires that the user specify most of the

details of the formatting, with the benefit of having
a much more flexible implementation.3

The core of the axis-drawing functionality is a
set of macros for creating generic tickmarks, labeled
tickmarks, rows of tickmarks, and so forth, which
are included with MetaPlot in a axes.mp file (and
thus, for consistency, are prefaced with axes rather
than plot ). These are interfaced to the plot object
coordinates by the plot xtickscale and plot ytickscale
macros.

def plot xtickscale (suffix inst )

(expr startpoint, endpoint,

ticklength , tickspace , tickdir ,

tickzero , tickstep , ticklabelformat ) =

axes tickscale (

startpoint , % First endpoint of the tickrow

endpoint, % Second endpoint of the tickrow

ticklength , % Length of tickmarks

tickspace , % Space between tickmark and label

tickdir , % Tickmark direction

plot xscaleloc (inst )(xpart(startpoint )),

% Coordinate value at first endpoint

plot xscaleloc (inst )(xpart(endpoint)),

% Coordinate value at second

endpoint

tickzero , % Coordinate value for a known

% tick location

tickstep , % Coordinate space between ticks

ticklabelformat

% Format for tick labels

% (syntax from format.mp package)

% (use ”” for no tick labels )

)

enddef;

The plot ytickscale definition is nearly identical.
Note that these macros do not actually draw the
tickmarks; they return a picture object, which can
then be explicitly drawn or otherwise manipulated.

A simple way of adding grid labels to the pre-
vious example would be the following:

beginfig(6)

% [...repeat of definitions of fig(4)...]

x5 = plotB.pageleft;

x6 = x4;

y5 = y6 = plotB.pagebottom;

draw plot xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.0, 1.0, "%3f")

3 There is, of course, no need for flexible implementations
and simple interfaces to be mutually exclusive, and functions
for more automated axes may be included in MetaPlot as it
continues to be developed.

6 July 1, 2004 12:21 Preprint: Proceedings of PracticalTEX2004



— 27— ../preprints/moses.pdf

MetaPlot, MetaContour, and Other Collaborations with METAPOST

z

y

0 1 2 3
−0.5

0

0.5

1

Figure 6: A repeat of Figure 5, with simple grid
labels added.

withpen pencircle scaled 0.5pt;

y7 = plotB.pagebottom;

y8 = y2;

x7 = x8 = plotB.pageleft;

draw plot ytickscale(plotB)(z7, z8,

0.08in, 0.06in, left, 0.0, 0.5, "%3f")

withpen pencircle scaled 0.5pt;

endfig;

The results of this are shown in Figure 6. As can
be seen with the x-axis, the tickscale macros do not
include the axis-lines themselves, thus allowing the
user to draw them with a different line style than
that used for the ticks, or to leave them off entirely.

For a more polished look, we can move the grid
ticks a small distance away from the plot, limit the
y-axis range to the region that has meaningful sig-
nificance, and add intermediate ticks without labels.
In addition, this example illustrates the use of the
tickzero parameter to start the labeled x-axis ticks
at 0.5 rather than zero.

beginfig(7)

% [...repeat of definitions of fig(4)...]

x5 = plotB.pageleft;

x6 = x4 − 0.1in;

y5 = y6 = plotB.pagebottom − 0.06in;

draw plot xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.5, 1.0, "%3f")

withpen pencircle scaled 0.5pt;

draw plot xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.0, 1.0, "")

withpen pencircle scaled 0.5pt;

draw plot xtickscale(plotB)(z5, z6,

0.04in, 0.06in, down, 0.0, 0.1, "")

withpen pencircle scaled 0.5pt;

y7 = y4;

y8 = y2 − 0.1in;

x7 = x8 = plotB.pageleft − 0.06in;

draw plot ytickscale(plotB)(z7, z8,

0.08in, 0.06in, left, 0.0, 0.5, "%3f")

z

y

0.5 1.5 2.5

0

0.5

1

Figure 7: A repeat of Figure 5 again, with more
advanced grid labels.

withpen pencircle scaled 0.5pt;

draw plot ytickscale(plotB)(z7, z8,

0.04in, 0.06in, left, 0.0, 0.1, "")

withpen pencircle scaled 0.5pt;

endfig;

This is shown in Figure 7.

3.5 MetaContour: a C++ program for
contour plots

Now that the METAPOST side of the collaboration
has been described in some detail, we return to the
matter of programs that generate plot objects as
output. One of the particular reasons for developing
MetaPlot was to have a way of producing contour
plots, and so the MetaPlot package comes with a
C++ program, MetaContour, for creating them.

The internals of MetaContour are beyond the
scope of this paper, but it does make use of one
additional capability of plot objects that is worth
noting—the ability to include color information.
The plot object is defined with commands like the
following, with color directives.

picture contplotA.LinePlot;

contplotA.LinePlot := nullpicture;

addto contplotA.LinePlot doublepath

(0.48075,0.50000)-- (0.48163,0.50597)

withcolor contourcolor27;

addto contplotA.LinePlot doublepath

(0.48420,0.50000)-- (0.48492,0.50490)

withcolor contourcolor28;

addto contplotA.LinePlot doublepath

(0.45994,0.50000)-- (0.46169,0.51245)

withcolor contourcolor23;

% [...and so forth...]

Then, before the plot object file is read into the main
METAPOST file, the contourcolor array is defined as
desired.

% Contour colors for grayscale scheme

color contourcolor[ ];

Preprint: Proceedings of PracticalTEX2004 July 1, 2004 12:21 7



— 28— ../preprints/moses.pdf

Brooks Moses

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8: Sample graph created by MetaContour
and MetaPlot, showing potential lines for a
combination of a linear gradient and a point
source, plotted on a polar grid.

contourcolor0 = 1white;

contourcolor1 = 0.98white;

% [...and so forth...]

contourcolor30 = 0.4white;

Thus, each line of the contour plot is associated with
a color, and it will be drawn in that color unless it is
overridden by another color directive; for instance,
if we wanted to plot the contour lines all in black,
we could do so simply by specifying:

draw continstA.plot(LinePlot) withcolor black;

Aside from the color contour-line plot just described,
the MetaContour output contains a filled contour
plot, and an image of the mesh of data points. Some
examples of the these are shown in Figure 8 and Fig-
ure 9; although these are much more complex than
the examples from preceding sections, the MetaPlot
commands used to generate them are nearly identi-
cal.

4 Conclusion

The examples that have been shown illustrate only
a small sampling of the capabilities of MetaPlot. In
using METAPOST to generate the figures, it pro-
vides an easily extensible layout capability that is
not limited by the imagination of the package au-
thor. The standardized plot-object interface simpli-
fies the process of writing plot-generation programs,
as they can leave the details of layout and annota-
tion to the MetaPlot postprocessing.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 9: Another sample graph created by
MetaContour and MetaPlot, illustrating a filled
contour-plot style rather than using contour lines.

At the time if this publication, MetaPlot and
MetaContour should be available from CTAN in the
/graphics/metaplot directory. They are still very
much works in progress; I look forward to sugges-
tions and improvements, and hope that others will
find them to be useful tools.

References

[1] Hwang, A., ePiX, http://mathcs.holycross.
edu/~ahwang/current/ePiX.html.

[2] Gnuplot, http://www.gnuplot.info.
[3] Phan, A., m3D, http://www-math.

univ-poitiers.fr/~phan/m3Dplain.html.
[4] Batchelor, G. K., An Introduction to Fluid Dy-

namics, Cambridge University Press, 1967.

8 July 1, 2004 12:21 Preprint: Proceedings of PracticalTEX2004



— 29— ../preprints/richter.pdf

TEX and Scripting Languages

William M. Richter
Texas Life Insurance Company

900 Washington Avenue

Waco, TX 76703

wrichter@texaslife.com

Abstract

TEX is an ASCII text-based markup language. In a scheme of automated docu-
ment preparation TeX provides the foundation. The idea is for programs to do
the work of 1) Generating the TEX code for documents, 2) Running TEX on these
documents, and 3) Post-processing the resulting .dvi files to obtain the finished
documents. Resulting PostScript documents may be further post-processed to
produce files that exploit the output capabilities of various printers. Discussed
herein are the techniques and benefits of such a scheme and how scripting lan-
guages (those languages outside the traditional edit/compile/link/run cycle) can
make the whole process fun and easy.

Introduction

In his web essay, Hackers and Painters[2], Paul Gra-
ham equated the much maligned and misunderstood
activity of “hacking”[6] with the long-esteemed tra-
dition of painting (e.g. portrait painting, as op-
posed to painting of porches, peeling house trim,
and such). He observed that what, today, we ac-
knowledge as masterworks actually evolved during
the artist’s act of creation from a sketch, the details
only gradually being filled in, to a finished, glorious
work of art. He argued that a writer goes through
the same process of refinement, starting from rough
outline or foggy idea until she finds nothing which
needs refining. One reason TEX is appealing to au-
thors is that it makes the process of refinement sec-
ondary. The tasks of creation (thinking is hard work
for most of us) and presentation are orthogonal.
Moreover the presentation task is assumed almost
entirely by TEX1 One can, after all, create a TEX
document that is 90% complete using nothing more
than a tool as simple as NotePad. The implication
being that simple tools equate to less loss of creative
energy.

Graham believes that authors of computer code
(programmers, we often call them) follow the same
nonlinear/circuitous paths of painters and authors.
Seldom, if ever, is software conceived of and imple-
mented by following in a direct route from beginning
to end. Most great software, Graham claims, is the
product of hacking, that the implications for soft-

1 Except when we TEX-nicians decide we know better and
begin to muck around in TEX’s own internal affairs.

ware design are significant, and that what a com-
puter language is and how an author interacts with
it defines the end result. In his view it means...

...a programming language should, above all,
be malleable. A programming language is for
thinking of programs, not for expressing pro-
grams you’ve already thought of. It should
be a pencil, not a pen.

And he continues,

We need a language that lets us scribble and
smudge and smear, not a language where you
have to sit with a teacup of types 2 balanced
on your knee and make polite conversation
with a strict old aunt of a compiler.

A class of programming languages, called “script-
ing languages,” is compatible with Grahams ideas
of what a hacker’s language should be. “Malleable”
in nature, and easy to think with, scripting languages
are similar in spirit to TEX. Indeed, TEX itself may
even be considered as a scripting language for type-
setting.

So, on the one hand, we have TEX, a tool which
lets authors “scribble and smudge and smear” about
with their ideas. On the other hand we have hackers
using scripting languages pursuing similar creative
avenues. The question then arises, “What happens

2 For readers unfamiliar with the art of computer pro-
gramming, the teacup of types to which he is referring will be
addressed in a subsequent section on the attributes of script-
ing languages where static vs. dynamic data types are dis-
cussed.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1001



— 30— ../preprints/richter.pdf

William M. Richter

if these two tools are combined and used in a collab-
orative effort?” We now explore various ways that
TEX and scripting languages can be combined.

Scripting Languages

Before delving into scripting languages proper, let
us review a few of the attributes of traditional com-
puter languages (Paul Graham’s compiler that he
refers to as a strict old aunt).

Traditional Computer Languages

For readers unfamiliar with the art of authoring
computer software (programming computers) here
is what programmers do: they think of a task that
computers can accomplish better than humans (say,
typesetting, for example). Then they sit and think,
potentially at length, about how humans would go
about doing that task, and how to express those
steps algorithmically[3]. After sketching said algo-
rithm, they formalize and codify it in a so-called
“language” that is a sort of half-way meeting ground
between the way humans think and the way comput-
ers operate. This prose, called a program, consists of
two distinct entities: variables, which declare what
it is that the computer will be working on, and im-
perative procedures that define what is to be done
to that data.

Some salient details about these traditional lan-
guages:

1. The variables: Computer hardware can work
with data in different formats: numbers (in-
tegers and real numbers), strings of character
data, etc. Each variable in a program must be
defined in advance of its use to be of a specific
type. In computer science lingo this is called
static typing.

2. The code: Codifying an algorithm in a partic-
ular computer language isn’t really enough for
computer hardware. More work must be done.
This language must be converted by John Gra-
ham’s compiler “aunt” in to “machine code” on
which the computer’s logic circuits can act.

3. But even the work of the compiler-aunt isn’t
enough. The fruit of her strict dominance must
then be linked with the work of other compiler-
aunts to produce a final collection of unread-
able “goo” that only a computer can under-
stand (machine code is unreadable to all but
the most deviant of human brains).

4. Nor is this the end of the story. When an
edited/compiled/linked program (called an ex-
ecutable) has finally been produced and a blaz-
ingly fast 3-Gigahertz CPU is unleashed to ex-

ecute it the first time, the most likely end re-
sult is either an almost immediate decision by
the CPU that its human programmer is ca-
pable only of producing flawed code for it to
execute (it communicates this fact by printing
some rude message like “Segmentation Vio-
lation” and producing a very large file on disk
containing the entire contents of its memory),
or it lapses into a seemingly semi- comatose
state consuming large amounts of CPU time
until its programmer/master gets its attention
with violence of the kill command.

One can see a definite “cycle of pain”: Edit, Com-
pile, Link, Test that must be repeated many times
until a flawless executable is produced. No wonder
computer programming is seen by many an outsider
as a black art to be pursued by only the most in-
trepid and determined souls.

Why Scripting Languages are Better, and
Why More People Should be Hackers

Scripting languages[9] shrink the cycle of pain to
Edit, Test. With the crufty old compiler-aunt gone,
the whole process of software development proceeds
in a more efficient and pleasant manner with atten-
tion shifting to the “creative,” editing part and the
refinement, or testing part. But measure of pain
is not the only attribute that makes scripting lan-
guages attractive. Other import attributes are:

1. Simple syntax,

2. High-level data types,

3. Loosely typed,

4. Standard control structures: if/else, while, for,

5. Interfaces well with host operating system,

6. Plays well with external entities,

7. Embeddable inside more complex systems,

8. Often used as “glue” languages to link multiple
standalone applications and tools together,

9. Requires a runtime interpreter to execute the
script,

10. Compiles to bytecode which executes on a vir-
tual machine,

11. Often ’dynamic’ in nature.

We need to expound on a few of these points:

Simple Syntax If a language is to satisfy Gra-
ham’s requirement that it be a malleable pallet for
the smearing and smudging of ideas, it cannot be
verbose (we don’t want to spend time typing). So
scripting languages (SLs (I’m tired of typing, too))
are succinct in nature; able to convey a significant

1002 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 31— ../preprints/richter.pdf

TEX and Scripting Languages

amount of procedural instruction in as few words as
necessary to maintain clarity of meaning. 3

High-level data types The concept of high-level
data types parallels simple syntax. Just as with the
need to state procedural algorithms in a succinct
fashion, we also need constructs that allow for the
representation of bundles of data that may be ar-
bitrarily complex. We demand more than simple
integer, floating point, and strings of character data
that traditional languages like C and C++ provide.
4 Usually these higher-level data types come in the
form of lists and dictionaries; containers that hold
other data elements and allow for the expression of
relationships between our data.

Loosely Typed / Dynamic Nature Discussion
of esoteric topics like Strongly vs. Loosely Typed
Data and Early vs. Late Binding is more than
can be discussed here.[1] Some understanding is es-
sential, however. Earlier, we pointed out that in
traditional languages, each element of data that a
program will use (its variables) must be defined to
exist as a particular type before it can be used.5

Moreover, as variables are passed between parts of
a program (function calls) the type of each variable
passed must match exactly the type expected by the
called function. This check is done by the strict old
compiler-aunts, and was designed to keep program-
mers from making errors that would only manifest
themselves during the test phase. Strict type check-
ing makes a lot of sense with traditional languages.
However, with dynamic SLs, there is a critical dif-
ference, rooted in the ’dynamicness’ of the language.
SLs never declare variables. Variables are created
or ’allocated’ (on-the-fly, so to speak) when they are
first referenced. When a variable is allocated it is as-
sociated with a particular type that is implied from
the context in which it was initially used. The as-
sociation to type is permanent and observable. So
not only can one ask, “What value does a variable
contain?”, one can also make an inquiry about its
type. For example, the statement A = 123 allocates
a data element called A whose value is 123 and whose
type is integer. The statement B = 3.14 allocates
a variable called B whose value is 3.14 and whose
type is floating point. B was made a variable of type

3 The language APL comes to mind, but perhaps not
THAT succinct. It would be nice for non- hackers to be able
to read and understand our prose, too.

4 Admittedly, C,C++, and other traditional languages
may be made to represent arbitrarily complex data, but those
types are not intrinsic in the language.

5 This isn’t actually true. Data elements may be dynami-
cally allocated in tradition languages, but this introduces ad-
ditional complexity in both the design and debugging steps.

floating point because, contextually, the statement
contained a decimal point in the value implying a
floating point value. Had we desired A to be a float-
ing point variable we would have coded A = 123.0.

This leads to a new world of ways in which to
think about writing code. Functions, now dynamic
in nature, can easily accept an arbitrary number of
arguments, the type of each being one of a range
of possible types. Depending on the number and
type of variables passed to a function, the function
may act in different ways. This goes to the heart
of malleability. In the creative process if we change
our mind and decide to “smudge and smear” in a
different direction, our existing code may not go to
waste. It may be possible just to extend it to con-
form to our new conditions. A world of new and
easier programming languages, the SLs, may also
introduce hacking to a wider audience. Whereas the
“old world” traditional languages excluded or intim-
idated many people for the reasons above (there are,
after all, only so many work hours in a day), SLs
remove the complexity of programming and make
hacking the creative process that it should be.

Finally there is another reason more people
(at least for those who must live with a computer)
should become hackers. While most of us are not
master software developers, developing cathedral-
size financial accounting packages, for example, we
do a surprising amount of “sketch” work (in Gra-
ham’s paradigm) and having skills to write small
programs can be effective.

Real Scripting Languages

A mid-June google-search of the keywords, script
language programming returned approximately 1,-
570,000 hits. Top-ranked pages returned from a
search of keywords scripting

languages reside on the sites:

1. www.php.net

2. www.python.org

3. www.ruby-lang.org

4. www.perl.org

All these websites are homes of import scripting lan-
guages. And there are more SLs; many more... a
veritable zoo of them with names like: Awk, Java-
Script, Lisp, Lua, Perl, PHP, Python, Rebol, Ruby,
Small, Groovy, Tcl. If one were to rank SLs in order
of popularity, the top of that list would include:6

• Perl

• Python

• Tcl/Tk

6 Not listed in order.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1003



— 32— ../preprints/richter.pdf

William M. Richter

• JavaScript

• Unix shell scripts (sh/bash/csh/etc.)

Indeed several of these SLs have outgrown the
group’s scripting origins and have gone on to become
“general purpose programming languages of consid-
erable power.”[5] The only argument for continuing
to use the term “scripting-language” is the lack of a
better term.

A Particular Scripting Language: Python

Chapter one of the official Python Tutorial reads:7

Python is simple to use, but it is a real
programming language, offering much more
structure and support for large programs
than the shell has. On the other hand, it
also offers much more error checking than C,
and, being a very-high-level language, it has
high-level data types built in, such as flex-
ible arrays and dictionaries that would cost
you days to implement efficiently in C. Be-
cause of its more general data types Python
is applicable to a much larger problem do-
main than Awk or even Perl, yet many things
are at least as easy in Python as in those lan-
guages.

The tutorial continues to highlight these import at-
tributes:

1. Has a modular architecture so that code devel-
oped for one application can be reused in other
programs. Likewise, it comes with a large num-
ber of built-in modules for things like file I/O,
system calls, sockets, and many common Inter-
net protocols (FTP, HTTP, SMTP, etc.),

2. It is an interpreted language conforming to the
edit / test cycle discussed previously,

3. Its interpreter can be used interactively, making
it easy to experiment with features of the lan-
guage, or to test code before actually running a
program (see fig. 11),

4. It has a high-level syntax that allows for writing
compact, readable programs,

5. It has high-level data types allowing for expres-
sions of complex data relationships,

6. It is object-oriented[10], but does not require
the use of those object-oriented features, or O-
O programming skills to use the language,

7. Statement grouping is done by indentation in-
stead of begin/end brackets,

8. It is extensible: if you know how to program
in C it is easy to add a new built-in function

7 www.python.org

Figure 1: Application Domains of Python/TEX
Integration.

or module to the interpreter, either to perform
critical operations at maximum speed, or to
link Python programs to libraries that may only
be available in binary form (such as a vendor-
specific graphics library),

9. It is embeddable: You can link the Python in-
terpreter into an application written in C and
use it as an extension or command language for
that application.

An excellent first book for readers unfamiliar with
but interested in learning Python is Mark Lutz’s
Programming Python [4]

Finally, about the name: The tutorial enlight-
ens us:

...the language is named after the BBC show
Monty Python’s Flying Circus and has noth-
ing to do with nasty reptiles. Making refer-
ences to Monty Python skits in documenta-
tion is not only allowed, it is encouraged!

Combining Python and TEX

There are a number of ways in which to combine
TEX and Python to automatically produce docu-
ments. If one considers the amount of “work” nec-
essary to produce a document as fixed, then that
work can be allocated partly to TEX and partly to
Python. One can then imagine a scatter diagram
with X and Y axes that represent, for any possible
scheme, the amount of work allocated to Python and
TEX, respectively. Such a diagram is illustrated in
fig. 1. The diagram shows that there are several

1004 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 33— ../preprints/richter.pdf

TEX and Scripting Languages

“application domains” defined by which component
(TEX or Python) receives the most development ef-
fort, or places the most demands on computing re-
sources. These domains allow us to classify various
approaches to Python/TEX integration.

The Imperative Approach Imagine writing a
Python script that produces a file of TEX code by
executing a series of write statements as in fig. 2
and then runs TEX and dvips on that file. Here the
emphasis is clearly all on the Python script and the
details of how the TEX code is to be produced; we
know TEX will dutifully do it’s job if it is provided
good code. Applications of this nature we call im-
perative, and occupy the lower right region of fig.
1.

Figure 2: Imperative TEX code-writing script.

#!/usr/bin/env python

import sys

import os

f = open(’MyDocument.tex’, ’w’)

f.write(’\\nopagenumbers\n’)

f.write(’This is my first \\TeX\\ document \

produced from a script.\n’)

f.write(’\\vfil\\eject\\bye\n’)

f.close()

os.system(’tex MyDocument.tex’)

os.system(’dvips MyDocument’)

print ’Done.’

This technique is the simplest way to integrate
Python and TEX. 8 and is surprisingly effective.
While the example in fig. 2 is trivial, the imperative
technique can be used in applications where docu-
ments are assembled from a large database of text
“snippets.” Logic in the Python script provides the
“smarts” that determine what snippets to select and
how to arrange them for presentation to TEX. More
logic and scripts of increasing complexity push the
application further to the right on the X-axis in fig.
1.

Using m4 A slight increase in sophistication (but
still remaining near the X-axis of fig. 1, is to em-
ploy the macro processor program, m4. 9 m4[8] is
an elaborate search-and-replace engine for text. For
example, given the text:

Hello, NAME, today is DATE.

8 The other simple extreme would be to prepare an entire
document by hand-editing and then have Python run TEX on
that file. Quite uninteresting.

9 Quoting from the m4 manual page: “The m4 utility
is a macro processor that can be used as a front end to any
language( e.g., C, ratfor, fortran, lex, yacc)...” and now, TEX!

If we present that text to m4 as input with the
following command-line:

m4 -DNAME=Sally -DDATE=’22-June-2004’

the output from m4 would appear as:

Hello, Sally, today is 22-June-2004.

Now we can play the same game as in the im-
perative approach, but with a new wrinkle: tags
can be embedded in our text snippets. Once the
TEX code is assembled, it is preprocessed through
m4 and then presented to TEX. Here are the steps:

1. Assemble TEX code from snippets of text,

2. Gather data for tag-replacement from a data
source,

3. Build m4 command line with -Dname=value ar-
guments for each unique tag in the TEX file,

4. Execute the command just built and save the
output,

5. Present the saved output to TEX.

TEXmerge

We now move away from the X-axis of fig. 1.
The m4 approach introduced an important

concept: the idea of template files. There exist a
large class of applications whose function is to pro-
duce, for lack of a better term, “form letters.” 10

The m4 technique of the previous section lends itself
precisely to this merging application: Build a .tex

file complete with tag names, then repeat steps 2-5
above until end of data. The end result will be a
stack of form letters ready to print and drop in the
mail.

While m4 is an efficient macro-replacement en-
gine, we know of another engine that eclipses it:
TEX. Consider the TEX document in fig. 3.

Figure 3: form.tex: A merge-ready TEX file.

\nopagenumbers

This is my first \TeX\ document produced

from a script.

\par

Hello, \NAME, today is \DATE.

\vfil\eject

Alone, this file will result in undefined macro refer-
ences because the macros \NAME and \DATE are not
defined. However, when used in conjunction with
the Python script in fig. 4, it works beautifully.

10 Every technological advance seems to bring with it a
raft of nastiness. With email comes spam, with computer-
aided printing comes the dreaded form letter. At least with
TEXmerge, they can be beautiful form letters.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1005



— 34— ../preprints/richter.pdf

William M. Richter

Figure 4: Imperative TEX code-writing script
relying on TEX’s macro replacement facility.

#!/usr/bin/env python

import sys

import os

f = open(’temp.tex’, ’w’)

f.write(’\\def\\NAME{Sally}\n’)

f.write(’\\def\\DATE{22-June-2004}\n’)

f.write(’\\input form.tex\n’)

f.write(’\\bye\n’)

f.close()

os.system(’tex temp.tex’)

os.system(’dvips temp’)

print ’Done.’

Scripts like 4 can be represented schematically
as in fig. 5. It is important to note that in this
scheme we are dealing with two (or more) .tex files:
1) The template file(s) containing the structure of
our form letter(s) (more than a single type of form
letter can be produced in a single run simply by
inputting different template files), and have tags
where merge variables are to be inserted, and 2) the
temporary file which defines macros for the merge
variables and has input commands to bring in the
templates. Inside the temporary .tex file there can
be many occurrences of the def.../input... lines; one
occurrence for each letter to be produced.

TEXmerge API The technique illustrated in fig.
4 works well. Data for the merge variables can be
arbitrarily long, for example, and TEX will ’do the
right thing’ and wrap the merged text into our form,
etc. But there are problems:

1. The biggest problem is data containing tokens
having special meaning to TEX. If our merge
data contains $,%,&, etc., we have a problem,

2. It’s rather tedious to read the script, and we
find ourselves repeatedly re-implementing this
tedious code for every application.

The whole process of opening the temporary .tex

file, protecting sensitive tokens, preparing the \def

lines for the merge variables, doing the \input...,
executing TEX and the DVI backend need to be for-
malized inside an application programming interface
(API).

We call that API “TEXmerge”. It was first
presented[7] as a C-language API with a Python ex-
tension wrapper module. Since that time, the API
has been re-written in pure Python and is now pre-
sented (see appendix A for full description of the
API).

Figure 5: Schematic overview of document
production via the TEXmerge API.

First, an example using the TeXmerge API (the
TEXmerge module): Fig. 6 re-implements the script
presented in fig. 4 using the module-level interface:

Figure 6: A simple Python script using the
TEXmerge module-level API functions.

#!/usr/bin/env python

import sys

import os

import TeXmerge

f = TeXmerge.openOutput(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

TeXmerge.merge(’form.tex’, mergeVars)

TeXmerge.closeOutput(f)

TeXmerge.process(’temp.tex’, ’dvips’)

print ’Done.’

Note the following:

1. Access to the TEXmerge module is provided via
the import statement: import TeXmerge,

2. The native Python open/close calls have been
replaced with calls to TeXmerge.openOutput()

and TeXmerge.closeOutput(),

1006 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 35— ../preprints/richter.pdf

TEX and Scripting Languages

3. Merge variables are formally presented to the
API as a Python dictionary object.

4. The merge() call takes care of protecting sen-
sitive tokens in the merge data that would oth-
erwise confuse TEX,

5. The os.system() calls have been replaced with
TeXmerge.process().

Finally, Python is an object-oriented language,
so the TEXmerge module also offers a TEXmerge
class. Fig. 7 re-implements fig. 6 using the object-
oriented interface:

Figure 7: A simple Python script using the
TEXmerge object-oriented interface.

#!/usr/bin/env python

import sys

import os

import TeXmerge

mergeObj = TeXmerge.TeXmerge(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

mergeObj.merge(’form.tex’, mergeVars)

mergeObj.process(’dvips’)

print ’Done.’

Going Further with Macros

Now it is time to move up the Y-axis of fig. 1, focus
attention on the TEX domain and investigate what
benefits can be gained by writing specialized macros
to enhance integration with TEXmerge.

Do-Nothing Macros The first class of macros to
be considered are the “do-nothing” macros. These
macros, from TEX’s view, evaluate to \relax. They
exist in a TEXmerge template file to communicate
information to a Python script which scans the tem-
plate file. A more traditional method used to com-
municate information to an external entity would
be to embed that information in comment strings
within the file. Writing first-class macros, however,
seems to produce a cleaner, readable file, and is more
flexible since a do-nothing macro could, in the fu-
ture, be turned into a “do-something” macro.

Classic Merge Variable Declarations Do-
nothing macros were introduced in the first release
of TEXmerge, with the \texmergevar macro. Just
looking at a merge-ready template .tex file, it is not
immediately clear what the names of all the merge
variables are. \texmergevar allows the author of
the template file to explicitly state the names of all
merge variables that will be referenced in the file by
coding:

\texmergevar name
for each merge variable. The TEXmerge module
has a module-level method, getNames, which scans
a passed .tex file name (and recursively any in-
cluded files) and returns a list of all declared variable
names. Python scripts can inspect TEX template
files and determine the names of all declared merge
variables.

Extended Merge Variable Declarations
Several year’s use of the TEXmerge API as shown
that document-producing applications could be
made more robust if a template .tex file could spec-
ify precisely what values a merge variable should
contain. The need for merge variables to take on
only one value from a small set of possible values
stems from the use of conditional TEX code, via the
\ifx control sequence, etc. Conditional typesetting
is powerful because it allows documents to become
intelligent. A single .tex source file can produce
entirely different finished documents by testing the
value of merge variable(s) and typesetting text ac-
cordingly.

A life insurance company, for example, falls un-
der the jurisdiction of every state in which it is li-
censed to conduct business. Often, a document, a
“sales practice guide” say, must contain language
as mandated by a particular state. Sales practice
guides for forty different states may have 90% of
their language in common, but each may also have
unique state-specific language that none of the oth-
ers contains. Having a single, intelligent source
file, salesPracticeGuide.tex, lowers the cost of
change management substantially; changes made to
shared text need only be made once.

The do-nothing macro \texmergevardef de-
fines merge variables with extended attributes like
this:

\texmergevardef[attrName=attrValue,...]

Attributes of the merge variables that can be speci-
fied are:

• name= the name of the merge field,

• type= the type of merge field. The intended
use of this attribute is to convey a recommended
style of data entry element for graphical (GUI)
applications. Valid types are:

– entry: a simple text entry field,

– text: a multi-line text entry field,

– toggle: a toggle button field,

– optionmenu: a drop-down option menu of
choices,

– radiobutton: a set of mutually-exclusive
toggle buttons,

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1007



— 36— ../preprints/richter.pdf

William M. Richter

• values= a list of valid values for the variable,
separated by |’s

• labels= a list of alternate labels that should be
associated with the values attribute for display
purposes. Used with the toggle, optionmenu,
and radiobutton field types.

• descr= a description of the merge variable.

The TEXmerge module-level function,
getExtendedNames, extracts extended merge
variable definitions and returns them in a dic-
tionary (keyed by the name attribute’s value) of
field attribute dictionaries. 11 Fig. 8 shows an
example .tex file with extended merge variable
definitions. Fig. 9 shows the return value from
applying getExtendedNames on that file.

Named Text Blocks Another class of appli-
cations have the need to share identical text between
two markup languages: TEX and HTML. Here it is
language elements within the document that need
to be identical (for legal reasons, say) and not the
structure of the document that is constant between
the two presentation platforms. Indeed, structure
of the printed TEX document may be substantially
more complex than its briefer, light-weight, HTML
cousin. How can the common text be shared be-
tween the markup languages?

One way is to make the TEX document “own”
the text. It declares, via a set of macros, where the
common blocks of text begin and end. We refer to
these blocks as named text blocks. The demarcation
macros look like this:

• \StartNamedTextBlock[attName=value,..]

Text block attributes are as follows:

– name= Name of the text block,

– seq=Integer Several sections of text can
be assigned the same name, but with
unique sequence numbers. The extracted
text will be a concatenation of like-named
blocks, order by sequence number,

– subkey=subvalue: See the text for full dis-
cussion.

• \StopNamedTextBlock

Once text boundaries have been marked and
named with these macros, the text can be ex-
tracted and used by the HTML producing part of
the application. The TEXmerge module provides a
module-level function, getNamedTextBlocks, to ex-
tract the named text blocks, and two helper classes
TextBlock and TextBlockManager to make access-
ing the extracted blocks simpler.

11 getExtendedNames() also detects occurrences of
texmergevar macros and treats them as extended merge
fields having an attribute type=entry.

We explain the functional use of named text
blocks by way of the example file in fig. 10 and the
interactive Python interpreter session shown in fig.
11. 12

Note the following:

1. The block demarcation macros are essentially
invisible to TEX, and have no effect on typeset-
ting,

2. TextBlockManager class is used to extract the
named blocks. One simply passes a pathname
to the .tex file containing named text blocks
in order to instantiate a TextBlockManager ob-
ject,

3. Names of all the text blocks in the file are re-
trieved by calling the manager object’s get-

NamedTextBlocks method,

4. Individually named text blocks are retrieved via
the manager object’s getTextBlockmethod, or
simply by indexing the manager using the name
of a text block as the index key (as was done
for block C1 in fig. 11. Either operation will
return a TextBlock object.

5. Access to the text of a TextBlock object is via
its getText method.

Do-Something Macros
Hybrid Script-TEX-Script Scheme:

A Case Study If we have an application
where a substantial amount of the document’s
content may vary, the merge paradigm of TEXmerge
begins to break down under the complexity of so
many variables. This is especially true of variable
tabular data.

Example: The annotated page shown in fig. 12
is a rate sheet of life insurance premiums. As the
figure shows, there is more variable data than static
text on the page. The rate sheet, however, is only
one page of a twenty page document. Other pages
in its parent document also have variable data, and
state-specific language, as well. Overall the docu-
ment’s nature fits well in the TEXmerge scheme; the
rate sheet page is the “trouble maker.” Another im-
portant consideration: the rate sheet needs to be
embeddable in many other documents.

One desires a TEX macro as in fig. 13 that,
when executed, magically produces a finished rate
sheet. 13

12 About the interactive interpreter session: >>> is the
interpreter’s prompt. Text appearing after that prompt was
entered by the user. Python’s response appears on the line
immediately below the prompt input line.

13 Writing parameter based macros such as these is effort-
less with the aid of support macros found in Hans Hagen’s
ConTEXt macro package.

1008 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 37— ../preprints/richter.pdf

TEX and Scripting Languages

Figure 8: A sampling of extended merge variable declarations.

\texmergevardef[name=ISTATE, type=optionmenu,values=TX|OK|AZ|CA|OR|WA,descr=Issuing state]

\texmergevardef[name=ONAME,type=entry,descr=Owner name’]

\texmergevardef[name=APPTYPE,type=radiobutton,values=1|2|3,labels=Employee|Spouse|Child,

descr=Applicant type]

Figure 9: Result of getExtendedNames(): a Python dictionary of field-attribute dictionaries

{’ISTATE’: {’name’: ’ISTATE’, ’type’: ’optionmenu’, ’values’: (’TX’, ’OK’, ’AZ’, ’CA’, ’OR’, ’WA’),

’descr’ : ’Issuing state’}, ’APPTYPE’: {’name’: ’APPTYPE’, ’type’: ’radiobutton’,’values’:

(’1’, ’2’, ’3’), ’labels’: (’Employee’, ’Spouse’, ’Child’), ’descr’: ’Applicant type’}, ’ONAME: {

’name’: ’ONAME’, ’type’: ’entry’, ’descr’: ’Owner name’}}

Figure 12: Complex document produced by
Hybrid Script-TEX-Script scheme.

Figure 13: Rate sheet macro.

\MakeRateSheet[uwclass=express,

mode=semi-monthly,

groupsize=150,

formno=test,

waiver=yes,

adb=yes

]

\MakeRateSheet[...] is definitely a do-some-
thing macro. The trick is to do as little work as pos-
sible in TEX and most of the something in a Python
script. The work for TEX in this case is in two parts:

1. Gather macro arguments and marshal them
into a Python script command-line, then exe-
cute the command with \write18,

2. Input and typeset the TEX code produced by
the Python script.

We call schemes such as these hybrid or Script-
TEX-Script schemes. The job of the secondary script
(the one executed by TEX via \write18) is to act on
arguments received from TEX, or from some other
external source, do whatever calculations, etc. and
output TEX-code. The whole scheme is represented
in fig. 14. Since the secondary script is unbounded
by the complexity and amount of TEX code that
may be returned, hybrid schemes are the ultimate
in flexibility.

Document Template Macros Document
template macros fall into the class of do-something
macros. Another case study will serve as a de-
scription of their functionality. TEXmerge is in
widespread use at Texas Life having applications in
almost every major department, from Marketing, to
New Business, to Policy Owner Service, to Com-
puting Services. Several years ago, a graphic artist

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1009



— 38— ../preprints/richter.pdf

William M. Richter

Figure 10: TEX file test.tex containing four named text blocks, B1, B2, C1, D1.

This is a test document containing \textit{named text blocks.}

\StartNamedTextBlock[name=B1]

This is the first block.

\StopNamedTextBlock

Now for a second block:

\StartNamedTextBlock[name=B2]

Second block

\StopNamedTextBlock

Now for a series of sequenced blocks...

\line{\hbox{\StartNamedTextBlock[name=C1,seq=1]C1.Left\StopNamedTextBlock\hfil}

\hbox{\hfil\StartNamedTextBlock[name=C1,seq=2]C1.Right\StopNamedTextBlock}

}

Finally, a named text block having a subkey:

\StartNamedTextBlock[name=D1,istate=TX]

This text is specific to the state of Texas.

\StopNamedTextBlock

Figure 14: Schematic overview of document
production via the hybrid technique.

was hired to develop a new ‘look-and-feel’ for all
printed material disseminated from the company. A
new graphics standards manual was written and all
parts of the company were informed that compli-
ance with the new standard was mandatory by a set
date. This directly affected users of TEXmerge. The
Policy Owner Service department, for example, had
600+ TEXmerge-based form letters used daily for
corresponding with clients. Compounding the prob-
lem were the non-standard fonts and a peculiar for-
mat to which standard letterhead should conform: a
wide left margin, except for various items that were
to remain left hanging, right-justified. How could
over 600 documents be quickly converted to this new
format? Language inside the documents could re-
main unaltered; only the structure was changing.

Serendipitous earlier decisions, made when orig-
inally planning and setting up the TEXmerge let-
ters made conversion to the new graphics standard
straightforward. The serendipity was in a decision
to separate the text for the body of each letter into
its own .tex file. That being the case, all that
was needed was a mechanism to enforce policy of
the graphics standard; a way to automatically pro-
duce the required layout of the document. This we
do with so-called template macros. Fig. 15 shows
the structure enforced by the \StartClientLetter

macro. Based on a plug-and-socket model, it relies
heavily on macro parameters (almost all having de-
fault values), as can be seen in the figure. Template
macros classify parameters into three categories:

• Simple parameters - parameter names begin-
ning with mp,

• Data sockets - parameter names beginning with
sd,

1010 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 39— ../preprints/richter.pdf

TEX and Scripting Languages

Figure 15: Template view for the client-letter
macro.

• Slots - parameter names beginning with sl14.

The mpSkip... parameters (gray strips shown
in fig. 15) can be specified to alter whitespace.
Merge variable data is connected to a template us-
ing a plug-and-socket model. Merge variable names
are termed plugs and the sd... macro parameters
are termed sockets. One plugs a variable to partic-
ular position on the letter by equating the name of
the plug with the desired socket name. The socket
names are shown on the template letter in fig. 15
with default plug values in parenthesis. Finally, slots
are macro parameters that can accept arbirary TEX
code as arguments.

The body of the letter can be supplied to the
template macro in one of two ways:

1. Put the text of the body into a separate .tex

file and pass the name of the file in the sfBODY

parameter,

2. Code text of the body immediately after in-
voking the \StartClientLetter. In this case
the letter must be finished with the \Finish-

ClientLetter macro.

14 There are two other prefixes: ss - related to insertion of
digitized versions of handwriting signatures, and sf - related
to input files.

Figure 16: Sample letter produced using the
client-letter macro.

Finally, a sample letter produced from the \Start-

ClientLetter macro is shown in fig. 16.

Building GUI Applications with TEXmerge

So far, discussions of TEXmerge have tended more
to batch-style applications. The API is also ef-
fective in building GUI applications. The mod-
ule’s getNames and getExtendedNames functions
provide useful metadata about merge fields, which
can be used to construct user interfaces. Python
is equally effective in programming GUI interfaces.
The “Gimp Toolkit”15 is especially easy to access
from Python and provides a robust set of GUI inter-
face components, including Pixmap buffers which,
along with GhostScript 16, can be used to effectively
render PostScript.

TEXmerge - the Application The TEXmerge
API was originally developed for use in an inter-
active application, also called TEXmerge, for pro-
duction of form letters. Originally written in C and
based on the Motif toolkit, the current version is
written in pure Python and is based on GTK+-2.4.

15 www.gtk.org and www.pygtk.org.
16 www.ghostscript.com

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1011



— 40— ../preprints/richter.pdf

William M. Richter

The application is arranged around categories of cor-
respondence (collections of form letters, grouped by
activity. Each activity category’s letters are stored
in a category subdirectory.

A sample TEXmerge main application window
is shown in fig. 17. A category frame consists of
the document selection window on the left, and a
set of merge variable data entry fields on the right.
A single set of input fields (a record), generates a
single copy of the associated letter. Control buttons
exist along the bottom to accomplish tasks such as
adding new records, removing records, printing, and
saving. A built in PostScript viewer (not visible) is
also provided to view the letter before printing or
saving.

TEXtool As long as we’re writing GUI applica-
tions, why not write one that aids in the develop-
ment of TEXmerge documents? TEXtool is an in-
tegrated development utility for editing, “TEX’ing,”
and viewing TEXmerge documents. Figs. 18, 19,
and 20 are three successive views of the application,
each view showing one of the major notebook tab
pages revealed: Document, Editor, and Preferences.
Applications of this style exist that are more effec-
tive, in general, however, TEXtool is unique because
it is oriented especially for TEXmerge documents.
It also shows the feasibility of integrating TEX into
a non-trivial GUI application written in a script-
ing language. As can been gleaned from the fig-
ures, the Document tab displays the input frame of
TEXmerge variables as they will appear in the nor-
mal TEXmerge application. The edit/test cycle can
be quickly done all inside a single application win-
dow.

The Big Picture at Texas Life

As mentioned earlier on in the the case studies,
TEXmerge is in widespread use at Texas Life. Fig.
21 is reproduced from [7]. It is a convincing illus-
tration of how effective TEX can be as a document
production engine, especially if combined with the
right scripting language (Python). Most of the ovals
in the figure use TEXmerge in some fashion. An
important lesson learned is that once a facility like
TEXmerge is available, the movement of documents
between systems becomes much simpler. Only data
required to build documents need be communicated
along the arrows in the figure. Documents are only
built and rendered when necessary for viewing or
printing.

Conclusion

Because TEX is an ASCII text markup language,
it is effective to write computer codes to process
the TEX code for purposes other than typesetting.
Scripting languages simplify writing these extraction
codes. Embedding metadata into TEX files via sim-
ple macros allows the TEX author to communicate
information to other computer applications. And, fi-
nally, using TEX alongside scripting languages in an
automated document production environment pro-
vides flexibility and robustness to meet almost any
demand imaginable. “Hacking” with scripting lan-
guages has never been simpler. Now is the time for
more people to become script literate; the author
encourages those with little or no programming ex-
perience to mix up a scripting language with their
favorite TEX macro package.

References

[1] Bruce Eckel. Strong typing vs. strong test-
ing. http://www.mindview.net/WebLog/log-
0025, 2003.

[2] Paul Graham. Hackers and painters.
http://www.paulgraham.com/hp.html, 2004.

[3] Donald E. Knuth. The Art of Computer Pro-
gramming, volume 1. Addison-Wesley, third
edition, 1997.

[4] Mark Lutz. Python Programming. O’Reilly and
Associates, Inc., first edition, 1996.

[5] Eric S. Raymond. The
art of unix programming.
http://www.faqs.org/doc/artu/ch14s01.html,
2003.

[6] Eric S. Raymond. The meaning of ’hack’.
http://www.catb.org/ esr/jargon/html/meaning-
of-hack.html, 2003.

[7] William M. Richter. Integrating TEX into a
document imaging system. TUGBoat, 22(3),
2001.

[8] René Seindal. Gnu m4 - development site.
http://www.seindal.dk/rene/gnu, 2003.

[9] Unknown. Technical defi-
nition of scripting language.
http://c2.com/cgi/wiki?ScriptingLanguage,
2003.

[10] Webopedia. What is ob-
ject oriented programming?
http://webopedia.com/TERM/O/object-
oriented-programming-OOP.html, 2003.

1012 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 41— ../preprints/richter.pdf

TEX and Scripting Languages

Figure 11: Interactive Python interpreter session. Working with named text blocks.

[hawkeye2:~/sftug] williamr% python

Python 2.3.2 (#1, Nov 6 2003, 13:18:07)

[GCC 2.95.2 19991024 (release)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import TeXmerge

>>> o = TeXmerge.TextBlockManager(’test.tex’)

>>> o

<TeXmerge.TextBlockManager instance at 0x750648>

>>> o.getBlockNames()

[’C1’, ’B1’, ’B2’, ’D1’]

>>> b1 = o.getBlock(’B1’)

>>> b1

<TeXmerge.TextBlock instance at 0x72b5d0>

>>> b1.getText()

’This is the first block.’

>>> c1 = o[’C1’]

>>> c1.getTextSegments()

{1: ’C1.Left’, 2: ’C1.Right’}

>>> c1.getText()

’C1.Left C1.Right’

>>> d1 = o[’D1’]

>>> d1.getSubkeys()

[’istate’]

>>> d1.getSubkeyValues(’istate’)

[’TX’]

>>> d1.getText(’istate’,’TX’)

’This text is specific to the state of Texas.’

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1013



— 42— ../preprints/richter.pdf

William M. Richter

Figure 17: The TEXmerge application main window.

Figure 18: The textool app. with the Documents tab visible.

1014 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 43— ../preprints/richter.pdf

TEX and Scripting Languages

Figure 19: The textool app. with the Editor tab visible.

Figure 20: The textool app. with the Preferences tab visible.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1015



— 44— ../preprints/richter.pdf

William M. Richter

Policy
Print

Policy
Admin.
System

Document
Imaging
System

GQCSTeXmerge

Custom
Applications

Bulk Print
Producers

Imaging
Archiver

Scanner
Scan

Application

Agent
Merge

External
World

DIS
Adapter

Web
Server

Laser
Printers

Print
Manager

Figure 21: The big picture of TEXmerge at Texas Life.

1016 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 45— ../preprints/richter.pdf

TEX and Scripting Languages

Appendix A Python TEXmerge API

A Note About How TEXmerge Runs TEX:
Because there are a significant number of macro packages available as TEX formats, TEXmerge needs to

be adaptable, both to what format to use, and also to the way in which the TEX interpreter is started. To
allow for this flexibility, many of the functions below take two arguments, format and strategy. format

specifies what TEX format to use and strategy specifies the way in which TEX will be started. In many
cases, these arguments are optional and appropriate values will be derived, either from the context of use
or from the environment variable, “TEXMFORMAT.” The environment variable has two different forms:

1. TEXMFORMAT=format

2. TEXMFORMAT=@strategy:format

The second form allows for specification of both the strategy and format. Currently strategy can be set
to one of: context, latex 17 , or plain. The table below maps strategies to command-lines:

strategy command-line

context texexec –format format –once %s
latex latex %s
plain tex &format %s

Module-level Functions

• getNames(pathname) −> [name1, name2,...]

Recursively scans the passed pathname and returns a list of merge variable names decleared by
instances of the \texmergevar macro.

• getExtendedNames(pathname)−> {attrDict1, attrDict2,...}

Recursively scans the passed pathname and returns dictionary of merge variable field attribute dic-
tionaries. The merge field attribute dictionaries are created from instances of the \texmergevardef

macro which defines merge variables with extended attributes like this:

\texmergevardef[attrName=attrValue,...]

Attributes of the merge variables that can be specified are:

– name= the name of the merge field,

– type= the type of merge field. The intended use of this attribute is to convey a recommended
style of data entry element for graphical (GUI) applications. Valid types are:

∗ entry: a simple text entry field,

∗ text: a multi-line text entry field,

∗ toggle: a toggle button field,

∗ optionmenu: a drop-down option menu of choices,

∗ radiobutton: a set of mutually-exclusive toggle buttons

– values= a list of valid values for the variable, separated by |’s

– labels= a list of alternate labels that should be associated with the values attribute for display
purposes. Used with the toggle, optionmenu, and radiobutton field types.

– descr= a description of the merge variable.

• hashNames(fieldAttributesDict)−> StringObject containing hex representation of MD5 hash

Computes a 64-bit MD5 hash of passed field attributes dictionary and returns it as a string object
of hexadecimal characters.

• getInputFiles(pathname)−> [pathname1, pathname2,...]

Recursively scans the passed pathname for occurrences of \input control sequences and returns a list
of pathnames.

• openOutput(pathnameOrFileObject, preambleCode=None, formatIn=None, strategyIn=None)

−> FileObject

17 For the latex strategy, format=latex is always assumed.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1017



— 46— ../preprints/richter.pdf

William M. Richter

Prepares a temporary work file for merge operations. The first argument can be either a string object
or a file object. In the case of a string object, it is interpreted as the pathname to a file where the
temporary merge file should be created. If it exists, it will be removed and re-created. In the case of
a file object, the argument is assumed to be a previously opened file. Any write operations issued by
TEXmerge will be executed against the passed file object. preambleCode, if specified will be written at
the beginning of the file in place of TEXmerge’s normal preamble code. formatIn is currently unused.
strategyIn determines the default form of preamble code to write. Valid values are context, latex,
or plain.

• closeOutput(fileObject, postambleCode=None, formatIn=None, strategyIn=None,

keepOpen=False)

Completes preparation of a temporary work merge file for processing. postambleCode is written to the
file if passed, otherwise an appropriate postamble will be supplied depending on the values of formatIn
and strategyIn, if passed, or a default postamble will be written. The passed fileObject will be closed
unless keepOpen is passed as True.

• merge(targetPathname, mergeVariableDict, fileObject, options=0)−> None

Encapsulates the merge variables passed in mergeVariableDict for use in targetPathname. The merge
variables are written to the merge work file as \def control sequences, and targetPathname is referenced
via an \input targetPathname.

Several merge options can be passed in the options argument:

1. TXM FRAMEVARS - draw boxes around all merged variables,

2. TXM DUPLEX - assume the output will be printed on a duplexing device and insert \eject macros
between merge invocations, when appropriate, to ensure that each merge invocation starts on the
front side of the printed sheet.

• process(pathname, driverCommand, format, strategy)−> Integer Object

Runs the TEX interpreter and a DVI backend against the merge work file pathname. The command
used to run the TEX interpreter is derived from the format and strategy parameters. Strategy may be
one of context, latex, or plain. If strategy is set to context then the environment variable TEXENGINE
is used as the TEX processor, if set, or texexec otherwise. The DVI command string passed in driver-
Command is used to run the DVI backend. It can contain a single “%s” which will be replaced with
pathname. If no “%s” is present, pathname will be appended to driverCommand.

Returns the exit status of TEX interpreter or of the DVI backend command.

• processWithExtendedOutput(pathname, driverCommand, format, strategy)−>

(texstderr, texstdout, texlog, dvistderr, dvistdout)

Works identically as with process above, except for error handling. Failure of the TEX inter-
preter raises the exception, TeXException. Failure of the DVI backend command raises the exception
DviException. Successful completion of both the TEX interpreter and the DVI backend returns a tuple
as above, providing complete diagnostics of the run.

• getNamedTextBlocks(pathname)−> {block1:{block1AttrDict}, ...}

Recursively scans pathname for occurrences of named text blocks as demarked by the pair of macros
\StartNamedTextBlock[attName=value,..] and \EndNamedTextBlock.

Text block attributes are as follows:

• name= Name of the text block,

• seq=Integer Several sections of text can be assigned the same name, but with unique sequence
numbers. The extracted text will be a concatenation of like-named blocks, ordered by sequence
number,

• subkey=subvalue Subkey name/value pairs provide a way to declare multiple blocks with the
same name. Assigning differing name/value pairs makes each like-named block unique.

The class TextBlockManager can be used as an alternative to this function to provide a simple frontend
to this function’s return value.

1018 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 47— ../preprints/richter.pdf

TEX and Scripting Languages

TeXmerge Class The TEXmerge class provides an object-oriented interface to the module level functions
shown above.

Constructor: TeXmerge(mergeTargetPathname=None, workPathname=None, mergeOptions=0,

preambleCode=None, postambleCode=None, texmformat=None, strategy=None, keepIntermediate-

Files=False)

Methods:

• setMergeTargetPathname(pathname)−> None

Sets the default merge target pathname that will be used for subsequent merge operations.

• setMergeOptions(self, mergeOptions)−> None

Sets the default merge options that will be used for future merge operations.

• setFormatAndStrategy(self, texmformat, strategy=None)−> None

Sets the default format and strategy to be used for future merge operations.

• probeMergeTargetAndSetFormat()−> None

Scans the current merge target pathname and determines the appropriate format and strategy that
should be used during the process() method call.

• setFormatFromMergeTargetParentDirectory()−> None

Checks the merge target’s parent directory for existence of the file .texmformat. If found, the
contents of the file is assumed to be the format and strategy (similar in format to the environment
variable TEXMFORMAT) to be used when processing the merge file.

• getVariables()−> {mergeVariableAttrDict}

Calls the module-level function getExtendedNames, passing the currently set merge target pathname
as an argument. Returns the result of the call.

• openOutput(workPathnameOrFileObject=None)−> FileObject

Prepares the work file for subsequent merge operations. If no argument is passed a default filename
will be constructed.

• closeOutput()−> None

• merge(mergeVars=None, altMergeOptions=None, altMergeTargetPathname=None)−> None

Performs a merge operation using mergeVars, if passed, and altername merge options and merge
target pathname, also, if passed.

• process(dviCommandString)−> None

Run TEX interpreter according to currently set strategy and format. The DVI command string
passed in dviCommandString is used to run the DVI backend. It can contain a single “%s” which will
be replaced with the current value of the work file’s pathname. If no “%s” is present, the current work
file’s pathname will be appended to dviCommandString.

Failure of the TEX interpreter raises the exception, TeXException. Failure of the DVI backend
command raises the exception DviException.

TextBlock Manager Class
Constructor: TextBlockManager(pathname)

Methods:

• setPathname(pathname)−> None

Requests the TextBlockManager instance to scan pathname for named text blocks. Any information
about previously scanned blocks is lost.

• getBlockNames()−> [block1, block2, ...] Returns a list of the names of all named text blocks in
the pathname last scanned.

• getBlock(blockName)−> TextBlock Instance Returns a TextBlock instance representation of the text
block named blockName. Returns None if no such named block exists.

This same operation can be performed by using array indexing notation against the instance. i.e.
index it like a dictionary object.

Preprint: 2004 TEX Users Group Practical Techniques Conference July 2, 2004 10:52 1019



— 48— ../preprints/richter.pdf

William M. Richter

TextBlock Class
Constructor: TextBlock(text-block-descriptor-dictionary)

Methods:

• getName()−> blockName string object

Returns the instance’s block name.

• getSubKeys()−> [blockName1, ...] | None

Returns a list of unique subkey names associated with the text block or None if there are no associated
subkeys.

• getSubkeyValues(subkeyName)−> [subkeyName1, ...]

Returns a list of all the subkey values corresponding to the passed subkey name.

• getTextSegments(subkeyname=None, subkeyValue=None)−> {1: textSeg1, 2: textSeg2, ...}

Returns a dictionary of text segments, keyed by segment sequence number. SubkeyName and Sub-
keyValue are optional, and if specified, are used to select the specific text block to access.

• getText(subkeyname=None, subkeyValue=None)−> StringObject

Returns a concatenation of all text segments in order by sequence number. SubkeyName and Sub-
keyValue are optional, and if specified are used to select the specific text block to access.

Exceptions Several exceptions can be raised by some of the class methods above. The exception objects
have attributes which provide diagnostics about the associated error condition.

TeXException This exception is raised when TEX cannot successfully interpret a file.
Attributes:

• stdout: StringObject containing the stdout stream from the interpreter invocation,

• stderr: StringObject containing the stderr stream from the interpreter invocation,

• logText: StringObject containing TEX’s logfile output.

DviException This exception is raised when a DVI backend driver fails.
Attributes:

• stdout: StringObject containing the stdout stream from backend invocation,

• stderr: StringObject containing the stderr stream from backend invocation,

1020 July 2, 2004 10:52 Preprint: 2004 TEX Users Group Practical Techniques Conference



— 49—

TUG 2005 Announcement
and Call for Papers

TUG 2005 will be held in Wuhan, China, from August
23–25, 2005. CTUG (Chinese TEX User Group) has
committed to undertake the conference affairs, and now
announces the call for papers.

Why go to China for TUG 2005?

For fun!

This is the first TUG conference to be held in China.
Wuhan is close to the birthplace of Taoism and the
Three Gorges Reservoir. China is also the birthplace
of typography in ancient times, and is simply a very
interesting place to go.

For keeping up with the community!

The TEX community in China has been growing over
the years. China is one of the few countries in the world
which has heavily applied free software (including TEX,
GNU/Linux, and more) in industry. The rich human
resources and the creative TEX hackers have become a
part of the engine driving the global TEX community.
TUG’05 is a good opportunity to meet them.

For your future!

The growing market is ready to use your expertise. Many
libraries, publishing houses, and scientific organizations in
China are eager to use your TEX expertise.

Please submit abstracts for papers to tug2005@tug.org.
For more information about TUG 2005, please visit:
http://tug.org/tug2005

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:
www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens
with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

LaTex TugBoat ad  5/26/04  10:20 AM  Page 1



— 50—

Here at River Valley Technologies we
work with clients such as Elsevier and the IOP,

dramatically improving the way they produce their
mathematical publications. Our culture of innovation

has created a completely automated workflow from 
LaTeX to MathML and back, removing the need for 

human intervention in the conversion process.

For heavy mathematical typesetting, ours is the most effective,
proven system available anywhere in the world. Learn more about 

it from Dr. Kaveh Bazargan by emailing kaveh@river-valley.com.

A better way

RIVER VALLEY
T E C H N O L O G I E S



— 51—

Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π

Carleton Production Centre
HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle
Nepean, Ont., Canada • K2J 4K9

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.



— 52—

The TEX Users Group gratefully acknowledges Apple Computer’s generous contributions,

especially to the Pra�ical TEX 2004 and TUG 2003 Conferences.

�ank y�.

The Apple Store in San Francisco is located at One Stockton Street, San Francisco, CA 94108

�This was typeset with the TEX variant XƎTEX created by Jonathan Kew using the Apple System fonts

H T by Jonathan Hoefler, Z by Hermann Zapf and S by Matthew Carter.&

http://www.apple.com/retail/sanfrancisco http://scripts.sil.org/xetex

1

2

1 2


