
Publications for the T EX Community
Number 5

Conference
Proceedings

T EX Users Group
Eighth Annual Meeting
Seattle, August 24-26, 1987

TEX Users Group
P. 0. Box 9506

Providence, R.I. 02940, U.S.A.

TEX Users Group

P.O. Box 9506

Providence, RI 02940, U.S.A.

© 1988 by the TEX Users Group. Copying any paper within is permitted as long

as credit is given to the source, and copies are not made or distributed for direct

commercial advantage. Authors retain their individual copyrights.

Table of Contents

Bart Childs,

We've Come a Long Way, And? 1

Christina Thiele,

TEX, Linguistics, and Journal Production 5

Silvio Levy,

Typesetting Greek . 27

Walter Andrews and Pierre MacKay,

The Ottoman Texts Project . 35

Nobuo Saito and Kazuhiro Kitatawa,

What Should We Do for Japanese TEX 53

Yasuki Saito,

Japanese TEX: JTEX 57

Robert W. MCGaffey,

Developing TEX DVI Driver Standards 69

Nelson H. F. Beebe,

A TEX DVI Driver Family 71

David Ness,

The Use of TEX in a Commercial Environment 115

Silvio Levy,

Literate Programming inC 125

Richard Simpson,

Porting TEX to the IBM RT . 131

Allen R. Dyer, Esquire,

Text Formatting and the Maryland Lawyer 133

Leslie Carr,

Of Metafont and PostScript 141

Participants, 1987 TEX Users Group Meeting 153

TUG VIII, 1987, Conference Proceedings iii

Conference Proceedings for the

Eighth Annual Meeting

TEX Users Group

President

BART CHILDS

Texas A&M University

Vice President

RILLA THEDFORD

Intergraph Corporation

Secretary

ALAN HOENIG

John J. College, CUNY

Treasurer

SAMUEL WHIDDEN

American Mathematical Society

Executive Director

RAYMOND GOUCHER

TEX Users Group

Program Chairman, Proceedings Editor

DEAN GUENTHER

Washington State University

iv TUG VIII, 1987, Conference Proceedings

From the Editor

Although this is the eighth annual TUG conference, this year's

proceedings mark the first time the presentations have been published.

Most of the articles were typeset by the authors using TEX on their

systems using their printers.

The preliminary pages for the 1987 T[iX Users Group Conference

Proceedings were set in Plantin on a Compugraphics 8600. The articles

We've Come a Long Way, What Should We Do, Driver Standards, and

Porting Tp,X were set with Computer Modern on an IBM 3820.

T_EX, Linguistics was set with Computer Modern with an Imagen De-

signer Station. Typesetting Greek, Literate Programming in C, Ottoman

Texts, and Of Metafont and PostScript were set in Computer Modern

on an Apple Laser Writer or Laser Writer Plus. Japanese Tp,X: yTJ3X and

Driver Family were set with Computer Modern on an Imagen 3320.

Commercial Environment was set with Computer Modern on a Cor-

data. Maryland Lawyer was set with Almost Computer Modern on an

Autologic APS Micro 5. Participants was set with Computer Modern

on an Autologic APS Micro 5.

-ED

TUG VIII, 1987, Conference Proceedings v

We've Come a Long Way, And ?

BART CHILDS

Department of Computer Science

Texas A&M University

College Station, TX 77843-3112

ABSTRACT

I will mention a few things that indicate we are begin-

ning to succeed as an organization. I will give some detail

of a few things that I think we need to address in the near

future.

Those of you who participated in this annual meeting already know that

this was the best meeting ever. Well that is a subjective statement, but the

meeting was certainly good. This meeting and the recent issues of TUGBOAT,

the other visible evidence of our organization, are indicative of my claim that

we have come a long way as an organization. We also need to ask the questions

of how far we should go and in which directions. I offer some of my opinions in

several areas that I think are appropriate for TUG to address. These are based

on phone calls that carne to me because of my position as president, contacts

and discussions arising from my being a site coordinator, reading the exchanges

on 1EJCHAX, and discussions with many of you at TUG meetings. The areas

are TUG membership, naming conventions and font distribution, distribution

standards and source availability, and standards for drivers .

. TUG Membership

Our membership has grown dramatically. I expect that it will grow even more

as the technology for everybody having TEX becomes cheaper. However, reading

1EJCHAX shows that many (a majority ?) of 1£X users either don't know about

us or are too stingy to join. Can we cure this?

Fonts and Files That Contain Pixels

The use of fonts is one of 1£X's most difficult items. Many users simply don't

TUG VIII, 1987, Conference Proceedings 1

Bart Childs

understand which fonts are available on their system or have any documentation

on how to find them. We need to make this as uniform as is reasonably possible.

Some distributions use dpi329 to indicate a directory containing pxl or pk

files for \magstephalf fonts at 300 dots/inch. One directory should contain all

the pixel files for a given resolution and marking technology. Thus, a directory

of pk_b300 would contain files for a write black 300 dpi engine. Extensions

could be added for aspect ratios. Extensions on each file should reflect the

magnification and format. Thus, Opk, hpk, . . . 7pk would be appropriate for

the obvious zero, half, ... seven magnifications. The formats should be pk, px,

or gf. The three character extensions will work on virtually all systems.

Standards for Distributions

'lEX distributions on magnetic media that will hold 25Mbyte and above should

always contain the sources that are on the standard distribution. Diskette distri-

butions should have some form available. Since many micros don't have sufficient

storage for the sources, they should probably be kept separate and charged for

separately.

The standard formats should be included: plain '!EX, I¢1'#, etc. Further,

these should include locals like \today, \time (giving \thetime and \mil-

time) , or a facility for including them in a standard local.

Documentation for rebuilding these formats should also be included. We

should expect installations to begin using METAFONT and creating specialized

fonts and logos. Each distribution should have an explicit option for main-

tenance and provisions of updates. The regularity of these updates will be

dependent on extras that might be furnished.

The creation of standards for drivers will certainly cause some standard

macros be furnished for 'lEX that will specify how graphics are to be included.

These items along with the coming of color, duplex print engines, and other

improvements in technology indicate th~t many changes will be made.

Each distribution should have a utility that converts pixel files from the

other two standard formats to the distributions preferred. Other utilities should

include importers of documents from common word processors into T£X and/or

I¢1'#. Utilities for handling foreign keyboards are also needed to make T£X truly

portable. The fi and accents like those on page 135 ofthe T£Xbook are frequently

entered as one keystroke. Some editors have the capability of converting it to

the TEX control sequences, but the utility would be handy too.

Finally, we should have utilities to aid in detecting brace mismatches, remov-

ing T£X commands and checking for spelling, and easier public table macros.

Some of these exist, but are not in WEB.

2 TUG VIII, 1987, Conference Proceedings

We've Corne a Long Way, And ?

Standards for Drivers

We have an activity beginning for definition of a standard for drivers. A standard

for 'lEX distributions will probably be harder in some sense because it has so

many parts. The purpose of this is to create a start of a series of discussions

that might lead to someone volunteering to lead such an effort.

Summary

I hope these issues start some discussion on what we should have in 'lEX distri-

butions. I have not touched on other items like user interfaces, editor macros,

and font substitution which I think are a little further into the future. More

details of many of these arguments should appear in the TUGBOAT.

TUG VIII, 1987, Conference Proceedings 3

TEX, Linguistics, and Journal Production

CHRISTINA THIELE

Linguistics Dept.

Carleton University

Ottawa, Ontario

Canada KlS 5B6

ABSTRACT

Originally designed to set mathematics text material,

and then used for other complex typesetting, 'lEX seems

particularly well-suited to typesetting linguistics material.

In addition to special characters (i.e., a phonetics font)

and floating diacritics, linguistics has certain characteristic

layouts: distinctive feature matrices, tree diagrams, and

glossed text.

Moving beyond the specific application of 'lEX to lin-

guistics, the use of a macro package in journal production

also argues for using '!EX; a number of advantages are

discussed. The fact that authors are increasingly produc-

ing their work on computers acts together with 'lEX to

greatly reduce production costs while maintaining the re-

quired complexity in layout and high quality in the output.

The Canadian Journal of Linguistics (CJL) was established in 1954 as the official

journal of the Canadian Linguistic Association. Published twice a year, and

containing some 40 pages per issue, the first issues were small pamphlet-sized

documents. Initially printed by several different publishers, the journal finally

settled in at the University of Toronto Press in 1961, where the publication

remained for 23 years, until 1984. By that time, each issue was running to

80-100 pages.

In 1984, with a change in the editorial personnel, the decision was made to

produce the journal at Carleton University. With the cost savings experienced

TUG VIII, 1987, Conference Proceedings 5

Christina Thiele

in that first year - and with a good supply of articles and reviews - the journal

became a quarterly publication in 1985. Our annual number of pages doubled,

from 233 in 1984 to just under 400 in 1986. The current year, only half finished,

already has us at 233 pages, a pleasant coincidence. The most telling statistic is

that we have doubled output while operating on roughly the same budget as in

1984. A large part of our ability to cope with reduced funding is of course due

to experience in using 'lEX, and in making full use of computer discs supplied

by authors.

The decision to produce the journal at Carleton University was prompted

in large part by the arrival of a pre-release version of 'lEX at Carleton Univer-

sity. The then associate editor, JeanPierre Paillet, convinced the editor, William

Cowan, that production costs could be substantially reduced if we went with

'!EX, without sacrificing any of the complexities associated with linguistics. With

help from Rick Mallett, the site co-ordinator, 'lEX was put to the test.

In our early days, our roles were all quite separate and distinct, based on

what we knew (and didn't know): the editor performed his editorial duties, the

associate editor worked on the computer side of things (which meant all the

typesetting and macro package development, undertaken concurrently), and I

input the material, creating dummy codes as needed, which JeanPierre then

wrote macros for.

Before beginning the first issue of CJL, we used 1EX to produce another

document also edited by Prof. Cowan, the Papers of the 14th Algonquian Con-

ference. We were extremely proud of our efforts, a 396-page tome. 'lEX version

0.9 was used on the Honeywell mainframe, an old 240 dpi laser printer ran off

our final copies in a building at the other end of campus, and we were pleased.

No need to mention what we think of it now, in retrospect ...

With this experience in hand, we began production of our first issue of CJL

for 1984- volume 29, no. 1. It was run off oversize, photo-reduced, and printed.

We were again very pleased. Our second issue of the year, however, was fraught

with difficulties, as the editor and I had to become more self-sufficient. The

macro package still needed some improvements, and we still didn't know how to

actually "'lEX" a document, much less read all the error messages we were so

capably generating. We hired a student, Michael Dunleavy, to re-work the macro

package, write some documentation, and to show us how to 'lEX our work. There

was plenty of material to learn on, as we had moved from two to four issues per

year. The year 1985 was our turning point as each problem was solved in turn:

we became better users of The T]i;Xbook, learned how to run 'lEX and correct our

errors, and we began to think twice about typing in articles which were obviously

produced on computers.

By 1986, we had most of our difficulties in hand: a macro package which

gave us all the formats we required, documentation which continues to be a

constant source of little nuggets of information and advice. The unsatisfactory

quality of the laser printer output, an.d its inaccessibility had finally driven us

6 TUG VIII, 1987, Conference Proceedings

'lEX, Linguistics, and Journal Production

to purchase our own (an Imagen 300 dpi machine) in mid-1986; it is now owned
by a consortium of four journals.

Our one remaining problem is our phonetics font, created by JeanPierre in

bit-map form; it was designed to match only the lOpt roman font used for regular

text. As well, since the change-over to the em series, it now looks like a boldface

font (the am series was heavier set). This is where a Metafont'ed version of the

IPA (International Phonetic Alphabet) would be a great project for someone to

undertake. 1 Much linguistic material doesn't need phonetics, but the need for

decent phonetic characters in the main sizes and styles still remains.

As mentioned, there are now two other journals being produced in this fashion

at Carleton, in addition to CJL and the continuing publications of the papers of

the Algonquian Conference, and others are coming to see us for our typesetting.

We are also looking at the possibilities of opening up some sort of publications

production centre, which would provide a "group home", as it were, for the

various journals, and serve as a model for others to join. The final section of this

paper discusses '!EX's applicability to journal production, and in particular the

case of many journals using variations of the same macro package.

1. TEX and Linguistics

Linguistics text material can be distinguished from other scholarly material in

two ways: the presence of special characters and symbols, including diacritics

("accents"), and the frequent use of rather complex layouts of non-paragraphed

text. Special characters are predominantly phonetic symbols used to provide

a one-to-one relationship between a sound and its written representation. The

standard set of symbols is the IPA (International Phonetic Alphabet) which,

along with regular letters, can also be modified by the use of diacritics, above or

below, to the left or the right of the symbol. With respect to complex layouts,

there are three main types of non-paragraph formats required: feature matrices,

tree diagrams, and vertically aligned units of text, called glosses. The following

sections will discuss both of these main characteristics, and the approaches used

by CJL to achieve these effects.

1.1 Special Characters

TEX already comes to the user with a wide selection of special letters and sym-

bols, which appear on the second page of chapter 9 in The 1E;Xbook: re iZS ce

l B a and so on. Some of these actually do double duty, as they are also used

in the IPA (all but the last two shown here). However, the overlap with the IPA

1 Since this summer's Annual General Meeting, Dean Guenther at Washington

State University has announced the availability of a proprietary International

Phonetic Alphabet. Refer to the 1E;XT1 ad in TUGboat Volume 8, Number 3

or contact Dean directly.

TUG VIII, 1987, Conference Proceedings 7

Christina Thiele

Figure 1-a

Phonetic Font- phlO

0 1 2 3 4 5 6 7

000 () cf ~ !. c f> ~ UI

010 <). w n a 1!1 y 0 E-

020 (Tl e L K A ll v

030 ~ n p (1 T u <I> X

040 llJ w 3 a (A) J c

050 () * + I

060 0 1 2 3 4 5 6 7

070 8 9 = ~ ?

100 (5 A B c D E F G

110 H I J K L M N 0

120 p Q R s T u v w

130 X y z "

140 i 'e Jl ;) <t ~ t :u

150 fi J l IIJ It 00

160 D If 1: ~ t 'l:l .A JA

170 n. q ?(. J t ~

8 TUG VIII, 1987, Conference Proceedings

'JEX, Linguistics, and Journal Production

is minimal, and so a proper set of phonetic characters is required.

1.1.1 Phonetics font:

Clearly for a linguistics publication, a phonetics font is a priority development.

The former associate editor of CJL, JeanPierre Paillet, designed pixel files for
the phonetic characters, and sized them to match the regular text font used at

the time. The journal was originally produced on a 240 dpi printer, giving us

an over-sized font on the page, which was then photo-reduced in the hopes of

making our printer's output less fuzzy. We soon stopped this and went over to

printing at size: 10pt, at magstep 1, making it roughly a 12pt font. However,

the phonetics font still worked well visually with the am series.
Since the font had to be hand-crafted as bit maps, we decided that we could

only reasonably expect to have one set drawn, in one size, and so opted for the

font to match the regular 10pt size rather than to have only a smaller sized

font. Of course, it would have been ideal to have had the font in both sizes. A

few characters were designed to suit a 9pt font, but in the main, where small
phonetic characters occur, it's a matter of cut-and-paste by the editor - also

known as the pragmatic approach to publishing.
A more recent difficulty is that the change to the em series of fonts, which

are more clean-lined, now makes the phonetics font look like a boldface whereas

before it was well-suited to the am series. This means that the font is rather
obtrusive where either the size is not 10pt, or the style is not roman (or boldface).

The characters shown in the font table (Figure 1-a) are the result of a number

of strategies, detailed in Figure 1-b:

a. designing an entirely new character

b. modifying an existing character
c. re-orienting an existing character

d. "raiding" other font tables for characters

With respect to this last means of finding the right symbol, I have two cases

which are particularly interesting.

The first is rather simple. An author required a "script v" in a footnote, in
9pt. On the basis of his hand-written model, I looked through the font tables at

the back of the T]jj)fbook and found the following character: iJ. Such a straight:..

forward "script v", and the author was quite pleased. What he didn't know was

that the character was in fact from the math font's Greek characters, a variation

on "theta" . 2

2 A good example of 'form' being totally divorced from 'content', a distinction

often made in traditional linguistics.

TUG VIII, 1987, Conference Proceedings 9

Christina Thiele

Figure 1-b

Strategy: Character (Code)

a. new: (5 (100) (i) (044) I (173)

(177) (176) (054)

b. modified:
non-italic Greek: a (013) E. (017) a (022)
nasals: :0 (147) Jl (142)

It (156) IlJ (155)

"-tail" series: <t (144) '[(162)

~ (163) ~ (170)

c. re-oriented: q (171) A (166) a (145)
l (045) 1? (141) H (161)

e. from elsewhere: < > a

0 - 'IJ

The other case is a very fine detail in phonetics. There are two types of the

letter "a" required, each representing a different sound. One is a broken-back

'a', the other a printed 'a'. The problem arises when one goes into italics: the
broken-back 'a' automatically becomes a print 'a' in shape (a), which of course

changes the sound being represented. The trick was to see italics as a type of

slanted character set, so that defining the slanted font, and calling up the regular

letter 'a' then gave us a passable version of an italic broken back 'a' (a and a).

To add to this confusion, the unslanted TEX font emu does the exact opposite:
by typing a regular 'a', one gets a version of the printed 'a' (a and a)! The chart

below should sort things out:

Figure 2

broken-back

roman (cmr) a

slanted (cmsl) a

printed

a unslanted (emu)

a italic (cmti)

This serves to point out that the 'lEX font sets are much more than just changes

in angles and slopes. The font table has a potential for 128 slots to be filled, and

sometimes interesting bits and pieces are used to fill in the blanks. In fact, it's a
useful exercise to print out font tables of all fonts available on your system, just

to see what's in some of them. For example, until you read it in the Tji;Xbook,

it's not obvious that an italic dollar sign will give you the pound sterling sign.3

3 Which led me to ask - how does one get an italic dollar sign, and a roman

10 TUG VIII, 1987, Conference Proceedings

'IE;X, Linguistics, and Journal Production

Thus the font tables can sometimes contain just the character you need, so it
pays to go wandering through the rows and columns printed in the book, as well

as any tables you print up yourself.

L 1.2 Diacritics:

Diacritics, or accents, are used to modify the sound represented by a particular

letter or character. 'lEX comes equipped with an abundant supply of diacrit-

ics, and operates on the floating principle: they can be applied to any letter,

regardless of height. Although there has been quite a bit of discussion as to

how appropriately positioned some of the diacritics are (Romberger and Sund-

blad 1985; Levy, in this collection of papers), they do the job quite adequately.

Even our own phonetics font characters can get accents, although it's a bit of

an unwieldy operation: it is necessary to call up the phonetic character by its

font name and \char number, enclose them in braces and then precede the whole·

thing with the accent. 4 . But it works: 3 or:) for example.

Figure 3-a

\def\diatop[#il#2]{{\setbox1=\hbox{{#1{}}}\setbox2=\hbox{{#2{}}}%

\dimen0=\ifdim\gd1>\wd2\wd1\else\wd2\fi%

\dimen1=\ht2\advance\dimen1by-1ex%

\setboxi=\hbox to1\dimen0{\hss#1\hss}%

\rlap{\raise1\dimen1\box1}%

\hbox to1\dimen0{\hss#2\hss}}}%

\diatop[\.1{\t ee}J ee
\diatop[\' 1{\aa}J a
\diatop[\'1{\=o}J u

Double diacritics don't occur very often in linguistics material, but when they

do, the typeset effect can be quite impressive. 5 As opposed to the Greek case of

two marks side by side, there are times when two diacritics, one above the other,

are needed, and not just in linguistics. It would perhaps seem logical to see two

accents as just that: a letter with two marks above it. However, this is not the

approach used in the \diatop definition (Figure 3-a), which does something else,

pound sign. Figure 2 gives the clue: the slanted font has an italic-like dollar sign

($); the unslanted font has a roman-like pound sterling sign (£).
4 See The 'I'E;Xbook, pp. 286-287, under \accent. My thanks to JeanPierre for

this reference; and for drawing my attention to the one in the next note.
5 I don't know about the squealing mathematicians mentioned in the 'I'E;Xbook

(p. 136), but linguists can get pretty excited about it.

TUG VIII, 1987, Conference Proceedings 11

Christina Thiele

adding a mark to a letter already bearing a mark. That is, \diatop does not read
one accent, read a second accent, and then put the two of them above a letter.

Rather, it puts an accent on top of an already accented character. Combinations

(which may or may not actually exist) would look like this: K, or e-'e. However, it

does not always work well when one accent is to go above the letter, and another

is to be below (Figure 3-b). An alternative method for such above/below double
accents is to enclose one of the accents and the letter in a group, and then apply
the second accent to the entire group, although again this doesn't always work:

Figure 3-b

input

\diatop [\dJ{\ -\oe }J

\d{\=o}

\-{\d\oe}

\diatop [\ •J{\d\oe}]

output

re.

Another strategy might be to employ \llap, \rlap and negative and positive
kerning.

The flexibility of floating accents in 'lEX is immediately appreciated by those

setting linguistics or any other non-English text material. I've· also had to re-
produce some Greek lexical items - in a Spanish article - which required the

math font, the math accents, and a few \Hap's for the breathing marks. The

presentation by Silvio Levy on preparing Greek fonts for a dictionary, including

accents and breathing marks above the same letter, shows a different solution,

one more appropriate to dealing with large amounts of text requiring complex
combinations of diacritics and characters in Greek.

In addition to the floating diacritics inherent in '!EX, we had a few interesting
diacritics created. These marks are for the fine tuning of the sound represented

by particular characters: ' , (not, cedilla) are fairly common in linguistics
material.

1.2 Formatting

Unique and interesting as some ofthe special characters and symbols required for
linguistics are, the physical layout required for linguistics material also marks it

apart from the usual humanities type of text material. In some ways, linguistics
formatting is a hybrid, picking and choosing layouts from a variety of disciplines,

most often mathematics. Although it might be rash to say that 'lEX is the only
typesetting program allowing the flexibility required for linguistics material, it is

not incorrect to say that linguistics is probably one of the chief beneficiaries of a

12 TUG VIII, 1987, Conference Proceedings

'lEX, Linguistics, and Journal Production

complex program like 'JEX, which has mainly been applied to the "STM trade":

"scientific-technical-medical" typesetting.

I've chosen three layouts which represent the normal type of materials one can

expect to handle in a linguistics journal. Two of them are simply applications of

commands from plain tex; the third is produced using an original macro. There

are as many variations in these as there are authors and linguistic theories;

however, the "bread and butter" material (after paragraphs and itemised lists)

is indeed phonetic features matrices (Figure 4), tree diagrams (Figures 5 and 6),

and glosses (Figure 7). Generally, all these non-paragraph materials are set in

a smaller font than the text, both because it looks better and is easier to read,

and because large tables and diagrams can then fit into the regular-sized page.

The only exception to this would be in the case of tree diagrams or matrices

requiring a lot of phonetic characters, in which case the regular-sized font would

be used to reduce cut-and-paste work.

1.2.1 Distinctive feature matrices:

Using a list of distinctive features (i.e., place and manner of articulation, tongue

position, and subsidiary features), phoneticians describe sounds in terms of the

presence or absence of these features. These are then presented on paper as "dis-

tinctive feature matrices", which is nothing more than a mathematics matrix,

with words rather than number entries, and square braces rather than parenthe-

ses on either side.

For two-line entries, it's possible to simply plug in the prepared braces, of

varying "Big-ness", of the math extension font. However, there is greater flexi-

bility if the "grow-as-required" type of braces are used. In the beginning, feature

matrices were just tables to me: a series of items listed on the page, which the

editor would then enclose in hand-drawn brackets. Then I "discovered" \ vcenter,

and I haven't looked back. In fact, hard on the heels of having learned how to

use \ vcenter, two articles arrived requiring this very command; one needed 13

\ vcenters, the other only three. Both were published in the same issue of CJL

(Picard 1987, Walker 1987).

The description of using \ vcenter (Knuth 1984:325-36) involves \hfil's and

\quad's and \hbox's, and so on; and then it says " ... the last example can be

done much more simply [and I perk up] using the ideas of Chapter 22, if you

don't mind descending to the level of 'lEX primitives; for example the first matrix

could be replaced by ... ". The chuckle is that I've been doing \haligns for three
years now, and so I didn't mind one bit. It's not often that the harder route is

the easier.

Since \ vcenter is a standard 'lEX command, there's no real trick to applying
it to linguistics material. The only fine details to look out for are the spacing:

between the braces and the left margin of the text items, and between the top and

bottom lines of text vis-a-vis the top and bottom bends in the braces. These

TUG VIII, 1987, Conference Proceedings 13

Christina Thiele

Figure 4

$$\emptyset\;\longrightarrow\left[\,%
\vcenter{\halign{#\hfil\cr

\hfil C\hfil\cr
$-$continuant\cr

α anterior\cr

β coronal\cr
$\langle\,$+voiced$\,\rangle$\cr}}\,\right]

\qquad\left[\,%

\vcenter{\halign{#\hfil\cr

\hfil C\hfil \cr

α anterior\cr

β coronal\cr

$\langle\,$+voiced$\,\rangle$\cr}}\,\right]

\quad\quad\left[\,%

\vcenter{\halign{#\hfil\cr

\hfil C\hfil \cr

$\langle\,$+voiced$\,\rangle$\cr}}\,\right]$$

[
c_]/ c -contmuant t . C

0 ---+ a anterior a an enor .
j3 coronal [f3 cor~nal l-[(+ vmced)]

(+ . d) (+vmced)
VOICe

latter generally line up exactly, which makes for a slightly cramped looking

matrix; it would probably be better to lengthen the braces just a touch, so that

they indeed look like they are encompassing all of the text material.

The example here (Figure 4) is typical of linguistics feature matrices, showing

variable features (a, (3) as well as specific cases of+ or - (i.e., presence or absence

of a given feature). Only the diagonal and horizontal lines were added later. It's

easy now to see the flaws in this example, but generally the layout is acceptable,

and little different from that found in other linguistics journals such as Linguistic

Inquiry and Language. In this particular case, because of the various symbols

preceding the features, a \ thinspace had to be inserted between the left delimiter

and the start ofthe \vcenter (using\,); otherwise, things get a bit crowded (from

Picard 1987:136).

14 TUG VIII, 1987, Conference Proceedings

'IE;X, Linguistics, and Journal Production

1.2.2 Tree diagrams:

Tree diagrams are one of the more graphic representations of transformational

generative linguistic theory. They are based on phrase structure rules, where __,.

is read "re-written as":

S __,. NP VP

PP __,. Prep NP

VP -+ V (NP) (PP)

Trees are quite formidable initially to the novice - novice linguist and novice

typesetter alike. The former learns to see them as a sort of flow chart, each
branching representing a further break-down in analysis of the various compo-

nents of a sentence, for example. Starting with the "trunk", which represents the

entire sentence, one then proceeds to its components: noun phrase or phrases,

and verb phrase. Each of these can be further divided into adjective + noun,

verb + adverb, and so on, down the roots, as it were, to the final match-up

between syntactic component and lexical item.

The linguist sees this is a dynamic representation. A computer whiz with a
graphics program would also see it as a dynamic image. The typesetter? Well,

the typesetter shouldn't be looking for where the action is. Formatting a tree

requires that the typesetter not understand the dynamics of a tree diagram, but

simply see it in terms of where the text is to sit on the page. From a pedestrian

point of view, a tree is a static collection of boxes, of items suspended in a mostly

white space, with lines (diagonal a11d vertical) connecting certain items. Boxes.
The magic response to the question "how does 'lEX work?" - "With boxes and

glue."

Once you accept the inevitability of cut-and-paste, a table layout becomes

the most practical solution to trees. Think of a tree diagram as a series of rows

and columns, with most of the cases empty. If the various text items in a tree

are seen as contents (the # of an alignment), then the tabs represent the edges

of each column.

Figure 5 shows the stages involved in producing a tree diagram, using an
example from a recently published article (Cheng 1986:320). It includes the

original submission from the author, the approach taken to analyse the layout

the author wanted (within editorial reason), the source file, and the output. Note

that the output from the laser printer still required diagonal lines to be drawn

-'lEX could do it, but the small amount of time required to draw diagonal lines
argues against spending that time on programming.

The first step is to draw in lines representing the tabs; I find it more useful to
draw lines for the tab markers than for the actual contents, since all tabs (usually)

must be inserted, even if some cases for contents are empty. These pencilled-in

lines are then numbered, making it easier to count the correct number of tabs

TUG VIII, 1987, Conference Proceedings 15

Christina Thiele

Figure 5
N''

/"" C'' N'

I I
C' Nl

/~

I~ I
N'' /' de

~a p \~~
N'
I
ta

I
N2

\halign{\noindent#\hss\quadt\hss#\hss\quadt%
\hss#\hss\quadt\hss#\hss\quadt\hss#\hss\quadt%
\hss#\hss\quadt\hss#\hss\quadt\hss#\hss\cr

ttttttN{$~{\prime\prime}$}t\cr

\noalign{\vskip.Smm}\cr
ttttC{$~{\prime\prime}$}tttN{$~\prime$}\cr

\noalign{\vskip.Smm}\cr
iiitC{$~\prime$}iiiN\lower.7ex\hbox{\tinyrmn 2}\cr
\noalign{\vskip.Smm}\cr
ttP{$~{\prime\prime}$}ttttCt\cr

\noalign{\vskip.Smm}\cr
iN{$~{\prime\prime}$}iitP{$~\prime$}tidet\cr

\noalign{\vskip.Smm}\cr
itattPtiN{$~{\prime\prime}$}tt\cr

\noalign{\vskip.Smm}\cr
ttiiiN\lower.7ex\hbox{\tinyrmn 2}tt\cr
\noalign{\vfill}\cr}

N"

1
N'

N'
I
Nl

N"

~
C" N' C" N'

I I
C' N2 C' N2

~
P" c P" c

~ I
N" P' de N" P' de

I ~
ta p N" ta p N"

I
N2 N2

16 TUG VIII, 1987, Conference Proceedings

'fEX, Linguistics, and Journal Production

between contents (the# in the \halign). Although it is possible to use double &&

in the preamble to represent repeated tab templates (The 1};Xbook, pp. 241-42),

this is only appropriate when all columns in the template have the same width

and quadding. In both Figures 5 and 6, it would have worked. However, there

are still enough situations where each column must be individually specified

as to left and right justification or centering, and distance away from the next

column. The use of &tis a shortcut, but may not always be the most appropriate

approach.

For the preamble, I find that \halign is much more flexible than \settabs; as

well, I often put the whole thing inside a$$\ vbox, for centering. Usually I have

a \quad between columns, and a \ vskip of lmm between lines (in a \noalign),

in order to create spacing between rows. And that's all it takes. A series of &

for the columns, and the little bits of text entered where they occur, until the

end of the text for the tree, close off the $$\ vbox, and that's it.

The output for Figure 5 has been duplicated, in order to show the difference

that lines will make, rendering a seemingly random array of characters (the

result of seeing a tree as a static image on paper) into a meaningful linguistic

tree diagram (the dynamic representation of how a sentence is generated). The

textual items are all in their correct position; lines representing the relationships

between and among these elements will be inserted by hand. Tree diagrams

thus become a compromise between what 'lEX and a user can do quickly, and

how much extra time it would take to put on the finishing touches. In our case,

cutting and pasting lines is more efficient.

Another example of the trees-as-tables approach is shown in Figure 6, where

the idea is the same as above: lines representing a relationship between theoret-

ical elements and their actual manifestations. This time the relationship is not

between nouns, verbs and articles to a sentence, but that between hyphotheti-

cal and actual sounds in Chinese. The following example is one of over twenty

such trees which appeared in an article originally submitted on a Macintosh disc

(Pulleyblank 1986). Printed with the large Macintosh default font, the diagrams

were very intimidating in both their complexity and size. This particular tree

represents the phonetic/phonological level, and involves only two levels (p. 250).

The example shows a number of interesting points, not least of which is the use

of phonetic characters combined with the current cmr font.

On average, there were 15 tabs per diagram (this was before I learned the

tit shortcut). What these trees lacked in number of branches, they made up for

in the number of columns which had to be defined, and text which then had to

span several of these columns. The formatting difficulty in this case was with

the use of \multispan, and usually arose when counting the number of spans

required (either my math was wrong, or my judgement calls were off).

The output again shows the text items suspended in air, awaiting the addition

of lines to show the historical sound changes in Chinese phonology; these have

been drawn in to complete the example.

TUG VIII, 1987, Conference Proceedings 17

Christina Thiele

Figure 6

\halign{\noindent#\hss\enspacet\hss#\hss\enspacet%
\hss#\hss\enspacet\hss#\hss\enspacet\hss#\hss\enspacet%
\hss#\hss\enspacet\hss#\hss\enspacet\hss#\hss\enspacet%
\hss#\hss\enspacet\hss#\hss\enspacet\hss#\hss\enspacet%

\hss#\hss\enspacet\hss#\hss\enspacet\hss#\hss\enspacet%
\hss#\hss\enspacet\hss#\hss\cr

\quad(c)tCt(C)tVtVtCt\lingarrovtCtCtVtCt\lingarrovtCtCtVtC\cr
\noalign{\vskip2mm}\cr
tk'ttytat\ngttk't\uglidetat\ngttk'tutat\ng\cr

\noalign{\vskiplmm}\cr
t\multispan4\hss k'y\nialpha\/\ng\hssttt\multispan2\hss
k'\uglide\nialpha\/\ng\hsstttt\multispan2\hss
k'v\nialpha\/\ng\hss\cr
\noalign{\vskiplmm}\cr

tt\multispan{14}\hss{\it ku\=ang}\enspace 'rectify'\hss\cr}

(c) C (C) V V C -> c c ve--e c v c

k' y a g k' q a g k' u a g

k'yag k'qag k'wag

kuiing 'rectify'

(c) C (C) V V C - c c v c -> c c v c

I I V1 I I V1 I I V1
k' y a g k' q a g k' u a :0

k'yag k'qag k'wag

kuiing 'rectify'

1.2.3 Glosses:

A third type of layout associated with linguistics material relates to the presen-

tation of foreign language material with translations below. Usually there are
three lines of text involved: the original language, a piece-by-piece translation,

and then a free-flowing English (or French) translation of the entire sentence or

phrase (see Figure 7-a). The first two lines generally break the sentence up into

18 TUG VIII, 1987, Conference Proceedings

'JBX, Linguistics, and Journal Production

minimal units of meaning, called morphemes; what one would like to do is have

each non-English morpheme line up with its English gloss, as shown in Figure

7-b (from Cheng 1986:322).

Figure 7-a

long word1 word2 word3

gloss1 long gloss2 gloss3

text of English translation

One of the original creators of our macro package, JeanPierre Paillet, designed

a macro for just this layout, and then we had some variations designed subse-

quently, by Michael Dunleavy.

Figure 7-b

\def\nipar{\par\noindent\ignorespaces}%

\def\lglossit#1#2{{%

\setbox0=\hbox{#1\strut}%

\setbox1=\hbox{#2\strut}%

\hbox{\vtop{\box0\box1}}}}%

\def\lgloss#1#2l{\hbox{\vtop{\hbox{\ignorespaces#1\strut}%

\hbox{\ignorespaces#2\strut}}}\enspace}%

\def\lglosses#1iU{\ifx>#1\let\next=\nipar\smallskip%
\else\ifx\nipar#i\nipar\let\next=\lglosses%

\else\lgloss#il\let\next=\lglosses

\fi\fi\next}%

\def\lglossall#i<Nlglossall>{{\rightskip=Opt

plusifil\lglosses#iiU>iU}}

\item{(21)}\lglossall{Wo}{I}iU{pao-bu pao de}{run}iU%

{\enspace hen}{very}@{re.}{hot}<Nglossall>\nl

<r went jogging and I am very hot.'

(21) Wo pao-bu pao de hen re.
I run very hot

'I went jogging and I am very hot.'

TUG VIII, 1987, Conference Proceedings 19

Christina Thiele

Rather than approach this as a linear, horizontal layout, the macros deal with
each set of morphemes as a unit, one below the other, where the first argument

(word) is the non-English piece of text, the second (gloss) is the translation of

that morpheme. Inputting then becomes quite routine, with «!-signs to separate

each set when using the recursive versions, and no spacing decisions required of

the user. Once all sets have been accounted for, there's a forced line break, and
then the English translation.

The various gloss macros allow us to left-justify the entries in each set, or
centre them, with some space on either side; another uses left-justification but

with no space, which is also useful. And since such gloss layouts usually consist
of several sets, there are recursive versions of the left-justified and the centred

macros. All of these take the first item, and then position the second item below

it; occasionally, one wants material above the usual line of text: we have an

\overglossit to do this.

It is also possible to raise and lower the contents of either of the two argu-
ments; this provides space to draw a connecting line between the two items, for

example. One could also use an \halign for such layouts, but an \halign would
approach the contents purely on the basis of shape, whereas using \glossits allows

one to retain the intention and meaning of the author. The one-to-one matching

of lexical item and its meaning is something which an \halign would not bring
out.

2. TEX. and Journal Production

I'd like to pull back from 'IE;X and linguistics typesetting now, and take a look

at the context in which they are currently used.

There are a number of points which I hope to elaborate upon in this final

section. These include: the separation of the editing process from that of pro-
duction; the increased use of computers by authors; the advantages to using

macro packages; and how these last two can be turned to good advantage in the

production of scholarly journals in the humanities. 6

2.1 Production, not Editing

The flow chart in Figure 8 shows a generalised view of the production process
we use for our journals. The first point to make, and to keep in mind, is that
the process begins after the editor, the referees, and the author have come to

mutual agreement about the contents of the article. In other words, this is a
schema about PRODUCTION, not EDITING. The difference may be obvious, but
with editors of small journals becoming increasingly involved in the production

6 By "humanities", I mean both the arts and the social sciences. I use the

term as opposed to "science"; others use the word as a synonym for "arts" only.

20 TUG VIII, 1987, Conference Proceedings

JEX, Linguistics, and Journal Production

of their journals, the separation must be made explicit and retained. The use

of computers by authors and production staff is appropriate, even desirable; but

for a number of reasons, it is still inappropriate for the editorial work to be done

with computers.

An editor may have certain hard- and software in the office, but it is highly

unlikely that all submissions (once refereed and accepted) would also be produced

on similar equipment, so how could an editor read and edit material on disc.

Although there is a certain degree of compatibility across equipment, there are

so many combinations of hard- and software possible, that the idea of using the

computer for the editor's task of pushing and prodding an article into acceptable

shape is simply not feasible. And even less so if one has referees involved. Note

that the work of copy editing can and does indeed benefit from a number of

computer programs which look at spelling, lexical items, even grammar. But the

editing of contents, suggested changes, re-wordings and so on, all such elements

introduced by an editor, referees, and an author are still best represented on

paper, and most clearly understood when on paper.

In addition to these technical limitations, editorial changes in a computer file

are invisible to the reader, who sees no vertical marks, no scratches, no red ink

to show what was, and what now is. The potential for aggravation when changes

are anonymous is clear; hardcopy with its various ink colours makes it easy to

see whose changes have been introduced, or ignored. 7

2.2 Electronic Submissions

Computer use among humanities scholars is not yet common, but it is no longer

the case that dedicated "hackers" are the only computer users in the humanities.

In 1985, the American Council of Learned Societies did a survey of 3835 scholars

in the humanities (Scholarly Communication 5:7), and found that:

More than 90 percent have access to a computer, over 50 percent report

that they or their research assistants routinely use a computer of some

kind. Forty-five percent now own or have exclusive use of a personal

computer that they use in their work. . .. Wordprocessing leads the

other uses; 95 percent of users rate it as very or somewhat important.

The same survey also found that "only a small minority of respondents - about

7 percent - have as yet submitted a book or article manuscript to a publisher in

machine-readable form" (p. 6). Clearly the potential for electronic submissions

from academics is very high, given the statistics regarding computer access; it

7 There are two new editing programs described briefly in last year's Nov./Dec.

issue of Publish (1986) which seem to be able to leave editor's comments and

marks in the text file: For Comment (from Brl?lderbund), and Red Pencil (from

Capsule Codeworks). I haven't been keeping up with the magazine, so I don't

know any further details on these or other products.

TUG VIII, 1987, Conference Proceedings 21

Christina Thiele

Figure 8

Production Process for CJL

Yes (disc}

Download to PC to enter

copy edltfng changes •
embed commands

Author's proof•
or

CRC

No

Transfer to CP-6 for

TeXJng ol 1st pass

This flowchart was typeset b¥ Lasertype, Inc., Ottawa, Canada

22 TUG VIII, 1987, Conference Proceedings

Send typed manuscript

lor keyboarding

Input text, copy editing

changes+ commands

'JEX, Linguistics, and Journal Production

simply isn't being tapped. A 1984 survey (Coldeway 1984) also found low figures
for electronic submissions for publication: of 340 journals listed with the MLA

(Modern Language Association), 31% used computers for editing manuscripts,

19% used the machines for typesetting, but only 12% accepted discs from au-

thors. Another 1984 survey of 150 history and 50 non-history journals (55 jour-

nals responded) found that 42% were using computers in editing, 25% for type-
setting, and only 2.6% were accepting discs from authors (reported in Schnucker

1986:362-63).

In short, although computer usage is growing considerably in the humani-
ties, the next step, to publishing, is not being followed through. Perhaps not

unrelated to these low figures on electronic submissions for publishing purposes,

is the apparent confusion between editorial and production uses of computers,

as outlined above. Close reading of articles by editors shows that the computer

is not being considered for production, but for reasons which are most often ed-

itorial in nature. Schnucker (1987:360-361) provides several examples; while his
arguments against computers in the editorial process are quite valid, he doesn't

take the next step following the editorial process, that is, the production phase

and its potential for computer use.

The use of computers in the humanities is a fact; applying that use to publish-

ing is what interests us here. It is this growing fact of life which, when combined

with computer programs such as 'JEX, has begun to revolutionise small-scale
scholarly publishing.

"Small-scale" refers both to the size of a journal's subscriber base (somewhere

between 800 and 1200 is the norm for scholarly journals in the humanities, in

Canada) and/or the size of its production staff. Especially in the case of the
latter, any and all means available to reduce the amount of duplicated effort

should be explored. This word "duplication" relates directly to both authors' use

of computers and to 'JEX. That is, duplication in keyboarding, and duplication

or near-duplication in layout across a variety of journals. The first case can be

avoided by an increased use of submissions in electronic form. The second can

be avoided by exploiting the notion of a macro package (see next section).

As far as CJL goes, we have been rather slow in taking advantage of authors'

computer-generated materials, whereas the last two volumes of the Papers of the

Algonquian Conference have almost entirely gone over to authors' discs; 68% ·in.

1986, 79% in 1987. This has mainly been because the Papers contain conference

papers, which the editor can solicit afterwards in electronic form. CJL is a

refereed journal, with any number of articles and reviews being submitted; once

accepted, one can request, but not really demand that the material be submitted

electronically (although this is changing rapidly). More to the point, however, is

the pragmatic· reality of waiting for a disc, or typing in the materials ourselves;

we often take this latter route (even though it then messes up our percentages

on using authors' discs).

Nevertheless, for the sake of statistics, I've checked the files, and identified

TUG VIII, 1987, Conference Proceedings 23

Christina Thiele

the articles and reviews which were obviously done by computer, even if we

didn't take advantage of that fact in our production. Figure 9 shows the figures

for the past four years:

Figure 9

Canadian Journal of Linguistics

no. of printed pages

% submitted in electronic form

% of electronic submissions used

1984 1985 1986

233 512 399

10 43 82

0 11 53

1987 (till June)

233

74

68

The point to all of this is to underline the fact that duplication in keyboarding is

one area where computers and authors' discs can substantially reduce the amount

of time and money spent on basic data entry by a journal. It also quite clearly

greatly reduces the number of typos, dropped lines, and misinterpretations. This

time and money can then be channelled into the typesetting of articles and

reviews for publication. (And I am going to concentrate on journal production,

although books and other documents, such as theses, also enjoy the same benefits

and advantages.)

2.3 Macro Packages

I've mentioned above that the notion of "duplication" also relates to TEX. The

duplication I have in mind is that of duplicating or repeating a certain layout

consistently, both within a given document, and across numerous issues of that

document. This repetition of layout is one of the distinguishing characteristics

of a journal, as compared to a book (other than a book series). A journal follows

a consistent pattern in its layout, its font styles and sizes, page dimensions,

etc. Once the pattern has been established, or "designed", production becomes

a matter of "plugging in new values" for each issue: articles and reviews, and

advertising spots if they exist. Repetition is precisely what computers are so

good at, so why not apply this to journal production? If repetitious consistency

is what a journal needs, then TEX and macro packages are admirably suited to

the task.

I believe that a well-designed, comprehensive macro package is probably the

most crucial component to journal production using TEX or any other sophis-

ticated program, especially when it comes to producing a variety of journals. I

have a list of several advantages which I've seen over the past few years:

1. Once a macro package has been designed, covering all aspects of large document

production (size parameters, fonts, special formatting features, all the way to the

24 TUG VIII, 1987, Conference Proceedings

'fEX, Linguistics, and Journal Production

output routine), then there are only about 20 to 30 commands and parameters

which require attention when modifying the output for a new publication.

2. Modifying these commands and parameters is anywhere from very easy to moder-

ately difficult, since there are only so many ways to lay text on a page, to position

headers and footers, and so on. That is, not only is the number of commands

to modify fairly low, the amount of skill/time involved is far less than would be

needed to write a whole new package. This does not, however, mean that the jour-

nals must become almost indistinguishable. The flexibility TEX affords can create

very different looking pages; the similarity in commands does not lead directly to

similarity in appearance. 8

3. And of course, TEX can be used as a programming language to create new macros.

Although macro writing is still a relatively new skill for me, there are any number

of other users who have expressed their great satisfaction and pleasure in 'lEX's

flexibility when it comes to writing new macros.

4. "New" journals can be input right away using existing commands, while the actual

results of those codes can be worked out in the macro package. Thus, package

development is done in tandem with inputting, rather than wait for finalization of

commands and definitions before proceeding.

5. Users can input the same commands into articles which may be destined for dif-

ferent journals; the difference lies in the package specifications, not the commands.

This allows for great flexibility in staff, and in training: it's not a question of

knowing a specific journal's layout so much as knowing the commands for certain

blocks of text, and "signature" markings (choice of headers/footers/subheading

style, etc.).

6. The choice of word processing program and computer is independent of TpX. This

means that personnel already skilled in the use of a particular software package can

begin immediately to input TEX commands, as well as input the text, using what

they know. Thus, rather than have a new person learn three things (new machine,

new word processing program, new formatting commands), they only need to learn

one: the formatting commands of TEX.

7. Any documentation written for the original macro package is then directly appli-

cable to users of package A', or A", etc. That is, documentation describing the use

of commands is still valid, even if the results of those commands may have been

altered.

To summarise then, the flexibility which a 'fEX macro package affords, when

coupled with much-reduced keyboarding due to using authors' discs, makes

small-scale publishing of scholarly journals not only feasible, but economic, while

retaining a good to high level of quality in the final product. 9

8 See Horowitz 1987 on the joys of diversity.
9 In fact, if the output has to be top-notch, the dvi files can be shipped off to

TUG VIII, 1987, Conference Proceedings 25

Christina Thiele

3. References

Cheng, Lisa Lai Shen

1986 "de in Mandarin". Canadian Journal of Linguistics 31:313-326 [shown

here as Figures 5 and 7].

Coldeway, John C.

1984 "A Report on Computer Use by Learned Journals". Bulletin of the Council

of Editors of Learned Journals 3:3-9.

Horowitz, Irving Louis

1987 "Limits of Standardization in Scholarly Journals". Scholarly Publishing

18:125-130.

Knuth, Donald E.

1984 The TF;Xbook. Reading, Mass.: Addison-Wesley.

Morton, Herbert C., and Anne Jamieson Price

1986 "The ACLS Survey of Scholars: Views on Publications, Computers, Li-

braries". Scholarly Communication. No.5 (Summer).

Picard, Marc

1987 "Properties of Consonant Epenthesis". Canadian Journal of Linguistics

32:133-142 [shown here as Figure 4).

Publish!

1986 "Electronic Editing Software". Vol. 1, No.2 (November/December), p. 36.

Pulleyblank, Edwin G.

1986 "Some Issues in CV Phonology with Reference to the History of Chinese".

Canadian Journal of Linguistics 31:225-226 [shown here as Figure 6).

Romberger, Sta:lfan, and Yngve Sundblad

1985 "Adapting 'fEX to Languages that Use Latin Alphabetic Characters". Pro-

ceedings of the First European Conference on T£X for Scientific Documen-

tation. Dario Lucarella, ed. Reading, Mass.: Addison Wesley.

Schnucker, Robert V.

1986 "The Road of Survival for Journals in the Humanities". Scholarly Publish-

ing 17:355-363.

Walker, Douglas, C.

1987 "Morphological Features and Markedness in the Old French Noun Declen-

sion". Canadian Journal of Linguistics 32:143-197.

any one of a number of commercial firms with typesetting equipment capable of

handling dvi files ('IEXSource, Ampersand Typographers, ArborText).

26 TUG Vill, 1987, Conference Proceedings

Typesetting Greek

SILVIO LEVY

Mathematics Department

Princeton University

Princeton, N J, 08544

ABSTRACT

We discuss the design, creation and use of a family of

Greek fonts for 'lEX· The fonts can be used for modern

or classical Greek, by themselves or in combination with

the Computer Modern family of fonts. A short historical

introduction is followed by a discussion of special topics,

including the handling of accents and breathings, hyphen-

ation, and the two varieties of sigma.

A Bit of History

During the first four centuries after the introduction of the printing press

in Europe, the printing of Greek was hampered by the relative inadequacy of

existing types, at least in comparison with the quality and variety of the best

roman fonts. This was partly a consequence of the antiquity of the language

and its consequent evolution in both writing and pronunciation: not only did

the letterforms change over time, but they came to be adorned with a multitude

of diacritical marks, a legacy of zealous scribes and grammarians anxious to

preserve the pristine state of the language that lent them their prestige.

In the early days we find that the few printers that attempted to cut Greek

type generally ignored all this complexity, either disregarding the diacritics or

casting them separately and setting them above each line of text. Some texts

were printed in lowercase only; others would make do with roman capitals like

'A' and even some lowercase roman glyphs, like 'v' for 'v'. (See figures 1-12 in

[Brit. Mus. 1927], an excellent historical survey.)

TUG VIII, 1987, Conference Proceedings 27

Silvio Levy

In 1495 Aldus Manutius introduced cursive greeks. They became a resound-

ing success, as they reproduced the florid and idiosyncratic handwriting of the

day, full of abbreviations and ligatures. The inordinate number of ligatures is in

fact the most striking feature of such fonts: for example, Fell's "Great Primer

Greek" [Morison 1967, p. 102] has sorts for many four-letter words and prefixes.

Although skilfully typeset books using cursive fonts are undeniably beautiful

(see [Brit. Mus. 1927], figure 29), the use of so many ligatures was a nightmare

for compositor and reader alike, since in some cases the component letters are

virtually unidentifiable. Gradually the fonts were scaled down in size, but the

practice of imitating handwriting remained until the end of the eighteenth cen-

tury, when Bodoni, Goschen and Didot paved the way back to a more sober

course.

Still problems remained. Forson's greek [Mosley 1960], first used in 1826

and destined to become the standard of the English-speaking world, continues

the illogical tradition of mixing upright capitals with slanted minuscules; in

particular the bl~nding of Greek and roman text leads to poor results (figure

1). Didot's design was somewhat more felicitous, and became standard in Italy,

France and Greece itself (figure 2), but the type is narrow and irregular, bearing,

according to Scholderer [Brit. Mus. 1927, p. 14], the 'malign mark' of Bodoni's

greeks (which were admittedly not a match for his inspired romans).

That Myo' in this phrase originally meant 'reckoning •, 'calcula-
tion' is clear from Aeschines 3 § 59 87-a~ w<pi XP'II-'an11" aii'IAr.Jp/H)P
-'•a .,..o>..XoiJ xpo11ou «a8«,&!p•8a (.,..l -rovr; >.oy<up.ool1., • lrmlJO, o "Aoy•cr,..O~
ITIJ)'"~1ahi!JI<JJ18fl, o~lJ.ls ••• OCTT&ll ol.ilt. a11"ipx•-ral ••• owaii«UCTa~ a>.'l8ij
.rlla& OT& &~ awo~ 0 Aoy&crpor alpfi. Dealing with this in his reply,
Demosthenes says (18 § 227) C.o:'IT•p i!J' JWa., olol'fiiO& 'ITEp~t'illa< xpqpo:ra

'"'I' ('that he has a balance ') "A.oyi('lcr8•, &~~' «a8a&p&uw a! ,Yijcpot 10:al
l''la;., w~p•ii, cru-yx .. p•in (for the compound cf. ~ «a8mpoiicra .Jt~cpor; of
a vote for conviction and Dion. Hal. Ani. Rom. vii. 36 ;w, fi &., al
w>.dou.- ,Yijcpat <a8a&poou•, TOYrO fi"Oiftll). Herodotus has o:al a~ l<al 0

Figure 1

·EodptXV o£ 'tlWJr. S't6Afi1JO! XtXt VeX €mtjl:xucr~ OlcX 'tOO

cbpou tiiiv)(,EtAtwv to f.LetWMY 'tOO xotf.IW!Javou ~:pu

yOOaa: f.Ltt& tp6f.Lc.ll, &J.!.:l E!ce xtvou11eva: 'tcX BAli~

q>txpl% toll. '0 o€ xa:Ao<; WAiiipc<; 1it1Jy~91J t~v €rttot:l-

atXV e:Z<; 'tou; aunp6q:>c.ll<;; tOll rciii<; vuxupw~ ortttX·

o(% eZ<; X£Yt'Yj't~V OltOXcXJ.l.lO'OV rti!pttl1At"(!1EV'I'j irt£ad-

q>91J tXutov xa:9' un:voll<;. 'AU' at Ortt~Xa!ott, tdt 5ve:tptx

Figure 2

(Incidentally, the different treatment of capitals established itself in mathe-

matical typesetting. In English books, Greek capitals are the only math letters

28 TUG VIII, 1987, Conference Proceedings

Typesetting Greek

that are not slanted; in French and German books they conform with the rest.

The Computer Modern Greek faces are based on Porson. They are, of course,

meant for math; when used for text, as in [Wonneberger 1987], the results fall

short of the perfection achievable with 'lEX-)
It was not until the beginning of this century that really well-designed Greek

types became available, including Scholderer's 'New Hellenic' type (figure 3),

based on a pre-Aldine model, and the Monotype font shown in figure 4, a much

improved version of Didot's design and perhaps the typeface most favored for

high-quality printing in Greece during the last few decades.

IQANNOY A'

'H ' ' r ' '..1. 'B ~ ' ~ X A aLWVW~ <;,W'YJ E'f'av!!.pW 'YJKI!. OW, TOV ptaTOV

'EKeivo Tiov \rrrf\pxev erne TI,v O:pxf}v, b:etvo Tiov E)(o!JEV
O:Kovcm, b:eivo Tiov E)(o!JEV !of\ IJE To IJCxTta f..IOS', b:eivo ;rov
iTOpOTT]pi}aaiJE Kal TO xepta IJOS ~i\6:q>f]aav, mpi TOV A6yov
611i\aSti Tf\s ~wf\s, - Kal Ti ~wti ~q>avepw&r,Ke Kal E)(o!JEV !Sf\ Kal

Figure 3

Atyo &x6fl<X

ea. LaOUfl€ -de; cX!J.UYaocA.tec; v' &v6(~ouv

't'cX fl&p(J.otpot \leX AcX.!J.itOU\1 O''t'0\1 ~ALO

't'~ 6&J...otcrcroc \leX XUflot't'L~E:L

Figure 4

Requirements

My main motivation in designing a family of Greek fonts is the preparation

of a Modern Greek-English dictionary. This in itself makes the design more

exacting: the fonts should not only look good individually and in combination,

but also blend well with Computer Modern fonts; there should be at least three

main styles, different enough that no special effort to distinguish between them

is required, even in small point size; and the typing should be as painless as

possible on a standard (English) keyboard. This last condition is, of course,

open to interpretation, but I define it to mean that each grapheme (letter, accent,

etc.) should require as few keystrokes as possible-generally one, but occasionally

more, like accents in English.

TUG VIII, 1987, Conference Proceedings 29

Silvio Levy

In esthetic terms there are a lot of details to work out, but the foundation

has been laid. I follow loosely the type shown in figure 4, which shares several

features with the Computer Modern roman: sharp contrast between thicks and

thins, similar letter widths, and a wealth of texture and detail. (This is not

surprising since the 'modern' family of fonts goes back to Bodoni and Didot.)

But it also has distinguishing features, which recapture some of the beauty of

cursive writing: its strokes are more fluid, and there is no left-right symmetry

(compare a roman 'o' with a greek 'o').
Modern Greek has traditionally been typeset with the diacritic apparatus

of ancient Greek, which is very rich: it contains two accents, the acute ' and

the grave ', that can go over any vowel, plus one, the circumflex -, that can go

over the vowels ot'l)tuw; two so-called breathings ' ',one of which goes over every

vowel or diphthong in initial position; the diaeresis ··, that can go over 1 and u;

and the iota subscript . , that can go under ot'I)W. An accent plus a breathing,

or an accent plus the dieresis, can coexist; furthermore any accent, breathing or

accent-breathing combination can share a vowel with an iota subscript. Here,

for example, are the 24 possible varieties of lowercase Of.:

In the last several decades the tendency has been to get rid of these compli-

cations, and now the "official" system in use in Greece includes only one accent

and the dieresis, without breathings or iota subscripts. Even though I work pri-

marily with modern Greek, however, I thought it short-sighted not to include

the whole apparatus, having in mind both classicists and those traditionalists

who still prefer the three-accent system, as do some publishing houses.

It was clear right away that these diacritics should be implemented as liga-

tures, not as 'JEX accents, because in 'lEX words that include accents cannot be

hyphenated. This implied that 128 font positions were not enough. Fortunately

'lEX and METAFONT are well equipped to handle 256-position fonts, though

most device drivers are not (see the section 'Other Problems').

Following the one-keystroke-per-grapheme rule, then, one can conjure up the

last alpha in the display above by typing >-al, which accesses a four-character

ligature. The remaining conventions for diacritics are: ' and ' for the acute and

grave, respectively; " for the dieresis; and < for the rough breathing. (If you're

wondering how to produce quotation marks, or u&icrotywyu.:ciu, it's by typing ((
and)) .)

The Font Layout

A further complication has to do with the letter sigma. According to Knuth

[1980], the letter 's' is in a class by itself in terms of complexity of design; its

Greek counterpart is similarly difficult, though for different reasons. A sigma

in initial or medial position in the word is written cr, but in final position it

30 TUG VIII, 1987, Conference Proceedings

Typesetting Greek

is written c;. Since the alternation is entirely conditioned, it seemed a pity to

require different characters in the 1EX file to represent the two varieties of sigma.

The first solution I tried made no assumptions on the font. It consisted in

making 's' an active character, which checked the next token and printed cr if

it was a letter, ~ otherwise. There were two drawbacks to this procedure: the

letter 's' could not be used in control sequences, and the check was expensive.

(It also didn't work when the next token was a control sequence that expanded

to one or more letters.)

A better idea is to save one position in the font for an invisible dummy

character. All punctuation marks (and the space) are made active; they expand

to the dummy end-of-word character, plus the punctuation character. An 's' by

itself prints as cr, while an 's' in ligature with the dummy-which is to say, at the

end of a word-prints as c;. All other letters yield themselves when in ligature

with the dummy. This is still not ideal for two reasons: 1EX is always "obeying

spaces," and words separated by something other than punctuation or spaces

(say \par) count as one. (But this might be the only practicable solution for the

Hebrew alphabet, which has five chameleon letters.)

The solution I chose avoids the drawbacks above, at the expense of several

positions in the font. Namely, the font contains each of the possible combinations

acx, q3, ... , aw, which are automatically accessed as ligatures when the word

contains 's' followed by a letter.

With all the s+ letter combinations and all the vowels with diacritics, it turns

out that not even 256 characters are enough. Since I couldn't push the font size

any further, I decided to eliminate some of the vowel+ diacritic combinations.

The obvious candidates were the combinations of breathings with grave accent,

which can only occur in a restricted number of monosyllables, and thus can be

typeset as accents, because no hyphenation is required anyway. So I made the

characters < and > active. Depending on whether or not the next character is ' ,

these active characters expand to an \accent or to a \char, the latter meant to

form a ligature with what comes next. (Actually, things are not quite so simple.

A breathing or accent over a capital vowel is traditionally written before the

letter, so the \accent control sequence is only emitted if the following character

is lowercase.)

The complete layout of the fonts is shown on the next page. There are a

few unfilled positions, two of which I'm saving for the digamma, whose design I

haven't yet tackled.

Other Problems

In order to write continuous text, I had to prepare a modern Greek hyphen-

ation table, which I'm currently testing. The hyphenation of modern Greek

follows closely that of ancient Greek, which is straightforward (that is, described

by a fairly short set of rules) because Greek had originally a phonetic script-one

TUG VIII, 1987, Conference Proceedings 31

Silvio Levy

'00

'01

'02

'03

'04

'05

'06

'07

'1 0

'11

'12

'13

'14

'15

'16

'17

'20

'21

'22

'23

'24

'25

'26

'27

'30

'31

'32

'33

'34

'35

'36

'37

0

-

O''YJ

0'11:

cr~
,..

(
0

8
...

H

II
~

.!::!.

'

'YJ

1C

~
' 0(

' ()(

&

' 1)
,

1)

ij

' w
,
w

w
\

L
,
L

i.

' e:

' e:
.,

'f.

1

0"0(

O"L

ox
0'~

!

)
1

9

A

I

X

'l'

0(

L

X

~
• ()(

<I

0(

...
()(

•
1)

"' 1)

~
e
w
.,
w
....
w
• t
.,
L

l
• e: . ,
e:

t

1l

2 3 4
o-8

cr9 ox a A.

ap 0'0 crt"

0'~ '
..

* + '
2 3 4

• :
u "' ~

e K A
p I: T

z [....

0' 8

9 X)..

p <; T

~ II
'

' ' ' ()(0'0('f.

"
, ,

()((JO('f.
.,.
at O'ot ~
' ' ' 1) 0'1) 1l ,

'
,

1) 0'1) 1l

~ crij jj
• ' ' w O"W <p
., , ,
w O'W <p
...

0 w O"W

' \ ' L O"L \)

., , ,
L O'L 1.)

l - u O'L

' \ ' e: 0"€ 0 .. , ,
& 0'€ 0

t "(u . ' <p p p

32 TUG VIII, 1987, Conference Proceedings

5 6 7

O'E: O"<p 0''(

O"fl O''V 0'0

0"1.) of3 O'W

'
v -

%
,

- I
5 6 7

' --
'

E cp r
M N 0
y B n
]

.,
"'

e: <p '(

[l 'V 0

\) f3 w
-H -

• •
'f. 'f. O"'f.
<I .,

' 'f. 'f. O"'f.
.,.
'f. ~ O''f.
• ' 1l 1l 0'1J
., .,

' Tl 1l O"T)

Ti
....

crjj Tl
e • <p <p O"<p
., , ,
<p <p O"<p
... ...
<p <p O"<p
• • ' \) \) 0'1.)

"
.,

' \) \) 0'1.)

...
\) \) 0'1.)

• ' ' 0 0 CJO

"' "
,

0 0 0'0

b
... G \)

'
, -0' 0" (J

Typesetting Greek

letter for each phoneme and vice versa. This conservatism means that hyphen-
ation does not necessarily occur between syllables, as in the word CTt"a.u-p6c; 'cross',

now pronounced [sta · vros]; but this apparently doesn't bother anyone.

One difficulty, however, cannot be resolved by means of mechanical rules:

the digraphs !J.1t, v-r and yx are sometimes pronounced as nasal+ voiced stop,

sometimes as voiced stop alone, depending on the word (also sometimes on the

speaker). In the first case, the group can be split, but in the second, one should

hyphenate before the group. This problem seems to be solvable only by trial and

error.

The last problem I want to discuss is that of device drivers. We have been

using various dvi-to-PostScript drivers in Princeton, and I found that none of

them would work with 256-character fonts, even though both 'lEX and PostScript

are designed to handle such fonts. I was, however, able to adapt Nelson Beebe's

excellent driver dvialw [Beebe 1987] after making only three changes, because

the program is well written and well documented. I exhort all those who write

dvi drivers to include 256-character fonts in their design, since they will certainly

become more necessary as 'lEX extends its reach around the world.

Bibliography

Nelson H. F. Beebe, Public domain 'lEX DVI driver family, TUGboat, 8:1 (1987),

41-42.

British Museum, Greek Printing Types, London, British Museum, 1927.

Donald E. Knuth, The LetterS, The Mathematical Intelligencer, 2 (1980), 114-
122.

Stanley Morison, John Fell: the University Press and the 'Fell' Types, Oxford,

Clarendon Press, 1967.

J. M. Mosley, Porson's Greek Types, Penrose Annual, 54 (1960), 36-40.

Reinhard Wonneberger, Typesetting 'Normaltext', TUGboat, 8:1 (1987), 63-72.

TUG VIII, 1987, Conference Proceedings 33

The Ottoman Texts Project

WALTER ANDREWS AND PIERRE MACKAY

Department of Near Eastern Languages and Civilization

University of Washington

Seattle, Washington 98195

ABSTRACT

The Turkish orthographic reform of 1928, which re-

quired the abandonment of Arabic script in favor of a Latin

letter alphabet, was accompanied by a cultural rejection

of all literature from the Ottoman period of Turkish his-

tory. As a result, only a small part of Ottoman Turkish

literature has been made available in scholarly editions in

the new orthography. The Ottoman Texts Project is a

cooperative effort of Turkish and North American schol-

ars to provide new editions of these works using popular

low-priced personal computer systems and standard gen-

eral purpose software. This paper describes an approach

based on the adoption of 'lEX as the preferred output sys-

tem for publication.

The Ottoman Texts editing and typesetting project represents an attempt to

provide a simple, low-cost system for the entry, editing, and typesetting of tran-

scribed [romanized] Ottoman Turkish texts. The purpose of developing such

a system was to take advantage of the increasing availability of microcomput-

ers world-wide and to induce the editors of Ottoman texts- especially Turk-

ish editors-to employ electronic media for their editing tasks. The benefits to

scholars of having a large corpus of texts available in machine-readable form

seem obvious, but overcoming "technology cringe" on the part of scholars whose

devotion to medieval literature stems in large part from a strong conservative-

traditionalist ideological bent is no small task. Nonetheless, the rewards of con-

verting a significant number of such scholars would be quite high. The vast

TUG VIII, 1987, Conference Proceedings 35

Walter Andrews and Pierre MacKay

majority of significant Ottoman Turkish texts await up-to-date editing and the

suggested technological change could have a major impact on the speed and ac-

curacy of the editing process as well as on the development of lexicographical

tools and on many areas of literary and linguistic study.

The situation in Ottoman studies that makes a switch to electronic media

especially attractive at this time is rather complex and demands some historical

introduction. From its earliest years at about the beginning of the 14th century

until early in the 20th century, the Ottoman dialect of Turkish was written in

the Arabic script. The political decline of the Ottoman Empire from its pinnacle

of world power in the 16th century to its status as a moribund, defeated ally

of Germany following World War I, was arrested in the first three decades of

this century by a political and ideological revolution that saw the establishment

of a Turkish Republic and an accompanying rejection of the literary, cultural,

and religious institutions of the Ottoman past. One aspect of the cultural rev~

olution was the adoption of a latin letter alphabet for Turkish, a change which

had among its consequences the expansion of literacy beyond a small elite cir-

cle to the general populace, a conscious effort to simplify the written language,

and a resultant major decline in the ability to read and comprehend the Ot-

toman literary language in any of its forms. The ethos of the early years of the

Republic, to which the Ottoman Empire appeared as decadent and its culture

as derivative, also meant that, at a time when the scholarly edition of older

texts was becoming a growing concern in other parts of the world, in Turkey

interest in things Ottoman, including Ottoman texts, was considered backward,

anti-nationalist, counter-revolutionary, and wrong-headed. As a result, very few

texts were adequately edited and. the population in general was further cut off

from its historical past. Since the Second World War, however, there has been an

increased scholarly interest in Ottoman texts and in the transcription and edition

of such texts. This interest has grown with the growth of a tolerance for some

reemergences of older ethical, religious, and cultural practices and attitudes.

It is clear that the particular situation in Turkey today lends itself to the

adoption of editing methodologies that take advantage of computer technology:

there is a large cadre of well-educated persons with very positive attitudes to-

ward technological innovation; the Latin alphabet is used [with modifications for

Ottoman transcription]; most of the basic editing work remains to be done; there

is already great interest in the types of concordancing, indexing, lexicographical

analysis, etc. that can be most easily done by computers. Nonetheless, Ottoman

studies is still an area that attracts persons who would be least likely to welcome

technological innovation and so any change would need to bring immediate and

obvious benefits. When the editing project was initiated, it was decided that the

result should have the following characteristics:

1. It should be easy to use even for the most unsophisticated user.

2. It should be adaptable to many different circumstances and should be easily

36 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

supportable.

3. It should obviously eliminate the need for more than one entry of the basic

text. [This is, of course, common to all computer word-processing systems but it

is such a major departure from the usual round of draft typings that its benefits

must be emphasized to those who have not experienced it.]

4. It should be capable of producing typeset camera-ready copy for printing.

[This is a major potential benefit even in Turkey where the costs of more labor-

intensive typesetting methods are growing rapidly.]

The project developed in several stages and was not without its problems

and false starts. The first stage involved convincing a noted Turkish scholar and

respected editor of Ottoman texts to come to the University of Washington to

attempt to edit the collected poems of a 16th century Ottoman poet using the

IBM XT already employed by the Department of Near Eastern Languages and

Civilizations for the development of Turkish character-sets. Scholarly processes

being what they are it turned out to be easier to bring the scholar than to have

the necessary word-processing capabilities ready when he arrived. As a result, a

rather cumbersome combination of Microsoft's WORD, Rosesoft's "smart key"

program [PRO KEY], and a series of BASIC programs developed by Robert Blum

of the UW administration was used to enable the Turkish visitor to input and

edit about 90% of the poems in the collection [over 500 poems] in about three

months. The editor, who had had no previous experience of computers and no

particular liking or aptitude for them, was an eager and willing convert to the

process. Prior to his departure, we were also able to employ a simple translation

program which converted the character-set designed for the XT to 'lEX notation

and, subsequently, to produce a typeset sample of the edited text on the SUN

minicomputer. The reaction of our visitor to the results of this process, which

was carried out with the help of two fellow scholars without the intervention of

typists or typesetters, was pure delight and amazement.

In the ensuing months the project has been considerably refined and im-

proved. With the invaluable assistance of the UW Humanities and Arts Com-

puting Center and its resident character-sets guru, Gerald Barnett, we have been

able to develop a word-processing system that is simple, efficient, flexible, and

low-cost. The system is based on Quicksoft's PC WRITE program used with

EGA/VGA and compatable graphics hardware.* The advantages of PC WRITE

for this kind of word-processing are numerous but it is worth mentioning a few

in some detail.

Given the goal of making this technology widely available among scholars

and students [especially among foreign students and scholars), the fact that PC

WRITE is low-cost, share-ware ($89.00 with full support] makes it an attractive

* NOTE: At present, the system produces a host of irritating "ghost diacritics"

when used with the IBM PS 2 graphics-these are a distraction more than a real

hinderance but, as yet, we have no idea why they occur.

TUG VIII, 1987, Conference Proceedings 37

Walter Andrews and Pierre MacKay

alternative. Moreover, PC WRITE permits virtually limitless customization of

keyboards, fonts, printer controls, etc. in a manner accessible to persons without

any knowledge of programming or programming languages. Using a simple set of

programs-a program designed at Duke University for the creation of characters

for display on an EGA driven monitor and a program being developed by Gerald

Barnett of the UW for the production of downloadable printer fonts-we have

been able to produce a word processing system that can display and edit an

extended IBM character-set, which will allow the use of modern [roman alphabet]

Turkish, the romanized transcription of Ottoman Turkish [Arabic alphabet],

and a full English characters font. One can also switch instantly between a

standard IBM keyboard, an IBM keyboard adapted to Turkish characters, and

the standard Turkish keyboard with extensions for the Ottoman character-set.

In addition, the system supports draft printing on the IBM Pro Printer and

letter quality printing on the NEC and Toshiba 24 pin printers [with the use of

a bi-directional tractor].

The extended IBM character-set uses 8 of the special European characters,

32 special Ottoman transcription characters [on ASCII codes 192-223], and 9

special modern Turkish characters [on ASCII codes 225-233], as well as the full

English set. All of the modern Turkish characters appear as characters on the

modified standard keyboard. The Ottoman Turkish characters [standard English

characters with diacritics] are called up by two-key sequences. For example, a

"d" with a dot under it is produced by striking "/" followed by "d"; all other spe-

cial Ottoman characters are produced by the same sequence ["/"+"character"].

Keyboard arrangement and the particular character used to call up the special

characters can be easily modified to suit the preferences of the user.

One fortunate aspect of the print control features of PC WRITE for this

project is that the print control program can be set up to support two different

fonts for each character. Therefore, 'lEX notation can be provided as an alter-

native for each character and translation from the usual word-processor font to

'lEX notation can be done automatically by simply printing in the 'lEX input

character set to another file. Because PC WRITE produces "clean" ASCII files,

the material is immediately ready for typesetting in whatever 'lEX environment

is being used.

Accented character sets in T.EX
In the few years since the official release of 'lEX, a number of attempts have been

made to adapt the program to languages other than English. The best known

successes have depended on adaptations of the program itself, partly because

the standard release of 'lEX can support only one system of hyphenation at a

time, which makes a truly bilingual document quite difficult to produce. These

adaptations may be broadly classed as program-based extensions of the language.

The extension which is most obviously necessary is the addition of a primitive

which can control the switch between one predigested hyphenation pattern and

38 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

another. Michael Ferguson's bilingual CNRS-'IEX, which was initially developed

for an environment in the province of Quebec, where French and English are

constantly intermingled, is one of the outstanding developments in this class of

adaptations, and there are others as welL

A second extension is needed to get around the probiem of hyphenation in

languages which make use of diacriticals and accents. The basic form of 'lEX
will reject any word containing an accent from the evaluation routine which

normally looks for acceptable hyphenation breaks. In effect, any word with an

accent is treated as if it were an unbreakable horizontal box, and is not evaluated

for hyphenation at all. This can make line-breaking very difficult, and several

users of 'lEX have found it necessary to introduce a loop into the program so

that accents and diacriticals will be stripped out just before the entry to the

hyphenation routine, and then returned to their remembered positions after the

discretionary hyphen nodes have been inserted into the word.

The disadvantage of both these systems is that the adapted program is no

longer 'IE;X. It is often possible to add the extra features in such a way that the

resultant program will produce DVI files that are indistinguishable from those

generated by 'JEX, but the extra features are not generally available on all sys-

tems which run 'JEX, and the user is often excluded, therefore, from some of the

most popular small system versions of 'JEX.
An alternative solution to the problem of accented languages, though not

of bilingual hyphenation patterns, is a font-based, rather than a program-based

approach. Font characters may be generated with the accents already applied,

and mapped into unused or little-used areas of the normal Computer Modern font

table. If these characters are then supplied with an appropriate 'lEX \lccode

value, the hyphenation loop will recognize them as part of a sequence capable

of being hyphenated. For a monolingual application in a language which makes

intensive use of accents and diacriticals, this can be an attractive approach,

especially when there are reasons for wishing to preserve the ability to make use

of small system versions of 'J:EX. This is the approach we have taken for Turkish

'IE)C.

Turkish provides a delightfully vivid set of examples of accentuation and

hyphenation. The Latin-letter character set which has been in use since the

orthographic reform of 1928 is extended, even in Modern Turkish, by means of

a considerable number of diacriticals and accents. A diligent search through the

modern dictionary will produce several five- and si.x-letter words in which every

character is accented, and an intensive search might come up with words as much

as nine letters long with every character accented. In critical editions of Ottoman

texts, the number of accents more than doubles. Modern Turkish knows only the

accented and unaccented pair of letters's' and'§', but Ottoman Turkish has's',

'§', '~' and'§', which represent four completely distinct characters in the Arabic

alphabet. The letter 'h' shows almost as much variety, and so do several others.

Our Ottoman Thrkish font has twenty-seven accent and letter composites, in

TUG VIII, 1987, Conference Proceedings 39

Walter Andrews and Pierre MacKay

addition to the basic twenty-six simple Latin letters. Moreover, all composites

can exist in upper case forms as well as in lower case.

When a character set is as heavily accented as this, it is desirable to make

sure that the accents are positioned over their letters as exactly as possible. The

\accent primitive in 'lEX does a remarkably good job of positioning accents,

but it depends on a very general algorithm, and tends to place accents exactly

centered over or under the affected character, no matter what the appearance

of that character may be. Donald Knuth recognized this limitation in the very

earliest stages of the development of JEX, and has consistently recommended

that frequently used combinations of character and accent be developed as com-

posite single images in the font. The center of a character is not always the best

visual position for an accent; top accents should often be slipped just a bit to

the right, and bottom accents just a bit to the left of the mechanically defined

centerline of the character. Height and depth of accents are similarly subject

to aesthetic judgement. The\accent primitive of 'lEX works very well indeed·

for sparsely occurring accentuation, but not so well when accents occur in every

second word.

The problem of hyphenation in Turkish is even more striking. Turkish is

known as an "agglutinating" language, which means, in effect that each discrete

logico-syntactic qualification of a basic word is expressed in a single syllable

tacked onto all the other syllables in the word. At the same time, it is a language

in which consonant clusters are virtually unknown. A Turkish word is made up

of simple open and closed syllables, of the form cv or eve, and in native words

there is not even the distinction between long and short vowels. The result is

a language in which word-length tends to be greater than it is even in English,

and where, as a result, hyphenation is often necessary. The hyphenation rules

are inherited from the syllabification of Arabic. A syllable is assumed always to

consist of an initial consonant (even when that consonant is no longer written)

and to terminate in a vowel or in the next unvowelled consonant. This pattern

is followed so absolutely that it is permitted to break up native Turkish suffixes.

The plural suffix -ler- will be hyphenated as -le-rine in an environment where

the -cv-cv-cv pattern predominates.

A set of hyphenation patterns for Turkish will therefore be quite simple to

produce, but it will have no effect on most Turkish words unless something

is done about the problem of accents. A word such as rektirilebilecek ought

to provide six discretionary hyphenation nodes: rek-ti-ri-le-bi-le-cek, but the

\accent primitive applied to the first letter will guarantee that the standard

version of 'lEX gives up any attempt to hyphenate it at all.* If the initial letter

* The word is a future participle, and describes something as being capable

of being extracted at some time in the future-like a tooth. A morphological

division of the word would produce a very different hyphenation pattern, rek-

tir-il-e-bil-ecek, with only five nodes.

40 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

'~'were a single character in a special font, and were provided with an \lccode

value, the \accent primitive would no longer appear, and the word could be

evaluated for hyphenation.

Since the majority ofJEX users will never have to deal with \lccodes at all, a

word of explanation is in order here. lEX is designed to take care of the problems

of typesetting in a general manner, independent of the language of the text to be

set. The program recognizes that while many languages have paired upper and

lower case character sets, not all do, and the order of the basic text character set

may not be that of the Latin alphabet. For this reason, specific upper and lower

case pairings are not built into the program, but are supplied by macro definitions

in plain. tex. Like all other definitions in plain.tex, they may be replaced, and

it is quite possible to dispense with plain.tex altogether, and substitute another

basic format file such as sadece. tex, franc. tex, einfach. tex or sketo. tex.

(Knuth insists, for obvious reasons, that the one thing you may not call it is

"plain.tex.") If additional characters such as the accented letters of Turkish

are made part of the basic input coding table, then they are likely to exist in

upper and lower case pairs. Each lower case code is given itself as a lower case

\lccode, and the code of its upper case equivalent as its \uccode. These can

be used to force conversion from one case to the other, but the \lccode serves

an additional purpose. When 'lEX enters the program loop which searches for

discretionary hyphen nodes in each word, it first unpicks all ligatures such as ffi

and then evaluates the resultant list from the beginning, working on any given

word only so long as every character it finds has a valid \lccode. Any node that

is not a simple character with a valid \lccode causes the routine to terminate;

the sequence so marked is supplied with no discretionary hyphen nodes at all,

and therefore cannot be broken by the line-breaking algorithm. This is what

prevents hyphenation in the case of the Turkish word given above.

Input Code Interpretation

The Turkish text-editing system described above is driven from a keyboard

mapped to conform as closely as possible to the standard Turkish typewriter

keyboard. This mapping is not used directly in the design of the Ottoman Turk-

ish font and, in its present form, is isolated from the actual 'lEX input. After

the raw input has been corrected, it is passed through a filter which converts

the accented characters into character pairs (or, in a very few instances, into

'lEX command sequences). These pairings are based on a proposal made more

than ten years ago at the Orientalist Congress held in Paris, in 1974. Owing

to the extraordinary richness of the Ottoman Turkish character set, it has been

necessary to extend the old proposal, but it still retains the original principles,

which are closely associated with the coding scheme used by the Onomasticon

Arabicum project. The Onomasticon Arabicum uses a post-positive dot and a

post-positive hyphen to indicate diacriticals, which is acceptable in a data-base

of names, but not in continuous prose text. To provide the indications for Ot-

TUG VIII, 1987, Conference Proceedings 41

Walter Andrews and Pierre MacKay

toman Turkish diacriticals, we have taken over the exclamation point '! ', the

equals sign '=', and the colon ': '.

The exclamation point is used for all the "emphatic" letters of the Arabic

alphabet (the alphabet in which Turkish was written until1928). These are the

letters I) ad (usually pronounced as 'z' in Thrkish, and hence paired with a non-

Arabic letter known as Zad), $ad, lfa', ra' and ~a'. The equals sign is used

for all the consonants which are represented in Latin-letter transcriptions by a

letter with a bar under, such as g (dhal), more commonly written in Turkish as

'g;', and also for vowels with a macron or, following the Turkish convention, a

'hat' accent, and similar forms, chosen like the cupped '):!;', because the equals

sign is visually closer than the colon is. (Moreover, the colon is needed for a

different variety of the letter 'g'.) The colon is a catch-all for everything else,

but works out rather well visually, as it happens. The three post-positives are

not accents, but regular characters, which use the 'lEX convention of ligatures

to invoke accented characters from the font, just as the second 'f' in the normal

'lEX 'ff' ligature pair does. If a standard Latin-letter character does not have an

associated ligature table in the font, a following colon will be unaffected. Thus,

the letter 'o', when followed by a colon will produce 'o', but the letter 'e' when

followed by a colon will produce 'e:'. The equals sign is returned to its normal

function in math mode, and the colon and exclamation point can be invoked by

the command sequences\: and \bang when the simple character will not work.

This set of conventions produces an input file which can, if necessary, be

edited on a ordinary terminal lacking the special Turkish character features, and

which a Turkish speaker can become accustomed to without too much difficulty.

When coupled with a well-designed macro file and a rewritten hyphenation table,

it provides the possibility of naturalizing a 'IEX environment into Turkish without

any large investment in special purpose hardware and rewritten versions of non-

standard (non-)'!EX.

The Font

Donald Knuth's Computer Modern fonts come with a wide range of accents,

which cover most of the requirements for Turkish. The only obvious lack is

the flat cup which is used under both upper and lower case 'b' as an aesthetic

variant for the simple bar under the letter. All the existing accents in Computer

Modern are designed for consistency with the stroke-weights and proportions

of the underlying alphabetic characters, and it is therefore very desirable to

retain the details of this design in any associated font of accented characters.

The vertical and horizontal positions may be altered and, for other languages

than Turkish, the angle of acute and grave accents over upper case letters, but

the basic proportions of each accent or diacritical remain unchanged. This is

achieved by taking over the entire text of the Computer Modern character file

accent. mf and converting the beginchar . . . end char pairs to def and enddef.

It is not quite so easy as that, but the process is essentially mechanical, and

42 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

guarantees the preservation of all the essential design details for each accent.

(The flat cup under 'h' is based on the slavic tie accent, turned upside down.)

The resultant file, accdef .mf, is now full of "definitions" which can be invoked

as part of the program file for composite characters. Positioning, however, can

not be entirely taken care of in the accdef. mf file. The accents in accent. mf

are, for the most part, designed with a fixed reference point at the top of the

image, but correct positioning usually requires a knowledge of where the bottom

edge will be. It is herefore necessary to take some of the calculations from the

accent definitions, and incorporate them into the description of the underlying

character. For example, the superscript dot accent in tne Computer Modern

font is produced as follows.

iff ligs > 0: cmchar "Dot accent";
numeric dot_diam#; dot..diam# = max(dot..size#, cap_curve#);

beginchar(oct "137", 5u#, min(asc_height#, 10/rx_height# + .5dot..diam#), 0);

define_ whole_ blacker _pixels(dot _diam);

italcorr h# *slant+ .5dot_diam#- 2u#;

adjust_fit(O, 0);

pickup tiny.nib; pos1 (dot_diam, 0); pos2 (dot..diam, 90);

X1 = X2 = .5w; top Y2r = h + 1;

if bot Y2l < x.height + o +slab: Y2l := min(Y2r- eps, x.height + o +slab+ .5tiny); fi
Y1 = .5[y2z, Y2r]; dot(l, 2); %dot

penlabels(l, 2); endchar;

The corresponding accdef. mf definition is

def dot_accent(sufflx $, ©)(expr dotY _shift)=

save@;
forsuffixes $$ = @, @_: transform$$; endfor

numeric dh#; dh# := min(asc.height#, 10/rx_height# + .5dot..diam#);

define_ whole_blacker_pixels(dh, dot..diam);

pickup tiny.nib; pos0 ..l (dot_diam, 0); pos@..2(dot_diam, 90);

X@..J. = X@..2 = X$j top Y@..2r = dh + 1;

if bot Yc..21 < x_height + o +slab: YC..2l := min(Y<~..2r- eps, x_height + o +slab+

.5tiny); fi

Y@..l = .5[Y<~..2l, Y<~..2r];

numeric dot ...span; dot...span = dh - bot Y<1..21;

@ = identity if dot Y ...shift <> 0: shifted(O, dot Y ...shift+ dot ...span) fi;

for n = 1, 2: forsuffixes e = l,, r:

zc [n]e = zc_[n]e transformed@; endfor endfor

dot(©1, ©2); %dot

penlabels(@1 , @2); enddef;

To get this into position over the letter 'o', requires the following program

text,

cmchar "The letter dotted o";

dot ...sharp_values;

TUG VIII, 1987, Conference Proceedings 43

Walter Andrews and Pierre MacKay

beginchar(oct "025", 9u#, dot_top#, 0);
italcorr lh[x.height#, asc.height#] *slant- .5u# if serifs: +.25dot_diam# fi;
adjust_fit(if monospace: .5u#, .5u# else: 0, 0 fi);
penpos1 (vair, 90); penpos3 (vair', -90);

penpos2 (curve, 180); penpos4 (curve, 0);

X2r = hround max(.5u, 1.25u- .5curve);

X4r = w- X2rj x1 = xa = .5w; Ylr = x.height + vround 1.5oo; Yar = -oo;

Y2 = Y4 = .5x.height- vair _corr; Y2! := Y4! := .52x.height;

penstroke pulled_arce(l, 2) & pulled_arce(2, 3)
& pulled_arce(3, 4) & pulled_arce(4, 1) & cycle; % bowl

numeric dot..shijt, dot_top;

define_ whole_blacker_pixels(dot_diam, dot_top);

dot..shift = 0; %in this case, the position happens to be correct

X7 = X1 - .8dot_diam; xa = X7 + 1.6dot_diam;

dot_accent(7, a, dot_shift);

dot_accent(8, b, doLshift);

penlabels(1, 2, 3, 4, 7, 8); endchar;

in which the line

dot ..sharp_values;

expands to a macro

def dot..sharp_values =
numeric dot_diam#; dot_diam# = max(dot ..size#, cap_curve#);

numeric dot_top#; dot_top# = min(asc.height#, lOfrx.height# + .5dot_diam#);

enddef;

which repeats some of the calculations made in the definition of the dot accent.

The composites that result from this programming effort look, for the most

part, identical to the results of the application of the \accent primitive to char-

acters in the regular Computer Modern fonts. The one major difference comes

in the shape of the "hat" accent over the letter 'i'. In this instance, the accent

would spread beyond the left and right side bearings of the underlying character
and mess up the letter spacing if it were not pinched in, so a special narrow

hat accent is provided for 'i'. The proportions of each stroke remain essentially

the same as those in the original model, but they form an acute angle over the

top of the letter. Except in the case of this character and some of the uniquely

Turkish dotted uppercase letters, it will probably be difficult to distinguish the

two styles of accent in the final printed version even when they are intermingled

in the ~arne text.

The creation of the composite characters is only the first stage in the de-

velopment of the font. Next, the italic correction must be set for all the italic

and slant fonts. This is the spacing that may be added to the right side of any

slanted character to prevent it from running into something like a non-slanted

closing parenthesis. There does not seem to be any way except visual inspection

44 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

to discover an acceptable italic correction. One wants a fairly simple, general

calculation, but one which will do rough justice to all slanted versions of the

character. There were more proof copies generated to get the italic correction

right than for any other feature of the font. (In the absence of any accessible

system on which proofs could be displayed on the screen, a great many paper

proofs had to be generated.)

Following this comes the generation of ligature and kerning tables, which are

necessarily quite large, and need to be carefully worked out since there is only a

finite region of a tfm file that can be devoted to them. The smaller of the two

ligature tables, for the italic fonts, is shown in appendix A. It still needs one

further refinement; the kernings appear in the order of English letter frequency,

and it might be possible to gain a little efficiency by rearranging some of them.

Notice that the 'f' ligatures are altogether eliminated. In Turkish it is essential

to retain the distinction between the dotted and the undotted 'i, which cannot

be done if the 'fi' ligature is used. The problem that arises, in fact is to provide

adequate separation between the dotted 'i' and a preceding 'f '.

In addition to the accented characters, it was necessary to design three ad-

ditional characters for Ottoman Turkish. The simplest is a dot at about the

bar height of lower case 'e'. This is used for a type of Persian suffix known as

"izafet," which is very common in Ottoman texts. The remaining two characters

are representations of the Arabic letters "Ayn" and "Hamza," which are con-

ventionally represented by opening and closing single quotes in most fonts. The

"lazy man's 'ayn" (as just illustrated) is acceptable for the occasional reference,

but not for extensive literary texts. Ayn is not an accent, it is a regular con-

sonant of the Arabic alphabet and Hamza, though it can be omitted in many

positions is also a consonant. What is needed is a pair of characters which are

clearly distinguishable from single quotes, but sufficiently like them to conform

with the general appearance of Computer Modern. The programs shown below,

draw on the same standard definition as is used to generate the single quotes,

but alter the position and the proportions. The bulb is uppermost in both in-

stances, and is somewhat smaller than the bulb of the close quote. The tail is

brought out further from the side of the bulb, and is tucked more tightly under.

The versions for slanted and italic fonts use some special transformations to in-

sure that the 'ayn (that was the character from the Ottoman font) is correctly

formed. In effect, the character is built out to the left of the centerline, with a

reverse slant, and then reflected back into the normal letter space. The program

for these characters is Appendix B.

A complete passage from our first proposed critical text edition is given

below, first in 'lEX input coding, and then as typeset. The text from which this

passage was extracted runs to twelve pages, and was set without the benefit of a

properly rewritten hyphenation table. By good luck, most of the English pattern

hyphenations turned out to correspond with acceptable Turkish hyphenations,

but it will certainly be necessary to make up a proper Turkish hyphenation table

TUG VIII, 1987, Conference Proceedings 45

Walter Andrews and Pierre MacKay

in the near future. When that is done, and an appropriate set of formatting

macros has been written to isolate Turkish text from non-Turkish text and math

mode, we will have a Turkish language adaptation of 'lEX which can be exported

onto any small 'lEX system, with no alteration of the program whatsoever. The

full range of standard Computer Modern font styles will be available, and will

blend in perfectly with the normal unaccented library of Computer Modern fonts.

We will not have a truly bilingual version of 'lEX, but for a predominantly

Turkish language environment we will be offering a cheaper and more accessible

monolingual font-based adaptation.

\'A=s:ik!lik! zama=ninda \'is:k! va=sit!asi ve s:eyda=lik! \'a=lemi:nde

s:evk! vesi=lesi:, vus!lat eyya~minda mah!abbet muk!tez:a=si, fi:ra~k!

gu:nleri:nde h!urk!at i:k!ti:z:a=si, baha=r mevsi:mi:nde s!oh!bet

germi:yyeti:, mah!bu=blar mecli:si:nde s:ara=b keyfi:yyeti:, ca=na=neler

i:bra=mi ve \'a=s:ik!lar i:k!da=mi ve fuz:ala= mus!a=h!abeti: ve \'uk!ala=

i:lti:fa=ti, ehl .. i: di:ller rag:beti: ve t!a=li:bler mi:nneti: i:le

di:du:gu: ebya=t ve es:\'a=r, ki: her bi:ri:nu:n= lat!i=f ma\'a=ni=si:

ca=m .. i naz!ma s:ara=b .. i rengi=n ve s:i=ri=n h=aya=la=ti bezm .. i:

s!afa=da nuk!l .. i: s:ekkeri=n olup mu\'a=s:i:ra=n .. i mecli:s .. i: z=evk!

bu meyh=a=nenu:n= ba=deci:si: ve h!ari=fa=n .. i bezm .. i: s:evk! bu

ka=s:a=nenu:n= sebu=-kes:i: olmis:lardi. K!alem .. i: i:\'ti:z=a=r bu

h=a=me .. i: i:nki:sa=r i:le bu evra=k!a tah!ri=re i:k!da=m ve bu

ecza=ya tast!i=re i:hti:ma=m go:sterdi:.

'A§I~h~ zamanmda 'I§~ vas1tas1 ve §eydah~ 'aleminde §evl): vesilesi, vu~;~lat

eyyammda mal:,labbet mul):tezasi, fira~ giinlerinde l:,lurl):at il):tizas1, bahar mev-

siminde ~;~ol:,lbet germiyyeti, mal:,lbublar meclisinde §arab keyfiyyeti, cananeler

ibrarm ve 'iif,III):lar il):dam1 ve fuzala mu~;~al:,labeti ve 'ul):ala iltifatl, ehl·i diller rag-

beti ve talibler minneti ile didiigii ebyat ve e§'ar, ki her biriniifi latif ma'anisi

cam·l na!?5ma §arab·l rengin ve §irin bayalatl bezm·i ~;~afada nul}l·i §ekkerin olup

mu'a§iran·l meclis·i ~evl} bu meybaneniiii badecisi ve l:,larifan·I bezm·i §evl): bu

ka§aneniifi sebu-ke§i olrm§lardL I):alem·i i'ti~ar bu bame·i inkisar ile bu evral):a

tal:,lrire il~dam ve bu eczaya tastire ihtimam gosterdi.

46 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

Appendix A

The turki t. mf driver file

% Turkish Text Italic with full diacriticals, based on

% The Computer Modern Text Italic family (by D. E. Knuth, 1979-1985)

%Adapted for Turkish by P. A. MacKay, January, 1987.

if ligs > 0: font_coding_scheme := "TeX Turkish"

else: font_coding_scheme := "TeX typewriter Turkish" fi;

mode_setup; font_setup;

italquery = oct "077"; % use the italic questionmark for this class of fonts

if not monospace: izafeLdot =oct "175"; fi

input tkital;

input romanu;

input itald;
input tkdotu;

input tkdtil;

input tkaccu;
input tkacil;

input aynhmz;

input tkpnct;
if ligs > 0: input comlig;

else: input tksub; fl.

% itall.mf lower case (minuscules) with undotted i

% upper case (majuscules)

%numerals

% upper case with dotted diacriticals

% lower case italic with dotted diacriticals

% upper case with assorted acents

% lower case italic assorted accents

% ayn and hamza, izafet dot iff not monos pace

% punctuation common to roman and italic (reduced set)

% ligatures common with roman text

% substitutes for ligatures

% A thoroughly mixed list of names for the accented characters.

%These follow English, Arabic and Turkish conventions rather arbitrarily

% Only the letters that appear more than once in the ligtable are coded here.

HAT ..A = oct "044"; CHIM =oct "013"; DAD = oct "000"; DHAL = oct "014";

CUP_G =oct "015"; GHAYN =oct "001"; QAF =oct "004";

DOT _0 = oct "005"; TTA = oct "007";

DOT _u = oct "010"; HAT _u = oct "046";

haLa =oct "074"; chim = oct "033"; dhal = oct "034"; dad = oct "020";

cup_g =oct "035"; ghayn =oct "021";

hha = oct "022"; kha = oct "036"; doLi = oct "023"; haLi = oct "075";

qaf = oct "024"; gnaf =oct "037"; doLo = oct "025"; haLo = oct "043";

tta = oct "027"; doLu = oct "030"; haLu = oct "076";

font_slant slant; font_x_height x_height#;

% Accent ligatures not complicated by questions of kerning

TUG VIII, 1987, Conference Proceedings 47

Walter Andrews and Pierre MacKay

% good for both monospace and variable-space fonts.

ligtable "C":

ligtable "G":

ligtable "H":

ligtable "I":

ligtable "N":

ligtable "S":

ligtable "U":

ligtable "Z":

":" =: CHIM;

"·" =: GHAYN, "=" =: CUP_G;

''="

"·"
''="
"G"
11.11

=:oct "016", "!" =: oct "002";

=:oct "003", "=" =: oct "045";

=:oct "017";

=:oct "052", "="=:oct "0136", "!"=:oct "006";

=:DOT _U, 11 =" =:HAT _U;
11 :" =:oct "011", "="=:oct "0137", "!"-.oct "012 11 ;

ligtable "a": 11 =" =: haLa;

ligtable "i": 11 • 11 =: doLi, "=" =: hat_i;

ligtable "g": "·" =: ghayn, "=" =: cup_g;

ligtable "h": "=" =: kha, "!" =: hha;

ligtable "k": "!" =: qaf;

ligtable "t 11 : "!" =: tta;

ligtable "s": "·"=:oct "053", "="=:oct "0176", 11 ! 11 =:oct "026";

ligtable "u": ":" =: doLu, "=" =: haLu;

ligtable "z": ":"=:oct "031", "="=:oct "0177", "!"=:oct "032";

if monospace: font_normaLspace 9u#; % no stretching or shrinking

font_quad 18u#;

font_extra_space 9u#;

letter _fit# := letter _fit := 0;

ligtable "A": "=" =:HAT ..A;

ligtable "D": "=" =: DHAL, "!" =: DAD;

ligtable "K": "!" =: QAF;

ligtable "0": ":" =: DOT _0;

ligtable "T": "!" -. TTA;

ligtable "c": "·" -. chim;

ligtable "d": "=" =: dhal, "!" =: dad;

ligtable "n": "=" =: gnaf;

ligtable "o": "·" =: doLo;

else: font_normaLspace 6u# + 2letter _fit#;

font_normaLstretch 3u#; font_normaLshrink 2u#;

font_quad 18u# + 4letter _fit#;

font_extra_space 2u#; fi

if not monos pace:

k# := -.5u#; kk# := -1 5u#; kkk# := -2u#;

% no haLo here

% three degrees of kerning

% The following ligtable entries are based on the entries in

% roman.mf. It has been necessary to extract many parts of the

% original entries in order to keep the ligature structure clear.

ligtable "d": "=" =: dhal, "!" =: dad,

dhal: dad: "w": "1": "1" kern +u#;

48 TUG VIII, 1987, Conference Proceedings

The Ottoman Texts Project

ligtable "F": "V": "o" kern kk#, doLo kern kk#, haLo kern kk#,

"e" kern kk#,

"u" kern kk#, dot_u kern kk#, hat_u kern kk#,

"r" kernkk#, "a" kernkk#, hat_a kernkk#,

"A" kern kkk#, HAT .A kernkkk#,

"K": II!" =: QAF,

QAF: "X": "0" kernk#, DOT_O kernk#, "C" kernk#, CHIM kernk#,

"G"kernk#, GHAYNkernk#, CUP_Gkernk#, "Q"kernk#;

ligtable "T": "!" =: TTA, TTA: "y" kern kk#,

"Y": "e" kern kk#, "o" kern kk#, doLo kern kk#, haLo kern kk#,

"r" kern kk#, "a" kern kk#, haLa kern kk#,

"u" kern kk#, doLu kern kk#, haLu kern kk#,

"P": "W": "A" kern kk#, HAT .A kern kk#;

ligtable "D": "=" =: DHAL, "!" =: DAD,

DHAL: DAD: "X" kern k#, "W" kern k#, "A" kern k#, HAT _A kern k#,

"V" kernk#, "Y" kernk#;

ligtable"O": ":" =: DOT_O,

DOT _0: "X" kernk#, "W" kernk#, "A" kernk#, HAT _A kernk#,

"V" kern k#, "Y" kern k#;

ligtable "A": "=" =:HAT ..A,
HAT ..A: "R": "n" kern k#, gnaf kern k#,

"1" kern k#, "r" kern k#, "u" kern k#, doLu kern k#, haLu kern k#,

"m" kernk#, "t" kernk#, tta kernk#,

"i" kern k#, doLi kern k#, haLi kern k#,

"C" kern k#, CHIM kern k#, "0" kern k#, DOT _0 kern k#,

"G" kern k#, GHAYN kern k#, CUP _G kern k#,

"h" kern k#, kha kern k#, hha kern k#, "b" kern k#,

"U" kern k#, DOT _U kern k#, HAT _U kern k#,

"k" kern k#, qaf kernk#, "v" kernk#, "w" kernk#, "Q" kernk#,

"L": "T" kern kk#, TTA kern kk#,

"Y" kernkk#, "V" kernkkk#, "W" kernkkk#,

"b": "e": "p": "r": "e" kern -u#,

"a" ke1n -u#, haLa kern -u#,

"o" kern -u#, doLo kern -u#, haLo kern -u#,

"d" kern -u#, dhal kern -u#, dad kern -u#,

"c" kern -u#, chim kern -u#,

"g" kern -u#, ghayn kern -u#, cup_g kern -u#, "q" kern -u#;

ligtable "c": ":" =: chim,

chim: "e" kern -u#,

"a" kern -u#, haLa kern -u#,

"o" kern -u#, doLo kern -u#, hat_o kern -u#,

"d" kern -u#, dhal kern -u#, dad kern -u#,

"c" kern -u#, chim kern -u#,

"g" kern-u#, ghayn kern-u#, cup_gkern-u#, "q" kern-u#;

TUG VIII, 1987, Conference Proceedings 49

Walter Andrews and Pierre MacKay

fi

ligtable "o": ":" =: dot_o, "=" =: haLo,

doLo: haLo: "e" kern-u#,

"a" kern -u#, hat_a kern -u#,

"o" kern -u#, doLo kern -u#, hat_o kern -u#,

"d" kern -u#, dhal kern -u#, dad kern -u#,

"c" kern -u#, chim kern -u#,

"g" kern -u#, ghayn kern -u#, cup_g kern -u#, "q" kern -u#;

ligtable "n": "=" =: gnaf, ""' kernkkk#, gnaf: '"" kernkk#;

ligtable oct "040": oct "100": % kerns for ayn and hamza

"A" kernkkk#, HAT _A kernkkk#,

"a" kern k#, hat_a kern k#;

ligtable ". ": II II =:oct "175"; % izafet dot

ligtable "f": %Turkish cannot use the ordinary ligatures for "f".

hat_i kern 3u#, doLi kern 3u#, % and therefore needs these kerns

oct "040" kern 3u#, oct "100" kern 3u#;

% ligatures for "-", "' ", and "'" in the comlig file

bye

50 TUG VIII, 1987, Conference Proceedings

Appendix B

The aynhmz. rn:f file

The Ottoman Texts Project

% Ayn and Hamza (smooth and rough breathing) for Computer Modern

% These letters were originally coded by P. A. MacKay in December, 1986,

% Ayn and Hamza are based on the comma supplied in em base. mf,

% but the jut is increased, the tail is tucked in more tightly, and the

% bulb is uppermost in both cases. Ayn is NOT the mirror image of Hamza in

% slanted or italic fonts, thanks to a little magic with currenttransform.

% Character codes @iJ40 and @100 are generated.

% if izafet_dot is known, character @175 (dot at bar _height) is generated

if unknown accsub: input accsub fi % needed for izafet_dot

newinternal pslant, nslant; pslant := slant; nslant := -slant;

cmchar "Rough breathing or 'Ayn";

beginchar(oct "040",5u#, min(asc_height#, 10/?x_height#), 0); %height of i-dot

italcorr asc_height# *slant+ .5dot_.size#- 2u#;

adjust_fit(O, 0);

currenttransform := identity slanted nslant

yscaled aspect_ratio scaled granularity; % build italic with reverse slant

x1 - .3dot_size = hround(.5w- .3dot_size); Y1 + .3dot..size = h; % smaller bulb

if monospace: comma(!, a, .6dot..size, .35u, vround .85comma_depth); %large comma

else: comma(l, a, .6dot..size, 1.75u, .85comma_depth); fi %comma; increased jut

currentpicture := currentpicture refiectedabou t((.5[1, r], h), (.5[1, r], 0));

currenttransform := identity slanted pslant

yscaled aspect_ratio scaled granularity; % restore normal font slant

penlabels(l); endchar;

cmchar "Smooth breathing or Hamza";

beginchar(oct "100", 5u#, min(asc_height#, 10/?x_height#), 0); %height ofi-dot

italcorr asc_height# * slant+ .5dot_size# - 2u#;

adjust_fit(O, 0);

x1- .3dot_size = hround(.5w- .3dot_size); Y1 + .3dot..size = h; %smaller bulb

if monospace: comma(l, a, .6dot..size, .35u, vround .85comma_depth); %large comma

else: comma(l, a, .6dot..size, 1.75u, .85comma_depth); fi %comma; increased jut

penlabels(l); endchar;

iff known izafet_dot: cmchar "Period raised to bar height";

dot _sharp_values;

beginchar(izafet_dot, 5u#, x_height#, 0);

TUG VIII, 1987, Conference Proceedings 51

Walter Andrews and Pierre MacKay

adjust_fit(O, 0); pickup fine.nib;

define_ whole_blacker_pixels(dot_diam);

pos1 (dot_diam, 0); pos2 (dot_diam, 90);

lft xll = hround(.5w- .5dot_diam);

Yt + .5dot_diam = vround(bar _height+ .5dot_diam);

z1 = z2; dot(l, 2); penlabels(l, 2); endchar;

52 TUG VIII, 1987, Conference Proceedings

What Should We Do for Japanese lEX?
An Overview of Japanese lEX Systems

NOBUO SAITO, KAZUHIRO KITAGAWA

Department of Mathematics

Faculty of Science and Technology

Keio University

3-14-1, Hiyoshi,Kohoku

Yokohama,223 Japan

ns%keio.junet@japan.cs.net

kaz%keio.junet@japan.cs.net

1. Overview

There are several Japanese versiOns of '!EXs available for the moment. For

example, there are at least four versions of the Japanese 'J:'EX system: Canon,

ffiM, NIT, ASCII Corp. and Keio University. In general, there are three major

adaptation methods to handle Japanese language: macro processing, preparing

preprocessor, and extension of 'J:'EX itself.

1.1 NTT ECL

The first version is implemented with the macro processing method. This method

is easy to develop, but there are a lot of limitations, and it is inefficient.

1.2 Canon and Japan IBM TRC (Tokyo Research Center)

They independently developed preprocessors that translate text written in Jap-

anese into normal ASCII text with font identification. There is still a limitation

for full utilization of the 'J:'EX system through the preprocessors. Advantages of

these two methods are that Japanese versions of 'J:'EX can be developed without

changing the TFM, or font format, and without a big change in device drivers.

1.3 ASCII Corp. and Keio University

We extended 'J:'EX itself as Prof. Knuth suggests in "'J:'EX: The Program", and

we exploited the SET2 dvi code that Knuth reserved for the future use. The

Japanese version of 'lEX developed by ASCII Corp. is based on the original

TUG VIII, 1987, Conference Proceedings 53

Nobuo Saito, Kazuhiro Kitagawa

'IEX82 written in Pascal. The one developed by Keio University is written in the

C language (originally developed by Pat Monardo). This method is suitable for

developing an efficient system, although this work might be very hard to finish.

Incorporating the way suggested by Knuth, there are two big problems which

occurred: in paricular, TFM and font formats are too poorly designed to handle

Japanese. These problems also occur in handling large character set languages

such as Chinese. To solve these problems, we extended the TFM and font for-

mats, and we also modified the device driver. So, this Japanese version of T£X
supports quite the same facilities as the English version does, though it is essen-

tially impossible to pass the original trip test. As a result of this experience, an

executable image of 'IEX was found to be very big. Hence, it is difficult to port

this 'lEX system into small scale computers like PC's.

There are three Kanji code systems currently available in Japan: JIS code,

Shift JIS code and EU C (Extended Unix Code). All of the Japanese versions of

'l£X depend on Japanese codes. One can process only JIS, another can handle

only Shift JIS, and so on. From 'lEX's point of view, there is no problem which

code we select to use.

Judging from these experiences, it is easy to adapt the 'lEX system to handle

oriental languages that have large character sets, such as Chinese, Japanese and

so on. Incorporating any method, we get the same output with little difference.

This difference depends on fonts and some other parameters.

2. Problems in Developing Japanese '!EX

The main work of the adaptation of 'lEX to Japanese is almost done, but it does

not mean that our work is completely finished. There are still a lot of problems

for us to solve. What should we do next? Solutions to the following problems

are still in experimental stages.

* vVhich font is standard Japanese Kanji character set for 'fEX?
e How do we extend the TFM file for large character sets, including font rep-

resentation form?

@ How do we pack large font sets for efficient access?

• How do we do vertical and right to left typesetting in general?

• Is there any PDL which handles a 2 byte font code?

e How do we smoothly input Kanji and ASCII English without frequent mode

changes?

o Is the Knuth and Plass line breaking algorithm suitable for oriental lan-

guages?

Currently, we are investigating all of these. The extension of TFM file and

font packing problems are in the final stage.

54 TUG VIII, 1987, Conference Proceedings

What Should We Do for Japanese JEX?

2.1 Standard Font

Probably, it is cumbersome to prepare over 6000 character fonts manually written

in the METRFONT program. One printing company, DNP (Dai Nippon Printing),

is ready to provide a good font set. We are using the DNP font now. Its quality

is fairly good and its cost is low! 1

2.2 TFM and Font Format

The current TFM format cannot represent font information for more than 256

characters. From the Kanji point of view, the width and the height of most of

Kanji characters are basically the same. Only for the special combination of

special characters, the width between the two characters is shrunk in half size.

Based on this characteristic of Kanji, the original TFM is not suitable for the

Kanji character set, extending only fontinfo entry being useless. So, we prepared

one table indexing to the fontinfo field. One is the default field (most cases) and

the others are special fields that point to the fontinfo entry. The Id field is added

to distinguish between the normal and extended TFM file for Kanji characters.

Another problem is how to store fonts. Typically, the amount of space re-

quired for one Kanji font set is about 2M bytes. So, the device driver cannot

read Kanji fonts at one time in the same way as with English fonts. To reduce

font storage space, a packing method should be used. But, with this method, we

cannot randomly access one character efficiently because the size of the packed

font data is not the same for all characters. A PXL file can provide random

access, but it needs more space.

Combining pk and index format is still large, because the index becomes too

large.

So, we need more elaborated packing mechanism for fonts. Solutions for this

problem are still in experimental stage.

2.3 Vertical Typesetting

How do we do vertical typesetting? Does 'lEX build the vlist before the hlist is

built?

2.4 PDL Problems

PDLs (Page Description Languages) which are currently available cannot handle

2 byte codes. They say that Adobe produces a Japanese version of PostScript.

We hope a lot of vendors will support multi byte PDLs.

2.5 Input Problem

We edit Japanese text using a Japanese version of Emacs, vi and so on. These

TUG VIII, 1987, Conference Proceedings 55

Nobuo Saito, Kazuhiro Kitagawa

are good editing facility, but provide a poor mechanism to mix Japanese with

English. Sometimes we use "word processor" running on an office system and

personal computers. Word processor supports a good Japanese input mechanism,

but poor editing facilities. There is no editor with comfortable and smooth

Japanese input mechanism. We must build a standard editor like Emacs for

Japanese text input and editing. We are building a prototype system running

under the Andrew window system.

2.6 Line Breaking Algorithm

The Knuth and Plass line breaking algorithm is good for two phase line building.

Japanese line breaking is 4 phase. If necessary, we need a new line breaking

algorithm.

3. Towards Elaborated Japanese Document Processors

'lEX is public domain software, and it should be widely used even in Japan.

Japanized 'fEX systems will be popularized more and more in the near future.

Currently, a lot of word processors running under ordinal personal computers

are widely used in Japan, and in these systems Kanji input and editing mecha-

nisms are elaborate. For the average users, these systems are quite useful, but

for professional users these word processors seem to be quite incomplete. It is

necessary to develop fully sophisticated Japanese document processors.

We would like to enhance our Japanese 'lEX system to replace ordinal Kanji

word processors. For that purpose, it is necessary to design it with a better

user interface, elaborate Kanji input mechanism and high quality Kanji output

system.

The final goal of the user interface seems to be to realize the WYSIWYG

scheme, and recent development of similar systems, like Interleaf, Publisher,

Frame Maker and so on, are very helpful for us to set our final target. Kanji

input mechanisms for ordinal Kanji word processors are recently well developed,

and there are a lot of input schemes. The Romaji-Kanji automatic translation

scheme is widely used, and it is possible to introduce these mechanisms into

Japanese 'lEX systems.

The quality of Kanji output is entirely dependent on Kanji fonts, and it is

possible to develop a METRFONT program through the use of vectorized Kanji

font data.

56 TUG VIII, 1987, Conference Proceedings

YASUKI SAITO ~iJiBJfc

NTT Software Laboratories
3-9-11 Midori-Cho Musashino-Shi Tokyo 180 Japan

T18o nmiit~ll!f~IIIT 3-9-11 NTT './7 r 1.7 .:r. 7Hf1f
Phone: +81 (422) 59-3585
ARPA: yaski%ntt-20CDsumex-aim. Stanford. EDU

CSNET: yaskiCDntt-20. ntt. jp

JUNET: yaskiCDntt-20 .ntt. junet

ABSTRACT

J'lEX is an upward compatible extension of '!EX, which
makes it possible to typeset Japanese as well as English.
In this report, I will first describe J'lEX from the user's
point of view in detail, then explain the essence of imple-
mentation briefly. Several examples are included to help
you appreciate the output quality of J'lEX and this report
itself is of course typeset by J'IEX .

.flEX from the User's Point of View

Preparation of the Input File

In J'lEX you can use everything in 'lEX without modification. What is different
from 'lEX is that you can enter Japanese characters* wherever you want. In math

* How to enter Japanese into machines is one of the biggest problems in
Japanese text processing. Nowadays the most popular method is Kana-Kanji
Translation. You enter the reading of Japanese phrase in Kana or in Romanized
form and type "translate-key''. The machine looks up a dictionary of the corre-
spondence between reading and writing and replaces the reading by its proper
writing. When there are several candidates for writing, you must choose one of
them.

TUG VIII, 1987, Conference Proceedings 57

Yasuki Saito ~JilJ~fB

mode, however, you must use hbox because data structures for math mode are

not extended to accept Japanese characters. Japanese font selection is as easy

as that of English fonts and independent from the selection of English fonts.

Note the following points when you enter Japanese characters:

o A tiny skip of 'Opt plus small amount' (\j intercharskip) is inserted between

consecutive Japanese characters, except kinsoku processing, to allow line

breaking between normal Japanese characters. (Kinsoku processing will be

explained later.)

• Between an English and a Japanese character, a small skip is inserted auto-

matically to improve the output quality. This glue is not inserted between

control sequences and Japanese nor between math mode and Japanese. JIEX
refrains from inserting the skip when one of the characters is a Kinsoku char-

acter.

e Single carriage return between Japanese characters is ignored. But double

or more carriage returns start a new paragraph as in JEX.
e You can use Japanese characters in control sequence names. Japanese char-

acters are treated as if they are in the same category as letters (although

in reality they belong to different categories). So do not start a Japanese

sentence just after the control sequence without inserting a space.

Example Input and Output

In this section two example input files and the output generated from them are

shown. Note the use of font loading and selecting commands in example 1, and

a Japanese control sequence name in example 2.

\overfullrule=Opt

\nokinsoku' 3

Example input file 1

\font\gothic=cmssbx10 scaled \magstep1

\font\normal=cmr12

\loadjfont\jnormal=drn12

\use jroma of dm12

\jnormal\normal

\baselineskip=15pt

\centerline{\seventeendg 1 !" 31- 7? "V 3 Y a-~c:lzltt ~ g~O)m;W}

\bigskip

\centerline{\twelvedg ~.lil~c}

\medskip

\centerline{\twelvedg(B;$:'ijli:'I~'II~;J?I5t~tl '/ 7 1- l) ::r. 7~EJf)}

\bigskip

\no indent

{\twelvedg\gothic 1. ;I: .*..:V~!}

\small skip

~~OJH"P~~O) Key concept .!:: L '"'(1 Y 31- 7? Y :r Y;V~~ o o ;I: k:lll:ll!:

58 TUG VIII, 1987, Conference Proceedings

t± 7" P !/'7 ~ :Y !/'~~OJ!i~}j:~~ C l...- "C 1 :Y ~ 7 !I v s :Y c V• 5 C C. ;0>'2 '~

.!:Ill~~ fLQ J:? tc.}j:? -c! ko L-:V>- L-t.J:~; b r 1 :y ~ :7 7 y 3 :y.!: t±fAJ~~? J

1<.~1.... -cv.j: teaJ.Jllt.l:~t±W.bn-cv.t.~:v.OJ~qJl:JX-c·~ Qo ~'"'C't±1 :Y ~
:::; 7 y 3 :YO)~~ c b ~ Q tc~tc.t±fAI~~m L-tz: b J: v.t~:· c 0 5 r..,~~~

.:r. 7 -r ~ c ""'? =z :y -r 7 A 1- -e~ ~ Q o j: f t±~i!tt.~:m-c· .:r. 71 ~ O)~l"ff~ ,
~:ll:-?~5:1::11::~~ ~. :IW~IH$1<. t±1 :Y ~ :7 7 Y 3 :Y ~1!- L- tc$~t.l: c· ""O)J;tffl

~T~l-"Cir>Qo [1]

\medskip
\no indent
{\twelvedg\gothic 2. 1 :Y ~ :7 7 Y 3 :YOJlmOOJpij}
\smallskip
•0) §~t±~f~t.l:1 :y~ :7 7 y 3 :YOJ;Ji#l;:O,b, 1 :y~ :7 7 y 3 :y~-11X:
-t Q~~~1l!II:H t.., 1 :y ~ 7 7 y 3 :Y~c:l2ll~~-efAJ~~m-t~! :a~~aJ.J b:O,tc.
TQ L..!: I'C.~Qo *fm'"'C'~kOJ~~~~U~cL-, ~a):J~:tJ!J~Qo

\medskip

Output produced from example input file 1

4 /9 :7?Y :1 /t:~r.~9Q l=l~:gO)tl~

~ilifl2

(s *11tm~~**it~*± ") 7 " ? .:r. r~~plf)

1. ~;tiJ~~

~~O)~JI~~~O) Key concept t L -c -1 Y !;£ 7 7 ~ 3 Y73~4; .0 o

i tc:l&J.l!t± 7" P !/ 7 ~ Y !/~:ljiO)ji~lj:~* t L -c -1 Y !;£ 7 7 ~ 3 Y
t l,r\ ? t. t 73~15 k till~~ tt- .0 J: ? IC lj:-::> -c ~ teo L 73:. L lj: 73~ i? I -1
Y ~;£ 7 7 ~ 3 Y t t±fnJ73:.? J tcOO L -c l,r\ i tta..ij~lj:~t;t~ i?n -c l,r\
lj: l,r\ 0) 73qJl!I*""C 4; .0 o *~'"C t± -1 Y !;£ 7 7 ~ 3 Y 0) ~.pf;: t- t i? X. .0 tc
¥:> IC t±fnJt-~f}! L tc i? J: l,r\ 73:. t l,r\ ? rll,Ji!! t- .:r:. 71 !;£ t l,r\ ? '::1. Y 7 7 :A

1-""C~X. .Oo i:ft±J}J.l!lj:BJf""C.:r:.:T 1 !;£ O)~~~IC{~.:il:"?~~{(:t"~

X., ~*~ICt;t.-fYI;£77~3Yt"~L~~~lj:~~O)~ffltr~L
L"l,r\.Oo (1]

2 . .f /9 7?~ 3 /0)~-fJJJim

*~0) §~t;t~.pf;:~lj:-'f Y l;£7 7 ~ 3 YO)f}!~73:.i?, .-f Y 1;£7 7 ~

3 Yt-Wlnlt-t .o~~t-Mri:H L, -1 y l;£7 7 ~ 3 Y~c~~=~oo""Cfnlt-~m
-t~!73:.t-a.Ri?73:.1C"t.O t. t tc~.Oo *fl5-e~kO)~*t-9U~cL, ~

a.R t-:JJu x. .o o

TUG VID, 1987, Conference Proceedings 59

Yasuki Saito ~/ii.llJfE.

Exampe input file 2

\def\cdse{Cd\allowbreak S$_x$\a11owbreak Se$_{1-x}\,$}

\def\mum{μm} \def\taus{$\,\tau_s\,$}

\def\tauc{$\, \tau __ c\,$} \def\taur{$\, \tau_r\,$}

\def\~#1{\noindent{\tendg\bf #1}\sma11skip}

\ ~ {4-1 A -1 ;:~ 7- ~ Y~ra5}

~HOJ~'ft~Fa5 \taus c t:;h. -£--etc.¥a11f~ tt.-c~o \cdse f-7'7!7

A0Jti~~ra5 \taur :0~0ttrOJ c ~ !J .A/f ;:~ 7- ~Y~Fa5
\taus :a:ft~L~ ~~{Jl5*c.l:t~Lko

]:"f~HOJ~'ft~ra5:a:;J<b?oo Y-52 :a:.m~tt:#~~777'9 •::.o-~H
OJ7 -1 ;f.A $\,F\,$ OJii!U5Efit± 10 --e~'?ko t: t:--et±fli'j$OJtca.?, :;;'fi:~H:a:

&M$ $R_{\rm eff}$ i:J~ 72\% OJ~ 7---eflJa~tL.*:~;k:OJt.l:~~H (7 -1

;f AiJ~fS.l t:.) c U-c·~ o c J;.fJ:To t: OJ c !~HOJ~'ft~Fa5 \tauc ti
$$\tau_c = {n_O 1+(L-1)\over c_0(1-R_{\rm eff})}$$

--elj-7... i?tL.oo

t:t:--e $1,\>L,\>n_O,\>c_O$ ti-ttt...'ftt."!T~7·J~..-OJ)J~, ~HOJra51!1,

"!T ~ 7'JvOJJtiHJT~, Jlt;;@--e~ oo $n_O, \>1, \>L$:a: -t:tt..:ftt. 1. 54,

300\mum, 600\mum ci""oc \tauc tif.J10psec ct.l:oo

'itc \taur=16psec$~{(2)}$ ci""o c, .A/f ;:~7~Y~Fa5\taus t±
$$\eqa1ign{\tau_s = &\sqrt{\tau_c~2 + \tau_r~2}\cr

= & 18\>\rm psec\cr}$$

c ;J<-£ !J, ~~Jf,5* c A< -~-to t: c i:J~j]{(i~ao i?ntt:o

Output generated from expampe input file 2

4-1 :A.~ •;~7- / ?'l!:ij:Fa,

~~HOJ~'ft~Fa5 r. C: L. tL. 'i --etc.f;i11f~ ;h. "C ~ Q CdSxSel-x f -7"ff 7 .A OJ~

~~Fa5 Tr iJ-,. i?P-Lr OJ c ~ !J .A -1 /' 7 ~ Y~Fa5 Ts ~ft~ L.., ~~ka* C: .l:t$.3t L.. ko

'£-f~HOJ~'&~Fa5:a:;J<a.?oo Y-52 :a:.ffl~tc#~~7 7 ::t 9 •....::. P-~H
OJ71:f.AFOJi!IU5Efit±lO--e~'?ko t:t:--et±tmlliOJtca.?,:;;'f;:~~~:a:&M~~ff

~n2% OJ~ 7--c·.mJa~ ntt:~;t;:OJt.l:~~H (71 :f.AtJ~raJt:.) cU--e~:o c J;.

ij;-j-o t: OJ c ! ~~OJ~'ft~ra5 Tc I'±

nol+(L-l)
Tc =

co(l- Reff)

--elj.7...0tL.oo 1: 1:'"(•/, L, no, co l'±-t:tL..:ftL."!J"~7J~..-OJ)J~, ~HOJFa51!1, "!}-~

7'J~..-OJJR!1JT$-.. ~-c·~oo no, l, L ~-t:n:fn 1.54, 300JLm, 600Jtm .!:To c Tc I'±
f-J lOpsec C t.l: o o]: It: Tr =16psecC2).!: T Q c, A -1 /' 7 ~ Y~Fa5 7 3 I'±

T8 =Jrl + rl
=18 psec

60 TUG VIII, 1987, Conference Proceedings

Japanese Fonts A vail able in flEX
Currently available japanese fonts are divided into two groups:

JIS Fonts

JIS fonts are generated from JIS C-6234 (24 dot font for printers). This font
set has four sizes shown below and is in the public domain. They are 24, 36, 48

and 72 dots big and roughly correspond to 7pt, lOpt, 14pt and 20pt 1EX fonts

on 300dpi printers respectively.

\jissml

\jisstd

\jisbig

\jislrg

DNP Fonts

7 x lJ tJ~3?-!00I::t:n •"'C B:>fs:C'lil:~Jii!'f'~>

7 .X ~ 7'J~*I3ilt:::t:> ~ • '"C B*o:>~£Jl-*iJ't

i ;X lJ iJit3?<1Ilt:::1:n)1:" B*O)jiMJI*iJ{

7 .X 0 fJ~~OOt::B~)1:' B*0

DNP fonts are distributed by Dai Nippon Printing Co., Ltd .. This font set has

two groups: DM series and DG series. 'D' stands for Dai Nippon, 'M' for Mincho

style and 'G' for Gothic style. (We call a font similar to san serif bold 'gothic' in
Japanese.) There are various sizes for each font and the point size is appended

at the end of each font name. The following table lists all the non-magnified

DNP fonts available in JTEX:
DM5 DM6 DM7 DM8

DG5 DG6 DG7 DG8

DM9

DG9

DM10

DG10

DM12

DG12

DM17

DG17

DM20

DG20

There are also magnified fonts, but not all magnifications are supported.

You must have different dot sizes for each magnification but you can use one dot

fonts for several places (for example 17 point font can be used as 12 point at

magstep2 or 10 point at magstep3). So currently available magnifications and

magnifications which can be covered by available fonts are as follows:

Available magnifications

("(n,m)" means that you can use n-pt font at magstep-m as this size.)

magstep 5pt 6pt 7pt 8pt 9pt lOpt 12pt 17pt 20pt

0 avail. avail. avail. avail. avail. avail. avail. avail. avail.

0.5 avail. avail. avail. avail.

1 (6,0) (7,0) avail. (12,0) (10,2) (10,4)
2 (7,0) (10,0) avail. (17,0) (10,5)
3 (12,0) (17,0) (10,4) (10,6)
4 (10,2) avail. (10,5) (10,7)
5 (17,0) avail. (10,6)
6 (10,4) avail. {10,7)
7 (10,4) avail.

TUG VIII, 1987, Conference Proceedings 61

Yasuki Saito ~Jii)JjtB

You also have the same set of magnified fonts for Gothic style. To use these

fonts, you must pay 95000yen to DNP per CPU and printer for a set containing

both Mincho and Gothic in various magnifications described here. There are

different sets for 300dpi, 240dpi and 480dpi printers. Some of them are shown

below (these are the fonts preloaded in JIEX):

\sevendm

\tendm

\tendg

\tYelvedm

\twelvedg

\seventeendm

\seventeendg

7~9n~~~K~0~E*~fi~m*~

1;. v n~~OOtc.J'a0-c B;$::OJ:fiJbm::f.v~

7 ~ !J :tJ.g-~I~!H=;t.;\. '"L 13 *(J.)Jl~m.*tJ'

7 j(. 9 7J '@r!f{OO K .ta'lr> "L 8 *OJ fi £m* il~
7 Y. !J t.J~~~~=SI..'"t' El*O)fi~~*-iJ'

7;J-9nil~00Kj:s0-c8J$:0)j?iJb

7 ;;< !J tJ g~~ t= B \, 'L' B ;$:0)~£
New Control Sequences in .]'lEX

This section describes newly introduced control sequences in detail. Some of the

materials are taken from on-line help file (jtex-help. tex).

Japanese Font Loading

To load non-scaled Japanese fonts, use the command \loadjfont instead of the

ordinary \font comand. The syntax is the same so if you want to load DG12

and want to name it 'foo', do:

\loadj:font\foo=dg12

To load scaled Japanese fonts, you must use a slightly different command**.

Again the syntax is very similar to that of \:font:

\loads:font\foo=dmiO scaled \magstep5

These loading commands are defined in jplain.tex and are expanded to the

ordinary loading commands (\font) of 15 subfonts.

If you want to use japanese roman alphabets or numerals, you must declare

this fact using the following commands BEFORE actually selecting a font:

\use jroma of dm10

Similarly if you want to use JIS Russian alphabets or Greek alphabets or Keisen-

Youso (Line segments), you must declare this as follows:

\use jrussian of dmiO

\use jgreek of dgiO

\use jkeisen of dm12

** These two similar commands will be merged to a single command in a fu-

ture distribution. The same is true for \use and \uses, \usesecondlevel and

\usesecondlevels. I just learned how to write macros which accept optional

arguments.

62 TUG VIII, 1987, Conference Proceedings

Also second level (Daini-suijun) JIS kanji are not loaded by the previous load-
ing commands. If you use a specific second level kanji you should declare this
BEFORE selecting a font as follows:

\usesecondlevel{~} of dm10

\usesecondlevel{~} of dg10

If you want to declare the use of various subfonts for foreign alphabets or
the use of second level kanji for scaled fonts, at the moment you must use the
following different commands with 's' at the end (see the footnote on previous
page):

\uses jroma of dm10 scaled \magstepS
\usesecondlevels{it:!} of dm10 scaled \magstep2

Font Selection
Font selection is easy, you just use the name you give to that font when you
load that japanese font. For example, after the loading command and several
declarations:

\loadsfont\bigj=dm10 scaled \magstepS
\uses jroma of dm10 scaled \magstepS
\usesecondlevels{~} of dm10 scaled \magstepS

you can select this font by \bigj.

Seven Japanese fonts listed below are already preloaded in jplain. tex. So
use these names to select these fonts.

\loadjfont\sevendm=dm7

\loadjfont\tendm=dm10 \loadjfont\tendg=dg10
\loadjfont\tvelvedm=dm12 \loadjfont\tvelvedg=dg12
\loadjfont\seventeendm=dm17 \loadjfont\seventeendg=dg17

Selection of English fonts and Japanese fonts are orthogonal. That means

your choice of a Japanese font does not affect the current English font. Think
of it as if there are both English and Japanese current fonts.

J'IEX's capacity for the number of usable Japanese fonts in a job is limited
to about 10. Considering the fact that jplain.tex already loads 7 Japanese

fonts, you can only use several more Japanese fonts in one job. With Jlb·TEX the
situation is much worse because lplain. tex preloads more English fonts.

Easy-to-do Style Selectors
Here style means the selection of various fonts and line spacing in essence. If
what you want is to get the output in an appropriate size, use the following
commands:

\smalljapanesefont:
\standardjapanesefont:

\bigjapanesefont:
\largejapanesefont:

gives you a 7pt output
gives you a lOpt output
gives you a 12pt output
gives you a 17pt output

TUG VIII, 1987, Conference Proceedings 63

Y asuki Saito :fofiit~B

How to Control Spacing

Spacing of Japanese characters is controlled by the value of the following glues:

\jintercharskip:

A glue inserted between Japanese characters except after post-kinsoku character

or before pre-kinsoku character. This glue guarantees the breaking of japanese

sentences at any point except kinsoku processing explained below.

\jasciikanjiskip:

A glue inserted between ASCII and Japanese characters, except for kinsoku

characters. The value of this glue is normally set to a quarter of full Japanese

space (\jspaceskip, see below) to make English words in a Japanese sentence

and Japanese words in an English sentence look nice.

\j spaceskip:

A glue which is used when you specify JIS space in your source file. This is

exactly the width of all Japanese characters in a font. You can use this to specify

one character indentation at the beginning of ordinary Japanese paragraphs as

follows:

\parindent=\jspaceskip

These three skips are assigned their values when you select a certain font.

So if you want to change them, do so AFTER the font selecting command.

Kinsoku Processing

Kinsoku processing is a way to avoid the appearance of certain characters at

the beginning of a line or at the end of a line. In fiEX this is accomplished by

omitting the normally inserted \jintercharskip before the pre-kinsoku char-

acter and after the post-kinsoku character. A pre-kinsoku character cannot

appear at the beginning of a line and post-kinsoku character cannot end the

line. Pre-kinsoku and post-kinsoku characters are declared by \prekinsoku and

\postkinsoku control sequences in jplain. tex and you can change them if you

don't like the normal setting. Examples are:

\prekinsoku' '

\postkinsoku' '

\prekinsoku' "?

You can reset them by the use of the \nokinsoku command. You can only

set kinsoku codes for ASCII characters, Japanese symbols (in subfont \jsy),
Hiragana (\jhira) and Katakana (\jkata).

Terminal and File Type Setting

There are two control sequences (\kanjiterminaltype and \kanji:filetype)

to specify the terminal and file type respectively. If you set the value of these

switches to one of the following, flEX can output the error messages and its

output to files using the specified escape sequences.

64 TUG VIII, 1987, Conference Proceedings

0 ASCII only
1 Escape sequences are <esc>$CO and <esc>(J (Default)

2 Escape sequences are <esc>$CO and <esc>(H

3 Escape sequences are <esc>$CO and <esc>(B

4 Escape sequences are <esc>$B and <esc>(J

5 Escape sequences are <esc>$B and <esc>(H

6 Escape sequences are <esc>$B and <esc>(B

10 Shift JIS code (NOT YET IMPLEMENTED)

20 Extended Unix Code (NOT YET IMPLEMENTED)

flEX from the Implementor's Point of View

Implementation Overview

I tried three different ways to implement Japanese TEX. First, so called Pre-
processing method. Japanese characters in source file are converted to subfont

selector and \char pair producing an intermediate file. This intermediate file

is then given to ordinary 'lEX· I abandoned this method quickly because the
existence of an intermediate file makes debugging difficult and processing speed

was not so good. Secondly I implemented the same conversion from Japanese

characters to (subfont, char) pair using only the macro facility of 'lEX· '!EX's

macro is powerful enough to allow this. But this macro version[1) is very slow,

so the current fl'EX is implemented by modifying 'lEX itself. (See [2) for more

detail.) I tried hard to make modifications as minimum as possible so as to

insure upward compatibility. About 1800 lines were added to the change file.
Currently modified parts of '"J.EX: The Program" are as follows:

Part 1, 5, 12: Basic utilities

Part 15, 17, 18: Basic symbolic names and data structures

Part 20, 24, 25, 26, 27: Token lists and basic scanning routines

Part 30: TFM file handling

Part 46, 47, 49: Chief executive (main-control routine)

I didn't change any data structures except that token list members are ex-
tended to include Japanese characters. Japanese characters are represented as

(subfont, char) pair internally. flEX swallows Japanese characters and converts

them to (subfont, char) pair inserting necessary skips between each Japanese

character and between ASCII and J apanse characters. After this input process-

ing, everything is exactly the same as in 'lEX· flEX notices the fact that it is
processing Japanese only when it outputs messages or texts containing Japanese

to terminals and to files. Otherwise flEX breaks lines and builds pages using

the same algorithm in 'lEX·

Subfonts

In Japan, JIS (Japanese Industry Standard) C-6226 code "Code of the Japanese
Graphic Character Set for Information Interchange" is widely used to represent

TUG VIII, 1987, Conference Proceedings 65

Y asuki Saito ~.ii'i!l1te

Japanese characters in the computer. Characters in this code table are divided

into 33 subfonts in J'IEX. This division naturally corresponds to the categories in

the code ("ku" in C-6226 table). The control sequence name for each subfont is

used to refer to the individual characters in each subfont. Usually a user is not

aware of the existence of subfonts, but if he wish, he can specify, say the second

character in 4-ku, by "{\jhira \char2}".

\jsy 1-ku & 2-ku (symbols)

\jroma 3-ku (numerals & roman alphabets)

\jhira 4-ku (hiragana, phonetic symbols)

\jkata 5-ku (katakana, phonetic symbols for foreign words)

\jgreek 6-ku (greek alphabets)

\jrussian 7-ku (russian alphabets)

\jkeisen 8-ku (line segments)

\ja, ... ,\jl 16-ku, ... ,47-ku (2965 first level kanji)

\jm, ... ,\jz 48-ku, ... ,84-ku (3388 second level kanji)

Each subfont contains at most 256 characters, so GF and TFM file formats

conform to 'lEX's font files.

Modification to 'JEX's Input Mouth

There are several ways to represent a file with both ASCII and JIS characters

in it. J'IEX accepts a file in which ASCII characters are represented as is and

JIS codes (two 7bits bytes) are surrounded by escape sequences ("<esc>$«!" or

"<esc>$B" to start JIS code sequence and "<esc>(J" or "<esc>(B" to end it.)

JTEX's input mouth converts two byte JIS codes to internal subfont number and

character number, then sends them to ;flEX's ('lEX's) gut level. It is necessary

to do this quickly, so the inner loop of 'lEX in main-control which munches

ordinary characters was modified to do this.

Spacing and Kinsoku Processing

Ordinary Japanese sentences can break at any point between two consecutive

characters. But there are exceptions such as before the punctuation marks or

after the open parentheses. These exception rules are called "Kinsoku(~MU)" in

Japanese. Kinsoku Processing is realized in JTEX as the omission of \jinter-

charskip normally put automatically between every pair of Japanese characters.

This processing is also effective between ASCII and Japanese character, and you

can specify certain ASCII characters such as period or comma as Kinsoku char-

acters.

Extra spaces after JIS.period or comma must be handled using the equivalent

of sfcode, but it is not yet implemented. In current Japanese fonts, every

character including JIS symbols such as period, comma and various parentheses

has the same width (\jspaceskip). JIS period, comma and close parentheses

etc. are placed on the left hand side of a bounding box, so extra space is already

there in the design and is not inserted using the similar trick as sfcode.

66 TUG VIII, 1987, Conference Proceedings

DVI File Produced by flEX
The output of ;tiEX is a DVI file which is perfectly compatible with ordinary

output of 'JEX. It does not use the "set2" DVI command provided for oriental
languages. This means that you can give the output of jiEX to ordinary device
drivers without modification. This is not always true in practice, so you need to
tune your driver a little bit.

Modification to Device Drivers

We are using Imagen printers (8/300 and 3320) from a DEC2065 and several
SUN3s. The driver on the DEC2065 is called DVIIMP written by Arthur Samuel.
This driver works fine with small Japanese documents of a few pages but degrades
swiftly with larger jobs. The main problem is the loading of the entire font
information at the time when one character in that font is first encountered. Also
the assignment of 'family' and 'member' to each character is rather inefficient

particularly because there is no ''working set" property in flEX's subfonts ("Use
of one character in a font implies the use of other characters in the same font for

a while.")

On SUN3, we use a driver for imagen printers distributed with the Unix 'lEX
distribution. Slight modification is also necessary because this driver uses PXL
file and normal PXL files can contain only 128 characters. The PXL file format
was extended to include up to 256 characters per font and the driver modified

to accept extended PXL files.

Font Generation

All the Japanese fonts available in ;tiEX are dot based fonts. Public domain JIS
fonts are generated from JIS 24 dot fonts by a simple LISP program. The same
LISP program was used to generate GF and TFM files for DNP fonts from the

various sized dot fonts provided by DNP. GF files for DNP fonts occupy about
91Mbytes and corresponding PXL files amount to 142Mbytes***. It is obvious
that you need an efficient way to reduce the font file size.

flEX Availability

flEX is a public domain software and you can get it free with JIS fonts.
In Japan, the Japan Society for Software Science and Technology distributes
it. For users abroad, the easiest way is to get it from Turing.Stanford.EDU

by anonymous FTP. The TOPS-20 version of ;tiEX is installed on this machine
under PS:<JTEX>, so if you are on ARPAnet get flEX from there. The UNIX
version is also available from the author. I am thinking to make a public copy

on some machine on ARPAnet, but until then ask me directly.

*** GF files for DM series fonts are about 48Mbytes and DG series, 43Mbytes.
PXL files for DM and DG series fonts are 71Mbytes each.

TUG VIII, 1987, Conference Proceedings 67

Yasuki Saito ~HiJ~fE,

To use DNP fonts, you need licensing with DNP. Send request to DNP di-
rectly or ask me. The person to contact at DNP is:

Tadashi Saito
3rd Section, Second System Development Dept.

CTS Division, Dai Nippon Printing Co., Ltd.

1-1-1 Kaga-cho Ichigaya Shinjuku-ku Tokyo 162 Japan

'When you sign the agreement and pay 95000yen per set to DNP, you will get

the font.

Future Work

There remains many things to be done if you consider J'IEX as a total type-
setting system.

e Some Japanese are written up to down. And we need to support it. But this

is rather simple. Just rotate the font 90 degrees counterclockwise and adjust

the centerline of each character if necessary.

• We need to build a collection of macro packages to facilitate the use of JTEX
in various applications. Locally various forms are converted to JTEX format,

and many J:rffiTEX style files are written. It is necessary to organize these
macros into a useful package.

o It may be necessary to enlarge the number of Japanese fonts usable in one

document.

e Enhancement of Japanese fonts is really needed. To define all Japanese

characters in META FONT is a great challenge. And in a long run, someone or

a group of people preferably consisting of both font designers and computer

scientists must do it.

Conclusion

'lEX is general enough to be extended to Japanese Typesetting as this work

clearly shows. And extending 'lEX to Japanese is NOT difficult but NON-trivial.

JTEX accomplished this NON-trivial task.

References

[1] Yasuki Saito: "Japanese 'lEX" (in Japanese), Working Group on Japanese
Document Processing 10-3, IPJSS, (January 1987).

~Di.lffB: "B*l§B 'lEX", iti~!Jl!J11!~~8*l§BUM!Jm7UfJ"e~7~ 10-3, (1987
~ 1 JJ).

[2] Yasuki Saito: "Report on JTEX: A Japanese 'lEX", TUGboat, vol.8, no.2,
(July 1987).

68 TUG VIII, 1987, Conference Proceedings

Developing 'lEX DVI Driver Standards

ROBERT W. MCGAFFEY

Oak Ridge National Laboratory

Building 4500-S

P 0 Box X

Oak Ridge TN 37831-6144

When I encountered T.EX at the Oak Ridge National Laboratory (ORNL)

several years ago, I determined that the quality of output was such that it was

the first mathematics that I had seen generated by a computer that I could not

tell was generated by a computer. Next, I decided that I wanted to use T.EX for

my reports no matter what effort was required to use it. (This was fortunate

because we had the old T.EX78 which I am sure all of you know is extremely

inferior to the present day TEX.)
At the time, laser printers were as scarce at ORNL as the \iotabar (which

is now -c). So, I busied myself with the task of writing a driver for the 200-dpi

Versatec. But then along came the new improved T.EX and I had to start over.

Then I persuaded my department head's two secretaries to try TEX. They tested

it on one document, then dropped their previous typesetter (which shall remain

nameless) and never looked back.

The next event in my story is the formation of a T.EX support group here

at ORNL. After much politicking such a group was set up and I was fortunate

enough to be the project leader. I then decided that to write my own drivers for

the many devices would be a mistake because the number of output devices was

many and the time needed to write even one driver is long. We needed success

right away.

To show you what we were up against: Here at the Laboratory, we have a

CRAY, several IBM mainframes, some Data Generals, many VAXs, IBM PCs

of many flavors, Macintoshs, and probably some others I'm not aware of. We do

not expect to run 'JEX on all of these machines but certainly on most of them.

For output devices we have an ApsJ.L5, Apple Laser Writers, HP LaserJets of

both series, DEC LN03s, a QMS, Versatecs, and others I am sure. So I knew

that we couldn't develop drivers in house.

Thus, I turned to the vendors for help, and they were glad to send us lots of

information on their drivers and everything they could do for us. So I sat down

with the information in an attempt to decide which drivers would handle our

needs. And I discovered an interesting fact: vendors do not tell you what features

their drivers do not have! Many of the drivers I read about do not mention that

TUG VIII, 1987, Conference Proceedings 69

Robert W. MCGaffey

they do not support landscape mode (and we need landscape mode). I got so

involved in looking at all of the positive features of the drivers that I could no

longer see their shortcomings.

A solution occurred to me. Why not write a description of the driver that

we needed and then compare each available one to it. Then, not only would I

know the missing features but would be able to talk intelligently to vendors on

the phone. One thing lead to another and I decided it would be even nicer if

the T£X Users Group (TUG) itself could put a little gentle pressure on vendors

in our behalf. So rather than describe our (ORNL) ideal driver, I decided to

describe the ideal driver.

Modesty forbids my saying that I did an excellent job. In fact, once I started

writing the paper, I realized that I was not qualified to dictate what should be

done, so I wrote the article (which appeared in TUGboat Volume 8, Number 2)

with the idea in mind that it would generate discussion. It did. Barbara Beeton

called me before the envelope was dry, and she was so enthusiastic that I found

myself volunteering to head a committee to generate some driver standards. And

here I am.

[At this point in the talk I asked for questions and comments and was pleas-

antly surprised to discover that various TUG members had much to say on the

subject. Some were very opinionated and said so in no uncertain terms. I would

like to thank everyone who participated in the discussion which took place and

give a special thanks to those who served on the panel for the talk and to Bart

Childs for the support he gave to all of us.]

I am looking forward to serving TUG in this capacity.

70 TUG VIII, 1987, Conference Proceedings

A 1EX DVI Driver Family

NELSON H. F. BEEBE

Adj. Asst. Research Professor of Mathematics

Center for Scientific Computing

South Physics Building

University of Utah

Salt Lake City, UT 84112

USA

Tel: (801) 581-5254

ARPANet: BEEBE@SCIENCE.UTAH.EDU

ABSTRACT

A portable family of 'lEX DVI driver programs is de-
scribed. These have been implemented under five different

operating systems and eight different compilers for about

twenty different output devices.

The goal is to support a large number of operating en-

vironments and output devices from a single set of source

files.

Introduction

The TEX typesetting system now runs on several different personal computers,

most major commercial minis and mainframes, and even on one supercomputer.

TEX itself is written in Web, which is processed by two auxiliary programs,

Tangle, to produce a Pascal program, and Weave, to produce a 'lEX input file
which documents the software. If you have never examined a Web program, rush

to your nearest bookstore or library for copies of Volumes B and D of Donald

Knuth's book series Computers and Typesetting [KNUT86], where the programs

TUG VIII, 1987, Conference Proceedings 71

Nelson H. F. Beebe

for 'fEX and METAFONT are beautifully presented.

'lEX's primary output is a compactly-encoded binary file of 8-bit bytes, called

the DVI (DeVice Independent) file. It is the job of another program, called a

DVI driver, to interpret this binary file and transform it into a device- dependent

file which can be displayed on some particular output device, such as a dot-

matrix printer, laser printer, bitmapped screen display, or high-resolution photo-

typesetter. In addition to reading the DVI file, this usually entails access to font
files which contain encoded descriptions of character bitmaps.

Although 'lEX code is written in a subset of Pascal, there are nevertheless a

few areas, such as the notorious missing otherwise clause in a case statement, and

the opening, closing, and naming of files, which exhibit some operating system

and/or compiler dependence. In order to avoid the need for changing the master
Web source files, Tangle and Weave support the concept of a change file. This

file contains line sequences that looks like

«)x

original source lines

replacement lines

where the @x ••. «)y section contains enough original text to uniquely identify a

fragment of the Web file, and the @y ... ~z section contains the replacement for
that fragment. The @x •.. ~y ... ~z sections in the change file must match the

order of the original text in the Web file. Since normally only one implementation

of 'JEX is carried out on a particular operating system, and the resulting program

then shared, or possibly sold commercially, few people ever have to write a Web

change file.

For a DVI driver program, the situation is more complex. First, one driver
is needed for each output device. Second, implementations of that driver will

be needed for perhaps several different operating systems. Third, the program

must be able to decode the complex font file formats, at least three of which are

in common use. Fourth, efficient processing of the DVI file requires the ability

to randomly seek to any arbitrary byte in the DVI file, and the font files, and
begin processing from precisely that byte.

To give some flavor of the file sizes involved, the 494-page 'JEXbook has a

'lEX manuscript of 1.37Mb (megabytes), and the DVI file produced by 'JEX from

it is about 1.96Mb, a 43% expansion. This is an average of 2.8Kb (kilobytes)

'{2 TUG VIII, 1987, Conference Proceedings

A '!EX DVI Driver Family

per manuscript page, and 4Kb per DVI page. Font file sizes vary significantly,

depending on the encoding scheme, the character size, and the device resolution.

For the popular 300-dot/inch laser printers and the compact PK-format encoding,

lOpt font files are 4Kb to 7Kb in size. Most documents will require a dozen or

two different fonts; the TEXbook requires 54!

Whereas N different operating systems only require N different implemen-

tations of 'JEX, getting visible T:EX output for M different output devices will

require M x N DVI drivers. It is in fact much worse than this, because there

now exist many independently-developed DVI drivers, so we need to talk about

a number more like]{ x M x N drivers.

It is the thesis of this work that such an explosion is completely unnecessary,

and with suitable care in the software development, it is possible to have one

set of code files which simultaneously support several different operating sys-

tems, and many different output devices. A general enhancement added to this

family then is immediately available for all supported operating systems, and all

supported devices, merely for the price of recompiling and linking the code.

It is also the thesis of this work that because development of a DVI driver

entails a substantial effort, there should be no need to repeat this effort at 'lEX
sites all over the world. To that end, I have placed my work completely in the

public domain. I have not even gone so far as to copyright the code, or to follow

the GNU Project Manifesto in inserting a legal notice that you are welcome to

obtain the software, use it, and give it to others, but only if the legal notice

is retained in the software, and only if you distribute it further exactly as you

obtained it, holding nothing back, and charging nothing for it. I do hope you

read the GNU Manifesto (it is present in every copy of GNU Emacs, which is

spreading rapidly over the world), and I do hope you will not charge people

for work contributed by others. I also hope that if you find bugs, or make

improvements, or have suggestions, you will communicate them to me so that

everyone may benefit from our collective efforts. I cannot possibly enforce this

wish, so it is up to you to help.

Remember that Don Knuth and Leslie Lamport have given us '!EX, META-

FONT, and La'!EX, and offered us the chance to change, for the better, I believe,

the way in which we communicate in print.

The remainder of this article will describe some of the features of the DVI

driver family, the programming language choice, the host environments in which

it is known to run, and the devices it can produce output for. It will then discuss

more detailed issues of code size, coding standards and portability, some case

histories of problems that have been encountered, and the question of commercial

versus public-domain software. It concludes with information about obtaining

copies of the software, and gives credit to others who have contributed to the

development.

TUG VIII, 1987, Conference Proceedings 73

Nelson H. F. Beebe

Features

With burgeoning use of microcomputers, larger numbers of computer users will

routinely work on multiple operating systems. I personally have daily contact

with four or five operating systems, and three are generally available in different

windows of my workstation.

To a very high degree, these DVI drivers all present the same user interface

for all devices and for all operating systems. This is valuable for users, because

no relearning is necessary. For the same reason, I insist on working with Emacs,

or an Emacs-like editor, for text editing. For a touch typist, it simply is not

worth the effort of learning another set of keystrokes, and anyway, I have never

yet encountered an editor which comes remotely close to Emacs in power and

convenience.

These drivers have several features that are worth listing here, because they

are absent from many other drivers that have been developed elsewhere:

• uniform Unix-like command line interface on all machines for all output de-

vices;

e control of page selection (-o<start>:<stop>:<incr>), and printing order (for-

wards or backwards) (-b);

s specification of the number of output copies;

" default and user-specified font substitution;

• support for GF, PK, and PXL font file formats;

e default directory paths overridden by environment variables and command-

line options;

e user control of magnification;

e multiple DVI files can be processed in a single invocation of a driver.

It is critically important for a DVI driver to offer user control of output page

selection, and since it has to contain a loop over document pages anyway, it is rel-

atively trivial to add support for skipping pages which are not in a user-specified

page range. Any number of page ranges can be specified, and an increment

between the starting and ending pages can optionally be specified.

For example, consider printing a two-sided document on a printer which does

not support duplex printing. Laser printers based on the popular Canon LBP-

CX engine stack output face up, with the last page printed on top. Thus, a

driver for such a printer would by default process pages in reverse order. One

invocation with the option -ol:9999:2 will produce an output file with the odd-

numbered pages, which when printed would have page 1 on top. The printed

pages can then be reinserted in the input tray face up, page 1 on the top, exactly

as they were found in the output tray. A second run with -b -o2:9999:2 would

then print even-numbered pages on the backs of corresponding odd-numbered

pages; the -b option requests backwards order on the second run. The output

document will appear in the tray with page 1 face down on the bottom, correctly

printed on both sides.

74 TUG VIII, 1987, Conference Proceedings

A 'lEX DVI Driver Family

Laser printers function by creating, in internal memory, a page image which
is transferred to a photo-sensitive drum that passes over a toner reservoir; the

toner on the drum image is then heat fused onto the paper surface. At that point,

all of the busy work has been done, and the engine can continue to produce copies

of the image at its rated printing speed. Since the drivers permit a copies count

option, it takes no more host CPU time to get multiple copies of a document.
Of course, the lower-cost engines do not provide multiple output bins, so one

still has to sort the output by hand. In an office environment, a -c2 option could

routinely be used to get file copies of printed correspondence.

When 'lEX runs, it has font character sizes either preloaded, or loaded dy-

namically from 'lEX Font Metric (.tfm) files. Presumably, the corresponding

bitmap font file will be present on the system as well, and the DVI driver will

have available all of the necessary fonts for printing. However, in a distributed

computing environment, this may not be the case, and it is absurd that some

drivers abort processing when they cannot find a referenced font. My driver
family attempts to deal with this gracefully.

If the user takes no other action, the driver will consult a built-in magnifica-

tion table to attempt to find a font in the same family at a nearby magnification,
and use that. A warning message is issued when that happens, but the user at

least will get output which approximates what was expected. If no such neigh-

bor can be found, and no font substitutions have been requested, processing

continues with assumed zero-size characters for that font. The drivers do not

yet attempt to find and read the .tfm file, and produce, say, a rectangular outline

or shaded area of the correct size; that work remains on my to-do list.

It is possible, however, for the user to specify explicit font substitutions,

either for a specific magnification, or for an entire font. An example of the latter

would be to substitute cmrlO when the document actually referenced amrlO,
perhaps because it used an old macro package which has not been brought up-

to-date with the naming conventions of new METAFONT. Such substitutions are

provided in a file that can be specified on the command line, or if this is not

done, a file with the same name as the DVI file, but extension .sub, will be tried.

If that fails, then a file texfonts.sub will be tried in the current file directory,

and if that too fails, then a file of the same name in the standard 'lEX input
directories will be tried. This provides for document-specific, user-specific, and

system-wide font substitution fallbacks.

The directory paths that are searched have default values which are set at
compile time, but these can be overridden at run time by command-line options,

or global environment variables or logical names.

Font magnification is available as a command-line option; it can be specified

either as a normal '!EX magstep value, such as -m0.5 to print at magstep half
(about 9.5% larger), or as a large integer value based on the old convention of

1000 meaning 200 dots/inch. On a 300-dot/inch laser printer, -ml643 would also

be magstep half. Negative magsteps are permissible as well, to produce reduced

TUG VIII, 1987, Conference Proceedings 75

Nelson H. F. Beebe

output. User control of magnification is convenient when documents must be
prepared for reproduction at a different size, as is common in the publishing

industry, and is also useful for visually-impaired readers who may need larger

type. Of course, such magnifications assume the availability of fonts at those

sizes, but that is the responsibility of the local installation to provide them. The

drivers do not make any attempt to resample font bitmaps to rescale them, such

as xdvi in the X-windows system does. With hi-level fonts (i.e., dots are either

on or off), which is all that METAFONT produces, such rescaling from relatively

low-resolution masters is likely to produce character bitmaps of marginal quality.

Still, if someone contributes code to do this, it could be incorporated as an

optional feature.

Why C and Not Web?

This driver family is written in the C programming language [KERN78], not

Web. Since Web is the language used for '!EX, METAFONT, Tangle, Weave,
and other pieces of TEXware from the TEX project, and for what Don Knuth

has called "literate programming" [KNUT84], I believe that some justification

is necessary for the language change.

The output of Tangle is a Pascal program which must be compiled and linked.

Pascal was developed by Niklaus Wirth in 1968, and the first compiler for it was

operational in 1970. The language was based on Algol60 and Algol W, but intro-
duced new features to better support Wirth's paradigm that Algorithms+ Data

Structures = Programs, which he used for the title of his 1976 book [WIRT76).

Until the ANSI/ISO Standard was adopted [ANSI83b], the language was defined

by Jensen and Wirth [JENS74]. It is a small strongly-typed language that per-

mits rapid one-pass compilation, but is nevertheless rich enough to permit its

use for teaching healthy programming habits and thought patterns. It has been
eminently successful for that purpose, but it is lacking in several areas.

Virtually every implementation of Pascal has to extend it in some way,

since standard Pascal (as described in Jensen & Wirth) is absolutely

unusable, and ISO Pascal is not much better, ... resulting in a tower of
Babel of dialects that is surpassed only by the BASIC language.

E. Wayne Sewell, TUGBoat, 8, 119 {1987}

Pascal has a peculiar I/0 model that does not adhere to the traditional open-

process-close sequence; instead, it has a reset(file) statement that opens a file

for input and then reads the first item, and a rewrite(file) statement that opens

a file for output, and truncates it to zero length. This of course creates havoc
with interactive programs that output a prompt, then read some input, since

the standard input and output files have already been opened by implicit reset

and rewrite statements, and the program is waiting for input, before the main

76 TUG VIII, 1987, Conference Proceedings

A 'lEX DVI Driver Family

program has started. Pascal offers no facility for reading, then writing, the same
file, or for opening a file with append access. Pascal files are viewed as a sequence

of values of one fixed data type, but there is no facility for moving directly to

any position in the sequence.

Pascal tries hard to shield the programmer from knowledge of the underlying

implementation. This knowledge may not be relevant for understanding what

the program does, but it can be critical for efficiency, or for access to externally-

defined objects. For example, 'lEX deals with 8-bit, 16-bit, 24-bit and 32-bit

integer values (among others), both signed and unsigned. Pascal's packed at-

tribute requests the compiler to pack values more densely, so that one could fit

four 8-bit values into a 32-bit word, but the compiler is free to ignore this at-

tribute, and some actually do. Since 'lEX is a large program to begin with, this

one misfeature can make such a compiler useless for implementing 'JEX. Since

Pascal has no provision for distinguishing between signed and unsigned values,

a 'lEX implementor may have to go to some trouble to deal with this; a type
declaration like eight_bits = 0 .. 255 might result in using more than 8 bits of

storage if the compiler thinks that 8-bit values can only have the range -128 ..
127.

Pascal provides no notation for integer constants in bases other than 10, or
for bit shifting and masking operations. It does have a set type with union and

intersection operations, which could be used to implement a bit set; the problem

is that the maximal size of the set may be constrained by the compiler, or it may

be inefficiently implemented, such as by a list representation. Web provides a

translation for octal and hexadecimal constants, but shifting and masking must

be simulated by arithmetic operations, paying particular attention to the fact

that the underlying arithmetic may be two's-complement, one's-complement, or

signed-magnitude. Don Knuth is clever enough to have dealt with this issue

correctly, but it certainly does increase the complexity of the programming.

Pascal is strongly typed, which means that combination of values of different
types in expressions may be forbidden, or at least require explicit conversion

functions to be applied. This typing leads to fewer programming errors, but
unfortunately, Pascal goes a step further in making an object's size part of its

type. In particular, this means that arrays of different sizes are not conformable,

so that if you were to write a function capable of operating on 3 X 3 matrices, you
will need to write another one for the 4 x 4 case, still another for the 5 X 5, and

so on. Since Pascal character strings are treated as vectors of characters, this

restriction makes it illegal to assign an n-character constant string to anything

but a variable which has been declared to hold exactly n characters. This makes

programming text processing applications in Pascal excruciatingly painful. Even

choosing a fixed size for strings is not helpful, if one later has to change it and
is then faced with going through the program and adjusting the size of all string

constants. Once again, Web comes to the rescue, and introduces a string pool

that permits the programmer to use strings of whatever size are needed.

TUG VIII, 1987, Conference Proceedings 77

Nelson H. F. Beebe

While Pascal does provide for dynamic memory allocation through the new()

and dispose() functions, an implementation is free to ignore the dispose() request,

and some do. Because of this, 'lEX and METAFONT are forced to manage their

own dynamic memory allocation, and limits on the amount of memory available

for this purpose have to be set at compile time. Since several years of 'lEX
experience has shown that these limits were initially rather tight, implementors

have generally increased them in their change files, and this of course requires

recompilation.

Finally, Pascal makes no provision for separate compilation, which makes the

development cycle for large programs much slower than it needs to be, and also

makes it impossible to provide libraries of commonly-used functions.

As E. W. Sewell noted, there are Pascal implementations that remove some

of these restrictions, but they all tend to do so differently.

DVI drivers have to deal extensively with shifting and masking, with random

access I/0, and with large numbers of files, and since their output is how the

typeset document is communicated to the output device, they must have precise

control over exactly which bits go where, and what the output byte order is.

Pascal is just too feeble in these areas.

If one agrees with my view that common source files should support many

different operating system implementations and output devices, then the lack

of any facility in either Pascal or Web for sharing code via source file inclusion

requests is a serious drawback. Some sort of preprocessor facility would be nec-

essary to provide this; while not at all difficult to do, it is yet another step that

must be done before each compilation. Although much of the source code is the

same for each driver, there are minor variants that are desirable or necessary,

either because of device peculiarities, operating system requirements, or simply

compiler bugs. If this common code is not maintained in a single place, with

some sort of embedded conditional processing commands, then it has to be repli-

cated many times over. With the number of devices and environments currently

supported by my driver family, that is already a number over one hundred! Web

provides support for only one change file, so using it on a master source file

when so many variants are required would either require large numbers of sim-

ilar change files, or use of Web's limited macro capability to create conditional

variant sections in the change files.

These criticisms may seem harsh to Web or Pascal devotees. I think Web is

a marvelous tool for writing 'lEX and METAFONT, but it is most definitely not

a panacea for the maintenance of large software systems.

Well, if Web and Pascal are not suitable for the driver family, what is?

Fortrant [ANSI66, ANSI78, ANSI87] has been around for over three decades,

and has been implemented on pretty much every commercial computer. Not

t Draft ANSI Fortran 8X recommends the spelling "Fortran", instead of the

"FORTRAN" of earlier standards.

78 TUG VIII, 1987, Conference Proceedings

A TEX DVI Driver Family

only that, Fortran compilers generally produce more efficient object code than
do those for any other language; the primary reason for this is just Fortran's long

head start and limited number of data types, not for any particularly redeeming

features of the language. Fortran has been used for a few DVI drivers, but if

the goal of the effort is portability, as it is for me, it is completely unsuitable.

It lacks standard bit operations, recursion, source file inclusion, conditional pre-
processing, and because it has a record-oriented notion of files, random byte

access 1/0 must be simulated by random record access. For binary files, the

records are Fortran records; they must be recognizable objects which can be

accessed in either forward or backward directions. This in practice is handled

by the embedding of magical control fields before and after each record. Fortran
records are also word oriented, since the smallest data object in the language is

a word containing an integer, real, or logical value. So there goes any chance of

getting an uncontaminated byte stream to an output device.

How about Modula-2? Wirth developed Modula (1977), then Modula-2

(1982) [WIRT83], and learned much from the Pascal experience. Modula-2 re-

moves most of the deficiencies of Pascal that I complained about above, but it

still leaves some oddities, such as the fact that set size is limited by the host

integer word size, which might be as small as 16 bits. Unlike Pascal, which has

1/0 statements as integral parts of the language, Modula-2 leaves them for defi-

nition by library functions. Unfortunately, it does not have a standard run-time

library, leading once again to a Babel of implementation variants. Modula-2 has

not been as widely implemented as Pascal, and there is a significant share of the

computer market for which Modula-2 compilers are simply unavailable.

Ada [ANSI83a] looks good, or at least powerful. It is a very large language
designed by committee, with the intent of replacing all other languages (including

assembly languages) used by the U. S. Department of Defense for "embedded

systems", and recently, DoD contract requirements have tended to specify it

for other purposes as well. There is a large European commercial interest in

Ada, and the language does have the necessary hooks to allow control over
object representation, both in the computer, and in an external file. It does not

have bit shifting or masking operations, but these could be provided since Ada

permits separate compilation and some limited use of routines written in other

languages. There is a sufficient collection of inquiry facilities, so that one can

write code, particularly arithmetic code, more portably than is possible in any

other language. Ada is strongly typed, but array sizes are not considered part
of the type. 1/0 is relegated to library functions, but that library specification

is part of the language definition. Random byte access in files is part of that

standard. Finally, the DoD Ada compiler validation requirement, and the strict

rules against Ada subsetting or supersetting, should greatly enhance portability.

There are two practical problems with Ada, however. First, the size of the

language, and the strict validation requirements, have resulted in significantly in-

creased Ada compiler and Ada environment development costs which are passed

TUG VIII, 1987, Conference Proceedings 79

Nelson H. F. Beebe

on to the end user in fees that are generally several times higher than those levied

for compilers for the more traditional languages. Second, the size makes imple-

mentations on personal computers, or machines with limited address space, quite

difficult. Both of these mean that software development efforts will not have as

wide a reach with Ada at present as they could with a different language choice.

Common LISP [STEE84] is a relatively new language with roots almost as

old as Fortran. It has a rich run-time library supporting decent file handling,

I/0 (including random byte access), bit shifting and masking, and has a pow-

erful operating system interface. Like all LISP's, it provides dynamic memory

management transparently to the programmer, and like most new LISP's, it can

be compiled as well as interpreted, so run-time efficiency might not be an issue.

LISP's extensibility has led to almost as many dialects as there are LISP pro-

grammers, but Common LISP may bring the community back together. The

major problems with it at present are the same as those for Ada and Modula-

2-expense and size, or unavailability on many major machines. Despite these

drawbacks, I think it would be fun to write a 'lEX DVI driver in Common LISP.

Thus, by a process of elimination of major candidates (and all the minor

ones, because of portability constraints), we are led to the last choice on the

list-C. The C language was created by Dennis Ritchie about 1972, based on an

earlier typeless prototype language called B, which in turn came from BCPL,

also typeless. BCPL's origins are in systems programming and compiler writing,

where it is necessary to have close and controllable access to memory bit patterns

and hardware registers.

C is used extensively in the Unix operating system, both for the operating

system kernel, and for the great majority of compilers and other software tools.

It is of sufficient power that it has displaced all but a few hundred lines of

assembly code in the Unix kernel. This is a remarkable achievement, probably

equaled only by the S-Algollanguage used to write Burroughs operating systems.

However, C has received a considerable amount of bad press; Philippe Kahn,

the founder of Borland International, which markets the popular Turbo Pascal

system, has called C a write-only language. For readers unfamiliar with C, some

explanation is in order.

C is superficially a fairly simple language, not all that different from Algol

descendants. Compound statements are delimited by curly braces instead of

begin/ end keywords, which is actually an advantage in a text editor that provides

for brace matching. C is fairly unusual in that it is case sensitive-TEX, TeX,

T ex, and tex are all different identifiers. C has no nested procedures, and makes

no distinction between routines that return values (Pascal function's), and those

that do not (Pascal procedure's); it calls them all functions. The source file forms

part of the variable scoping mechanism-values declared outside a function body

are normally globally known, but by giving them the static type attribute, their

visibility can be restricted to just those functions in that source file.

C has a rich collection of data types. Integer types are char, short, int, and

80 TUG VIII, 1987, Conference Proceedings

A 1£X DVI Driver Family

long, all of which can be signed or unsigned, and floating-point types are float and
double. These can be grouped into arrays, unions (like Fortran EQUIVALENCE),
and structures (like Pascal records), but without the constraints of Pascal's strong

typing on array sizes.

There is an equally rich set of operators to work on data, including shifting,

masking, and pre- and post-decrementing and incrementing. However, there are

also 16 levels of operator precedence to confuse the programmer.

Pointers can be declared for any data object, and library routines support

allocating and freeing memory dynamically. C is unusual in that pointers and
arrays are equivalent. Arrays always have a zero index origin, and a[k], *a+k,

*(a+k), and k+*a all refer to the (k + l)'t element of the array. The asterisk is

the indirection, or pointer dereferencing, operator. This feature means that pro-

grammers tend to encourage efficient code generation by manipulating pointers,

rather than making array references. A simple example of this is a string copy
function, which could be written as

copy(target, source)

char target[];

char source[]

{

}

int k;
while (source[k] != '\0')
{

}

target[k] = source[k];

k = k + 1;

but would more likely be written as

copy(target,source)

register char* target;

register char* source;
{

while (*source)

*target++= *source++;

}

These illustrate the pointer/array equivalence, as well as the facts that strings

in C are terminated by an ASCII NUL character (represented inC by '\0'), that

arguments are normally passed by value (allowing local modification without af-

fecting the caller), and that the post-increment operator,++, binds more tightly
than the indirection operator,*. In the assignment *target++= *source++, the

pointer value represented by source is saved, dereferenced to find the element it

points to, then the pointer value is incremented to point to the next element in

TUG VIII, 1987, Conference Proceedings 81

Nelson H. F. Beebe

the array. The same thing happens for target on the left-hand side of the assign-

ment. Because pointers point to objects of definite types, pointer arithmetic is

always defined to move over objects, rather than machine memory locations, so

the programmer is protected from having to be aware of the underlying object

representation size, which is almost certainly machine-dependent. The regis-
ter attribute in a declaration is a strong hint to the compiler that the variable

should be maintained in a fast hardware register, instead of being materialized

in memory.

Extensive type coercion is possible through the use of type casts; for example,

on a machine with two's complement arithmetic, (unsigned)-1 says "take the

bit pattern represented by the number -1, then treat it as the unsigned integer

which has the same bit pattern".

I/0 is not part of the language, but is provided through library routines

which have followed the original Unix file system and I/0 model in most current

C implementations. In particular, files are simply streams of ASCII bytes which

end at the last byte written, and have no other structure imposed on them.

There are consequently no concepts of records, blocks, carriage control options,

or text versus binary.

C therefore has a suitable set of primitives, data types, and library rou-

tines to provide the tools we need to write a 'lEX DVI driver. In addition, it

has a preprocessor which permits definition of simple macros, optionally with

arguments:

#define MAXPAGEFONTS 16
#define DEVICE_ID "Hewlett-Packard LaserJet Plus laser printer"
#define OUT16(n) {OUTC((n)«8); OUTC(n);}

and which provides for conditional preprocessing based on preprocessor expres-

SiOns:

#if (CANON_A2 I HPJETPLUS I IMPRESS I POSTSCRIPT)
(void)bopact();

#else
(void)drbmap();

#endif

Finally, the preprocessor provides for source file inclusion:

#include <stdio. h>

#include "prtpage. h"

The angle-bracketed form is used for system-defined include files, and the quoted

form for user-defined ones.

In summary, C has all the tools we need, and implementations are available

on virtually every commercial machine from personal computers up to super-

computers. It is by no means restricted to byte-addressable machines; on our

82 TUG VIII, 1987, Conference Proceedings

A 'lEX DVI Driver Family

DEC-20, which is a 36-bit word-addressed machine, there are at least 5 different
C compilers available.

As Kahn's comment above indicates, C does have pitfalls:

111 The many levels of operator precedence and excessive use of pointers are
highly prone to programming errors, as is the writing of overly-complex ex-

pressions using C's rich operator repertoire.

e As in Algol 60 and 68, assignments are legal expressions which return the

value of the left-hand side. This leads to a potential error when the assign-
ment operator, =, is confused with the equality test operator, ==. The

programmer who writes the legal C statement if (a = b) ... probably does

not mean to assign b to a, then test whether a is non-zero, but instead, wants

an equality test, if (a == b) A few compilers issue a warning message

when they see the former construction, but the error is still quite common,
and quite hard to spot.

o Array objects do not carry their sizes around with them, and frequently

masquerade as pointers, so the compiler cannot generate bounds-checking

code. Many of the run-time library routines return values in array arguments
whose sizes are assumed to be "big enough", but are otherwise unavailable to

the routine. That is, of course, a library design flaw, not a language defect.

s There are tiny syntactic peculiarities that can lead to hard-to-find errors.

Examples include a semicolon following a while or for loop condition, which
gives the loop a null body, instead of having it act upon the following state-

ment, and the fact that execution of a case in a switch statement by default

falls through to the next case, instead of exiting the statement. The break

statement provides the necessary case exit, but it is easy to forget.

• Because early C compilers were implemented on machines which had a uni-

form byte-addressed memory architecture, where the memory address filled

one integer word, many programmers assumed size and type equivalence of

pointers and integers, and assumed that the constant 0 was equivalent to

C's null pointer value. This does not hold on other architectures; the most
notable exception is the Intel iAPX architecture used in the IBM PC, where

"far" pointers are generally composite objects containing a segment descrip-

tor and a segment offset, and which in fact fill two integer words of storage.

On word-addressed machines which support packing multiple characters in

an integer word, such as the DEC-20, character pointers have an entirely
different format from pointers to other data types, although they may still

fit in one integer word.

• Again, because early C compilers were implemented on similar architectures,

the DEC PDP-11 and VAX computers, programmers made assumptions
about the absolute sizes of the integer data types, char, short, int, and long,

and about the memory storage order of bytes, which are likely to be incorrect

for other architectures.

TUG VIII, 1987, Conference Proceedings 83

Nelson H. F. Beebe

e C provides for separate and independent compilation of functions. Until the

draft ANSI C Standard (ANSI86] was prepared in 1986, there was no way

for the programmer to tell the compiler the number and types of arguments

passed to a function, so no module interface type checking was possible. This

is a recognized deficiency, and draft ANSI C (which may be adopted in late

1988) introduces a new function prototype declaration to provide for this.

Several compilers have already implemented support for these prototypes,

uncovering innumerable long-lived user-program bugs in the process.

e The fact that arrays in C have a zero origin, so that an N-element array

is indexed A[O] ... A[N-1], leads to frequent "off-by-one" errors in array

references, since most humans start their counting at 1, not 0.

111 There is no provision for declaration of variables having a subrange of integer

values. Pascal, Modula-2, and Ada provide this, and will enforce it either at
compile time, or at run time. In C, one can only declare it generically as one

of the four standard integer types, with an optional sign attribute. There is

no run-time range checking, and integer overflow is generally ignored.

Host Environments

The DVI driver family has been carefully designed to be portable across multi-

ple operating systems and different host architectures. Of course, some system

dependencies are inevitable, but they can be nicely handled through C prepro-

cessor conditionals. Here are the systems currently supported at version 2.10,

with compilers noted in brackets:

e Atari 520ST+ GEMDOS (Mark Williams C];

e MS DOS (IBM PC family) (Microsoft C];
e TOPS-20 (PCC-20 and KCC-20);

e VAX VMS (VMS C);

• Unix (most variants, including BSD and System V).

At the time of writing, ports are under way to IBM CMS (Waterloo C), Prime
Primos, and Data General, but are still incomplete. There may be others that I

have not yet heard of.

Output Devices

Here is a list of the currently-supported output devices:

dvialw PostScript (Apple LaserWriter and others)

dvibit Version 3.10 BBN BitGraph terminal

84 TUG VIII, 1987, Conference Proceedings

dvican

dvie72

dvieps

dvigd

dviimp

dvijep

dvijet

dvil3p

dvil75

dvim72

dvimac

dvimpi

dvio72

dvioki

dviprx

dvitos

A 'fEX DVI Driver Family

Canon LBP-8 A2 laser printer

Epson 9-pin 60h x 72v dpi dot-matrix printer

Epson 9-pin 240h x 216v dpi dot-matrix printer

Golden Dawn Golden Laser 100 laser printer

Imagen imPRESS-language laser printer family

Hewlett-Packard LaserJet Plus laser printer

Hewlett-Packard LaserJet laser printer {really a 100 dpi dot-matrix

printer)

DEC LN03 Plus 150dpi and 300dpi laser printer

DEC LA75 144 dpi dot-matrix printer

Apple Imagewriter 72 dpi dot-matrix printer

Apple Imagewriter 144 dpi dot-matrix printer

MPI Sprinter 72 dpi dot-matrix printer

OKIDATA Pacemark 2410 72 dpi dot-matrix printer

OKIDATA Pacemark 2410 144 dpi dot-matrix printer

Printronix 60h x 72v dpi dot-matrix printer

Toshiba P-1351 180 dpi dot-matrix printer

There are also a couple of experimental drivers which are not listed here.

Adding support for a new dot-matrix printer is quite straightforward, starting

from the code for a similar printer. A few size parameters in the file header need
to be changed to define the resolution and paper size, and a single output function

(50 to 100 lines of code) needs to be rewritten to convert the bitmap in memory

(stored in scan-line order) to the sometimes bizarre format needed by the printer.

Support for new laser printers or screen displays involves substantially more

effort, since it involves downloading fonts to the device, which may have its

own peculiar conventions, such as having forbidden regions in the ASCII code
sequence where fonts may be defined, or putting restrictions on the number of

fonts, or size of characters, that can be defined.

I have received promises of adaptations to several other printers, but none

have arrived at the time of writing. Doug Henderson (UC Berkeley) has reported

some work on the Mergenthaler Linotronic 300 phototypesetter, which is a high-
resolution PostScript printer, but the project is currently suspended due to lack

of funding.

Support for 'lEX \special Commands

The 'lEX \special command is the mechanism by which a 'lEX document can

get an arbitrary string into the DVI file. The intention of this is to provide for

TUG VIII, 1987, Conference Proceedings 85

Nelson H. F. Beebe

facilities that 'lEX itself does not offer, but which the DVI driver could supply.
Here are some typical examples:

• verbatim insertion of graphics files;

• invocation of device graphics commands;

• invocation of forms overlays (e.g. institutional letterheads);

• selection of alternate paper trays;

• temporary switch to landscape printing;
• requests for manual paper feed;

• changing foreground and background colors on a color display;
• gray-shading a rectangular region; and

• printer operator instructions.

Use of a \special command potentially inserts a device and driver dependence
in 'JEX's device-independent output, and is therefore a barrier to document
portability. This is a recognized problem, and a committee of the TEX Users

Group has been formed to come up with recommendations for the provision of

better, and more uniform, support for \special commands.

In the meantime, this DVI driver family provides \special support only in the

PostScript driver, dvialw, and then only in a fairly simple form. It is neverthe-
less possible to edit PostScript files produced by other programs into the form

recognized by dvialw, and then have a \special .command request their insertion,

either at the current point on the page, or overlaid on the entire page.

I have received contributed code for the Hewlett-Packard LaserJet Plus driver
that provides similar support for dvijep, but I have delayed installing it until
the recommendations of the above committee have been published. Since I am

supporting a family of drivers, it is important that features provided by the

\special command be available in all of them, unless it can be demonstrated that
the need for a facility available only on a few devices is so great that it is worth
adding anyway.

There is only one single function, special(), to be rewritten in the DVI driver
code. With the exception of dvialw, this is just a dummy routine that prints a

message noting that it has been called. The version of special() in dvialw is about

200 lines of code.

Users who are desperate for such support have been able to add it in their
local copies without great difficulty, and on request, I have distributed copies of
the dvijep code extensions.

Driver Installation

The driver code consists of 20 source files, dvixxx.c, where xxx is the mnemonic
for the output device, plus about 70 .h files which are #include'd by them. Each

driver file includes between 50 and 60 of these files.

86 TUG VITI, 1987, Conference Proceedings

A 'lEX DVI Driver Family

The reason separate compilation is not used for the included files is that most
of them contain preprocessor conditionals which select different code sections,
depending on the output device, host operating system and compiler, and so
on. If they were separately compiled, it would be impossible to keep track of
which code sections were enabled in any particular compiled object file, and

chaos would ensue if a driver were loaded with the wrong versions. Presenting
a single source file to the compiler removes this problem, though it does suffer

from the same objection I raised earlier about Pascal, namely, recompilation of
the entire file is wasteful and slow.

On an IBM PC XT (4. 77MHz Intel 8088) with Microsoft C Version 4.0, com-
pilation and linking of a single driver takes about 20 minutes; Version 5.0 of the
compiler can now be used with optimization, but that increases the compilation
time to 30 minutes. On a Sun 3/280 (25MHz Motorola 68020) Unix file server,

it takes 35 seconds.

Provided the host system is one of those for which support has already been

implemented, all that is necessary after loading the source files onto the system
is to edit one single file, machdefs.h, and follow the instructions in its leading
comments to make the necessary local file-naming changes, and select the ap-

propriate operating system and compiler settings. Since the latter are already
there nested inside comments, in practice, all I need to do with the code when I
move between local machines is move two bracketing comment lines.

Unix-style makefile 's are provided for each of the operating systems, and ~ll
that is needed is to copy the appropriate machine-specific one (e.g makefile.vms)
to a file named makefile, then type make to initiate the compilation. A public-
domain implementation of make that runs under all the supported operating

systems is provided with the DVI distribution, and should be used for this pur-
pose. Doing it any other way is guaranteed to be the hard way, and will almost

certainly introduce errors.

For some systems, a couple of extra separate files may be compiled and loaded

with the driver file, but this is handled automatically by the commands in the

makefile.

How Big is a Driver?

You might be curious to know how much code it takes to write a DVI driver
program. At the present time, the shared code amounts to about 20K lines of C

in 39 .c files and 69 .h files. The size of a single driver varies from 7800 to 9000
lines, counting lines in the .h files it includes; after stripping comments and blank
lines, this reduces to 3300 to 4000 lines of actual code. With 20 drivers, family

code sharing saves 20 x 8000-20000 = 140000 lines; that number represents how
much extra code would have to be maintained if these drivers were not treated

TUG VIII, 1987, Conference Proceedings 87

Nelson H. F. Beebe

as a family.
Documentation consists of a 94-page installation guide (4600 lines), and a

20-page user manual (1100 lines), both in LaJEX form. The user manual is also
available in JEXinfo form for TOPS-20 and GNU Emacs INFO on-line access,

and as a Unix nroff/troff manual "page", for hardcopy and on-line access.

It is interesting to compare the driver sizes with some other JEXware. The
Pascal output of Tangle is SO-character packed line images with no comments

or embedded space, and usually several statements per line. To make these
comparisons, the code was run through the Berkeley Unix Pascal prettyprinter,

pxp -0 -f, so that it looks more like it was hand-written.

Program

dvitype

gftype
pktype

META FONT

'lEX
Common 'lEX
C'IE;X

Lines

1700

900
550

20170
20119

19600
22760

It is remarkable that the JEX and METAFONT Pascal programs are within 51
lines (0.2%) of one another. The two C translations of 'lEX are also very close
in size to the Pascal version.

Portability Considerations

Software portability is not a subject commonly covered in books. For the C
language, there are only three books which I have found useful.

Harbison and Steele [HARB87] is currently the best source of a description of
the complete language; the second edition includes features introduced by draft

ANSI C [ANSI86].

Lapin [LAPI87] (a pseudonym for the staff of Rabbit Software) has a good
discussion of portability issues, and provides useful tables of library function

availability under six major versions of the Unix operating system.

Rochkind [ROCH85] is a solid reference for Unix systems programming ap-
plications. It was invaluable for preparing the code needed to support immediate
keyboard input for the BBN BitGraph DVI driver, dvibit.

The original definition of C by Kernighan and Ritchie [KERN78] is written
in tutorial form, rather than as a reference manual, and as the first book on the
language, has been followed by most implementors. However, certain parts ofthe

88 TUG Vlll, 1987, Conference Proceedings

A 'lEX DVI Driver Family

language are not clearly defined, and the run-time library is only briefly covered.

Also, concern about possible infringements on AT&T software copyrights has led

some vendors to provide completely different run-time libraries.

I believe it is worthwhile to summarize here some of the main considerations,

because until these are thoroughly understood, digested, and learned, C pro-

grammers have little chance of writing portable code. These are stated in the

form of rules:

• external names unique in first six characters;

• no mixed-case function or variable names;

• file names unique in first six characters, and limited to eight characters, plus

three character extension;

• file names in one case;

<~ preprocessor names unique in first eight characters;

• consistent, readable, code formatting, e.g.

#define BAR 'b'
#define FEE 'f'
void
foo(c)
char c;

{
if (c == BAR)

(void)bar();
else if (c == FEE)

(void)fee();
else

(void)def();

for (k = 1; k < n; ++k)
{

}
}

(void)printf(" Iteration %d" ,k);
1\iEWliNE(stdout);

• source code lines limited to 80 characters (C has backslash-newline conven-

tion for continued lines);

e type declarations declare one variable each, and have a descriptive comment:

char curpath[MAXFNAME]; /* current file area * /

• type declarations ordered alphabetically;

• no labels or goto statements;

e explicit type casting of expressions and assignment in mixed-mode is required;

• no binary I/0 on stdin/stdout;

TUG VIII, 1987, Conference Proceedings 89

Nelson H. F. Beebe

• NEWUNE(file) instead of printing newline character;

• functions which do not return a value are typed void;

<ll discarded function values are type cast as (void);

e all functions declared before use, with ANSI and non-ANSI prototypes:

#if ANSI

void actfact(UNSIGN32);

#else /* NOT ANSI * /
void actfact();

#endif r ANSI *I

411 main() function defined first in source file, with all others following in alpha-

betical order;

• explicit integer/Boolean typing using typedef 's for BOOLEAN, BYTE, CO-

ORDINATE, INTB, INT16, INT32, UNSIGN8, UNSIGN16, and UNSIGN32;

411 parenthesize expressions-C has 16 operator precedence levels;

e null pointers are (type *NUll), not 0; pointers are not equivalent to integers;

e no use of enum, functions returning struct, or non-library functions with

variable numbers of arguments;

e no preprocessor symbol concatenation possible (i.e., do not use #define A(x)
A/* * jx or #define A(x) A##x);

e preprocessor symbols entirely in UPPER-CASE;

• preprocessor #if expressions limited to simple variable, or (VARl I VAR2 I
.•• j VARn);

€1 cannot assume availability of compile-time define capability for preprocessor

symbols (e.g. cc -DOS_UNIX -c foo.c);

e no white space before or after # in preprocessor statements;

e preprocessor statements allowed: #define, #if, #else, #endif. Restricted use

of #undef, #ifdef, #ifndef. No #elif, #error, #if defined(var), or #pragma.

When code is contributed to the DVI driver family, I first go through it
manually to check for any violations of these rules, and make repairs as necessary.

Then the code is processed by compilers on several operating systems with full

error checking enabled, and the Unix lint utility is run on it. Any problems

these reveal are fixed, and the compilations and lint runs are repeated. Once

this has been done, I can be reasonably sure that ports to new machines should

be considerably easier.

It is also a requirement that a feature may not be added that is peculiar to

one compiler or operating system, or to one output device, without strong justi-

fication. An example of such an exception is the option for automatic spooling of

the driver output, which is available on TOPS-20 and 4.2 (or later) BSD Unix;

it is just too useful to leave out. I have not been quick to implement special

requests for things like landscape mode printing in one particular driver. That

is a general capability which they all deserve, but when it is done, it must be

done with sufficient generality.

90 TUG VIII, 1987, Conference Proceedings

A 'IEX DVI Driver Family

Environment-Induced Code Modifications

I noted earlier that parts of lEX and METRFONT are necessarily system-dependent,

and that it is necessary to provide modifications for these sections with a change

file. Here are the sizes of the lEX Web change files for selected operating systems:

Operating System

IBM CMS

IBM MVS

TOPS-10

TOPS-20

Unix

VAX VMS

Lines

1850

660

1030

1300

1360

1080

In the DVI driver family, such changes are handled by C preprocessor condition-

als. At last count, there were 131 operating-system sections, and 293 output-

device sections. Although these numbers are not small, neither are they big

compared to the 20000 lines of code involved.

I was curious to see just what the distribution of these conditional code

sections is, so I ran a minor modification of D. Mcilroy's Unix implementation

of the word frequency program given in [BENT86), and obtained the following

table. Names with fewer than 5 references are dropped. It is common for such

code sections to apply to more than one device or operating system, so the

frequency totals in this table exceed the number of conditional code sections.

TUG VIII, 1987, Conference Proceedings 91

Nelson H. F. Beebe

Code Section Frequency

SEGMEM 71
HIRES 44
IBM_PCMICROSOFT 43
POSTSCRIPT 43
CANON_A2 40
HPJETPLUS 40
BBNBITGRAPH 37
IMPRESS 28
OS_ VAXVMS 27
OS_ TOPS20 26
IBM_P(_LATTICE 20
PS_SHORTLINES 19
IBM_PCWIZARD 16
OS_UNIX 16
OS_ATARI 14
PCC_20 11
VIRTUAL_FONTS 10
KCC20 9
BSD42 7
EPSON 7
HPLASERJET 7
OS_PCDOS 7
HOST _WORD_SIZE 6
STORES 6
APPLEIMAGEWRITER 5
GOLDENDAWNGllOO 5

The operating system, compiler, and output device names should be fairly ob-

vious. The problems I have had with the IBM PC are reflected in the larger

numbers in this table. SEGMEM refers to the effects of the Intel iAPX seg-

mented memory, to be described later. HIRES sections are from those device

drivers (e.g. dvioki and dvio72) that have both high and low resolution output

modes; code for the latter occurs in the #else branch of a preprocessor condi-
tional. PS_SHORTLIN ES code sections limit the PostScript output line width.

VIRTUAL_FONTS code sections implement one-time reading of font files to im-

prove performance across networks.

92 TUG Vill, 1987, Conference Proceedings

A 'lEX DVI Driver Family

Output Device Misfeatures

Dealing with output device misfeatures can be a frustrating experience. The

first problem one faces is device documentation that is unclear, inaccurate, in-

complete, or just plain wrong. Every laser printer I have used has suffered from
this problem.

Apple's initial documentation of downloading fonts into the Laser Writer was

simply incorrect; it took a visit to Adobe Systems to find out how to do it.

Apple ships its US$7K LaserWriter printer with a manual that tells little more

than how to unpack the printer from its shipping box and install the paper and

toner cartridge, but nothing whatever on what the RS-232C serial connection

pin assignments are, and nothing on programming it. For information about

such things, you are expected to order a separate technical reference manual.

Hewlett-Packard's Laser Jet Plus documentation offont downloading was un-

clear, but fortunately, their telephone support is excellent, and it took only one

weekend's work to get an initial driver going. Now for their LaserJet Series II

printer, however, the documentation is truly outstanding; they just don't pack

the Technical Reference Manual with the printer like they did with the Laser-
Jet Plus, and you need that manual to program the printer. Once again, their

support is good, and I got a manual expressed to me the same day as my phone

call to them.

The Canon LBP-8 A2 comes with a drastically abbreviated manual, where

in the font downloading section, you are instructed to send character "sizes"

(width? height? depth? units?) followed by "binary data" (what binary data?

and how much?). The local dealer had tried unsuccessfully to obtain the more

detailed Subsystem Manual, and I only got a copy from Canon U. S. headquarters

on the grounds that I was a software developer that had a product that used
their printer.

Adequate documentation, both for end users and for program-

mers, ought to be considered an inseparable part of a hardware

product costing thousands of dollars.

A number of printers are now on the market which claim to emulate other pop-

ular printers. The developers of these products are faced with much the same

problem a DVI developer has, only they must be able to prepare a complete

software emulation based on whatever documentation they can obtain. Needless

to say, they do not always succeed. The Mitek and Personal Computer Products
Laserlmage 2000 printers, which emulate the Hewlett-Packard LaserJet Plus,

among others, are known to work correctly with dvijep, but the DataProducts

LZR, Kyocera, QMS 800+, and Texas Instruments Omnilaser printers do not.

Kyocera has admitted the faulty emulation, and will be issuing new ROM's; I

trust the others will follow suit.

Dot-matrix printers seem to be designed for the convenience of the program-

mer who wrote their ROM code, rather than the thousands of users who must

TUG VIII, 1987, Conference Proceedings 93

Nelson H. F. Beebe

program them. With the exception of the Printronix and Hewlett-Packard Laser-
Jet printers, all that I have encountered use a raster image encoding based on

sending vertical bit clusters corresponding to the number of pins in the print-

ing element head (usually, 6, 7, 9, 16, or 24). This is more complex to encode,

and also reduces the possibility of run-length encoding giving significant data

compression. The Printronix accepts data in scan-line order, but requires the
bits encoded in reverse order in each 6-bit group! What is more, some of these

printers forbid the printing of two adjacent dots on a raster line, on the threat

of "burning out the print head".

This is just plain nonsense. It should be up to the printer to re-encode raster

bits presented in scan line order into whatever format is needed internally to

fire print hammer pins, and to prevent printing adjacent dots, if this is indeed a

problem.

Some dot-matrix printers offer a higher density print mode made by multiple

passes of the print head across the page. Unfortunately, the carriage positioning

precision is lacking, and the print quality may be worse than that of the one-pass

low-resolution mode.

Several dot-matrix printers off~r run-length encoding (i.e., sending a repeat

count followed by a bit pattern when that pattern is repeated in the raster

image). This reduces the data volume that must be sent to the printer, and

could do an even better job if horizontal scan line encoding were used, but in

almost every case where I have tried it, the printer either runs slower than it
would for the full bitmap, or does not print correctly. Consequently, run-length

encoding is left as a run-time option for those DVI drivers.

With the exception of PostScript and Imagen's imPRESS, none of the output
devices I have encountered provide for the insertion of comment text in a file.

Such text can actually be quite useful, even if the printer ignores it, since it can

be used to record archival information about the file, such as author, creation

date, filename, and host origin. Although a limited amount of such information

may be available in the file attributes on the machine on which the file was
created, there is rarely any provision for the creating program to add its own
remarks. Anyway, the attributes are generally lost or damaged when the file is

transferred to another machine, and that occurrence is becoming increasingly

common in an era of networks and distributed computing systems. Binary files
are unintelligible enough for a human without making it even harder by outlawing

embedded comment strings.

There are a number of terminals on the market that support downloaded

fonts, but their restriction to fixed-width fonts makes them utterly useless for

'lEX display. Considering that memory prices are now so low that the 128Kb of

RAM chips for a 1024 x 1024 display cost less than US$15, and an extra 128Kb
or 256Kb would be ample for font storage, this feature lack is deplorable. The

BBN BitGraph remains the only terminal I have found so far which is adequate

for 'lEX previewing. It has some oddities too. It allows only 3 fonts (which is

94 TUG VIII, 1987, Conference Proceedings

A 1EX DVI Driver Family

not many, but one can live with , but only provides for the definition of 96
characters in a font, so each 128- or 256-character 'lEX font must be mapped

into more than one BitGraph font.

The Hewlett-Packard LaserJet Plus and Series H printers define fonts with

16-bit parameter sizes (-32768 ... +32767, or 0 ... 65536), but limit the number

of fonts per document to and the number of fonts per page to 16. There

seems to be no obvious reason why this second number should be smaller, unless

some programmer saved a byte of memory by squeezing a font number into 4
bits somewhere else.

Since the two 32-character control character columns in 8-bit ASCII are
excluded, downloaded character numbers are limited to the ranges 32 ... 127

and 160 ... 255. This requires a remapping of 'lEX character numbers, which

can be hidden in a short preprocessor macro.

The Plus limits character extents to the range -127 ... + 127 which is too

small for characters larger than 36pt, or even for smaller ones, if they have

large descenders or ascenders. The Series II raises that limit to the peculiar

range -4200 ... +4200, whose limits are not even powers of two; perhaps they

reflect the number of dots down a page of U. S. legal-size paper. The width and

height are required to be at least one bit, so that one cannot define a zero-width

character.

The LaserJet Plus and Series U have another oddity. There is a command to

delete a downloaded font, but it is of little utility, because it causes an immediate
printer page eject!

Version 2.10 of the DVI driver family incorporates a major rewrite of dvijep

which removes both the document and page font count limitations, as well as

the character size limitations; when necessary, dvijep will now revert to sending

characters as bitmaps, instead of as downloaded fonts.

PostScript [ADOB85] printers have lots of problems too. The Apple Laser-

Writer with Version 23.0 PostScript ROM's has a couple of annoying bugs. With
serial RS-232C communication, it can send an X-OFF character to suspend

transmission from the host, then forget (under circumstances which are hard

to reproduce, but still occur frequently) to send an X-ON character to resume

transmission. Eventually, it times out and flushes the rest of the job. It also

gets random virtuai memory errors; the same job may print successfully twice,

and fail a third time. Adobe eventually produced a fix for the X-ON/X-OFF

problems, and the Version 38.0 ROM's shipped with the Apple Laser Writer Plus

removed the bug. As of September 1987, new Pluses are being shipped with

Version 47.0 ROM's, and existing Pluses can be upgraded to these. Besides bug

fixes, these new versions have introduced significant performance improvements

in the PostScript interpreter. With the Plus (Version 38.0 ROM's), I have been

able to obtain 5 pages/minute output (the print engine is capable of 8) on a

100-page document, whereas the old LaserWriter (Version 23.0 ROM's) barely

averaged 2 pages/minute.

TUG VIII, 1987, Conference Proceedings 95

Nelson H. F. Beebe

There are some other problems with current PostScript implementations.

One is that performance is severely hampered by the lack of floating-point hard-

ware; computations in PostScript are carried out in IEEE floating-point format

(which is commendable), but most printers use software emulation. Timing

loops in the Apple LaserWriter reveal speeds of about one millisecond for an

add, subtract, multiply, or divide, which is about 100 times slower than hard-

ware floating-point would provide.

A second problem is that there is insufficient virtual memory available. The

Apple LaserWriter is probably the worst offender, with only about 150Kb re-

maining at job start time; some other vendors have 400Kb or more available.

This is unfortunate, because with chip prices below US$100 per megabyte,·t

there should be lots of memory in the printer. This is less critical for jobs that

use device-resident fonts, but for downloaded font applications, like 'lEX with

Computer Modern fonts, it is a serious limitation.

A third problem with PostScript is that it is verbose, and no compact binary

form of PostScript exists, as it does for Imagen's DDL language. The PostScript

produced by dvialw introduces one-letter abbreviations for common command

sequences, and eliminates all unnecessary white space, in an effort to reduce the

amount of data that must be sent to the printer. The Hewlett-Packard LaserJet

Plus and Series II use a binary representation for font definition sequences, but

verbose ASCII digit strings for positioning commands.

Here are some comparisons ofthe DVI driver output file sizes (in bytes) using

the 'JEXbook as a test document. The tests were carried out on a Sun 3/280
(25MHz Motorola 68020). First we process a single page (page 85 in Chapter 13),

which will have an initially larger overhead because macros are being defined,

and fonts are being downloaded.

Driver Time (sec) Time Ratio File Size Size Ratio

dvialw 10.2 1.16 37324 2.42

dviimp 8.8 1.00 15452 1.00
dvijep 9.1 1.03 21671 1.40

Next we consider a larger number of pages (Chapters 13-16, 53 pages), which

would be more typical, perhaps, of user 'lEX manuscripts. After several pages

have been processed, fonts have already been downloaded, and the output con-

sists primarily of positioning commands, and text to be typeset.

t based on advertised single quantity prices in November 1987; manufacturer's

volume prices would be much lower.

96 TUG VIII, 1987, Conference Proceedings

A 1E;X DVI Driver Family

Driver Time (sec) Time Ratio File Size Size Ratio

dvialw 68.0 1.59 753326 1.95

clviimp 42.7 1.00 386554 1.00
dvijep 46.3 1.08 668543 1.73

Note the significant startup overhead for the output of a single page; it took

more than 8 sec/page, while the 53-page output averaged about 1 sec/page.

Part of this is due to the large size (1.97Mb) of the DVI file, and part to the

large number of fonts (54) which must be opened to retrieve font definitions.

More modestly-sized documents would not have such a large startup time.

Imagen's imPRESS language as output by dviimp produces the most compact

output; it uses 16-bit binary numbers for absolute positioning commands, instead

of ASCII digit strings. PostScript output by dvialw requires nearly twice the

data that imPRESS needs. The large size ratio for dvijep, compared to that

in the preceding table, is partly due to the use of ASCII digit strings for text

positioning; towards the end of the output file, positioning commands require

on average about 3.3 times as much output as the text to be set. Another

contributing factor is that the 'fEXbook exceeds the HP Laserjet Plus document

font limit, so some characters must be sent repeatedly as bitmaps, rather than

as downloaded fonts; in these 53 pages, there were only 63 characters that fell

into this class, but they contributed 154Kb, or 23%, to the file size. If the font

count limitation did not exist, the file size ratio figure would drop from 1. 73 to

about 1.32.

A fourth problem with PostScript is that insufficient thought seems to have

been given to the problem of getting data to the printer. PostScript uses only

printable ASCII characters for commands, except for two control characters used

for status requests and end-of-job signals; other control characters are just ig-

nored. However, a line break is the same as a space, except in a string to be

typeset, where it is part of the string. PostScript defines a backslashed newline

in a string to be ignored, but outside of strings, that sequence cannot be used

to get an ignorable line break. If backslash newline were uniformly ignored by

PostScript, it would be trivial on record-oriented file systems to ignore record

boundaries; as it is, a program must take considerable care on such a system to

break long PostScript sequences in one of the allowable ways. Version 2.10 of

dvialw goes to considerable trouble to provide this facility so that a maximum

line length limit can be enforced for those systems that need it.

The reaction of PostScript on a transmission error is to immediately flush to

end-of-job; in our experience, such errors are not uncommon. By contrast, Ima-

gen laser printers support a checksummed file-transfer protocol to allow error-free

data transmission between host and printer; so far, they seem to be unique in

the industry in this respect.

TUG VIII, 1987, Conference Proceedings 97

Nelson H. F. Beebe

Given that the Kermit [DACR87] file transfer protocol is in the public-
domain, and widely-available Kermit implementations exist on almost every

commercial machine, including microcomputers, it does not seem unreasonable

to ask vendors of intelligent printers to consider adding Kermit file transfer for
reliable data communication.

A fifth problem is that current PostScript implementations do not have
garbage collection (memory reclamation). When you issue a command like

(somestring) show to display a text string, the string continues to occupy mem-

ory after it has been printed. Adobe recommends wrapping each page with

save/restore commands to reclaim this wasted memory, but if that is done with

downloaded fonts on the page, they are lost. Version 2.10 of dvialw incorpo-

rates a major overhaul to separate the font downloading on a page from the text
set on the page, and the text is then bracketed by save and restore. This has

significantly increased the number of pages that can be printed on the Apple

LaserWriter before it aborts the job with a "VM error" condition. If 500Kb

were available, instead of 150Kb, the problem would likely disappear for most

'lEX documents.

It should be pointed out that it is not the job of the DVI driver to communi-
cate directly with the printer to find out how much memory it has. It should be

regarded simply as a filter that transforms one kind of file, a DVI file, to another,

a PostScript file. A spooler for a PostScript printer is already a fairly complex

program, because the printer sends back all sorts of verbose status messages that
must be dealt with. But without dynamic communication with the printer, it

is just impossible for the DVI driver to know how much memory is available in

the printer, because that memory amount changes dynamically; other jobs can
define objects that consume memory and survive beyond end-of-job.

Talaris has provided a solution for this problem with another printer family,

the QMS laser printers. They provide a spooler which is also a font manager. It
strips out fonts from documents and only sends what it knows the printer does

not yet have. This can only work, however, if the printer command language is

simple, because the spooler must be able to interpret it completely in order to

identify font definitions. Like LISP, PostScript is an extensible language, and the

only way to do the analogous thing with it would be with a full-blown PostScript
interpreter, which is a very large job.

I feel quite strongly that the only real solution to the problem of device font

storage is adequate memory in the first place, and it is a relatively economical

solution today.

Host Misfeatures

With the exception of 4.2 and 4.3 BSD Unix, the drivers have uncovered problems

98 TUG VIII, 1987, Conference Proceedings

A 'I£X DVI Driver Family

on each of the systems they have been implemented on.

The IBM PC, announced to the world on August 12, 1981, has probably

the sorriest history of any commercial computer with a long record of positively

abysmal bug-ridden compilers and assemblers. Considering that this computer

has the largest user base of machines, with an estimated 12 million PC's and

clones having been sold early 1987, this is really tragic.

In my view, part of the problem lies with the complexity of the Intel iAPX

design, which has a segmented-memory architecture, and dedicated, rather than

general-purpose, registers. The 80836 (IBM PS/2 model 70 and a few clones) has

32-bit registers, but the 8088 (IBM PC and PC XT), 8086 (IBM PS/2 model 30
and many clones), 80186 (some clones), and 80286 (IBM AT and PS/2 models

50 and 60, and many clones) all have 16-bit registers. However, they have a

20-bit address made up from a 16-bit offset and a 16-bit segment register. The

segment register contents are either left-shifted 4 bits and added to the offset, or

in protected mode on the 80286, index a base address table, the selected entry

being added to the offset to obtain the address.

When an array is known to lie within a 64Kb memory segment, computing

an array element address can be done with one instruction, as is the case on

most current architectures (RISC architectures may take perhaps two or three

instructions). However, as soon as the object is larger than 64Kb, a complex

sequence of about 30 instructions must be executed to piece the segment and

offset together into a 20-bit number contained in a pair of 16-bit registers, where

the index can be added using multi-precision arithmetic, and the steps must then

be reversed to recover a new segment and offset pair.

Procedure calls in the case of multiple-segment code do not require more

instructions than they do in single-segment code, but they do push different

(and incompatible) return address formats on the stack. The combination of

different addressing modes and calling sequences requires vendors to offer up to

6 different versions of each of their libraries.

The iAPX architecture does not define a standard calling and argument-

passing sequence like the DEC VAX does, with the result that there are about

as many different conventions in use as there are compilers, generally making

it impossible for different compilers to be used in the same code development

project. There is not even uniform adherence to the Intel standard object file

format; some compilers come with linkers that can only be used with object

code from that one product. That, plus the diversity of addressing modes and

memory models, makes it very difficult for software vendors to provide subroutine

libraries only in object form.

Because of the addressing complexity, most early compilers did not support

code or data larger than 64Kb, which is a serious limitation for a machine that

should be able to address 640Kb of memory. Why not 1Mb if the address is 20

bits (220 = 1048576)? That is another story which I won't go into here. Later

compilers have added support for multiple memory models, but most are still

TUG VIII, 1987, Conference Proceedings 99

Nelson H. F. Beebe

rather buggy.

Another problem with the IBM PC is that it lacks memory protection; some

clones do not even have memory parity checking. There is no hardware stack
overflow and underflow detection, and the stack is limited in size to 64Kb. Since

local variables are allocated on the stack in most modern languages, this is a

serious limitation on program data size, and often requires rewriting code ported
from other systems that are not plagued by such severe stack-size limitations. A

software bug, such as an out-of-bounds array reference, or an incorrect number of
arguments to a function, is very likely to wipe out some portion of the operating

system, or the stack, hanging the machine. It is conceivable that just the right

(wrong?) combination of data written into the disk controller's tables could even

destroy your hard disk. When the machine hangs, you must cycle the power and

reboot, which of course destroys the memory image, and any chance you might

have of diagnosing the problem.

It should be noted that the Apple Macintosh has the same problem of lack

of memory protection, and lack of stack underflow /overflow detection, although
its stack can be considerably larger than 64Kb.

The PC lacks proper handling of interrupts; a looping program cannot be
stopped by keyboard input of a Ctl-C or Ctl-Break character, since all that does
is set a flag that the operating system checks the next time you call it. If the

program is in a compute loop, that will never happen, and your only recourse is

the power switch.

Another problem, which I think is common in the microcomputer industry,

is the relative youth of many of the individuals involved; having failed to learn

history (of mistakes made in the 1950's and 1960's in computer software), they

are repeating it. Adequate quality control, even from some major microcomputer

software companies, seems to be unknown.

For the DVI driver family work, Lattice C, Aztec C, Wizard C, and Turbo C

(which evolved from Wizard C) have all been tried and found deficient. Either
they do not compile the sources at all, or they compile but fail at run time.

Microsoft C became usable at Version 4.0, and I thought for a long time that

there was only one library bug that affected the drivers, and that fortunately
had a simple workaround. However, just this week, we have found another

bug-the fseek() function is used for random access file positioning, and under
reproducible, but rare, circumstances, it can fail to correctly position the file.

Since Microsoft C Version 5.0 is due out, in the immortal words of Byte Magazine

columnist Jerry Pournelle, "real soon now", I have shelved further attempts to
more precisely define the bug. t

t Note added in proof: Microsoft C 5.0 arrived in mid-November, 1987, and
has been used for the preparation of the floppy disk distribution of version 2.10

of the DVI family. The two bugs noted above have disappeared, and it now

seems possible to run the code when it is compiled with optimization. With

100 TUG VIII, 1987, Conference Proceedings

A TEX DVI Driver Family

The segmented memory architecture and restricted stack size do affect the

drivers. The limited stack size means that care has to be taken to avoid having

large local arrays; they must be either allocated dynamically at run time, or

made static globals at compile time. The bitmaps used by several of the dot-

matrix printer drivers exceed the 64Kb segment limitation, so it is not possible

to address them directly; they are dynamically allocated as arrays of
pointers to scan lines. The coding complexity is reduced by hiding this ugly

indirect access mechanism in macros.

The 16-bit register sizes of the Intel iAPX family (up to the 80286), and the

extra code needed to deal with 32-bit integer arithmetic imply a serious speed
and code size penalty for programs that use 32-bit arithmetic where a smaller

size would do. Consequently, I have been extremely careful in the DVI driver

family to create new private 8-, 16-, and 32-bit signed and unsigned integer

types, and to use the smallest type possible, instead of the generic types int

or long. The DVI file format clearly defines its integer data value sizes, so it

was straightforward, though tedious, to implement this change, and it has since

become a programming habit that I adhere to in writing C code.

On the Atari 520ST+, the Mark Williams C compiler proved to have some

limitations about the size of input statements which required simplifying them.

Similar problems showed up in Sun OS 3 with some expressions of quite modest
size, and again, code has had to be rewritten to allow it to compile without error.

PCC-20 on the DEC-20 is a port of Steve Johnson's Portable C compiler

which has been used as the initial implementation of C on most Unix sys-

tems. It has some annoying bugs and misfeatures which may be present in

other PCC ports as well. The preprocessor incorrectly collapses to zero a bit

mask which has zeroes everywhere except in the sign bit. For the DEC-20, the

mask Ox800000000 must instead be written as (1 « 35). An indirect function

call like (*(fontptr->charxx))(c,outrow) results in a jump to the word containing

the function address, instead of the function itself. Introduction of a tempo-

rary variable for fontptr->charxx works around the bug. Right shift of a signed
value does not propagate the sign bit. Most C compilers propagate the sign of a

signed value, and zero-fill an unsigned value; draft ANSI C leaves the behavior

for signed values up to the implementation. Since the DVI file is full of 8-bit,

16-bit, 24-bit, and 32-bit numbers which may be either signed or unsigned, cor-

rect reconstruction of a full-word integer of the appropriate type is required a

lot, and this involves shifting to propagate the sign. The PCC-20 preprocessor
and compiler tables turned out to be too small for parts of the drivers, but since

I had source code available, I was able to rebuild the compiler to remedy this.

With KCC-20 on the DEC-20, the drivers uncovered a compiler bug; there

optimization, compilation takes about 50% longer, but the output .exe files are

now 3Kb to 7Kb shorter, and string functions are expanded in-line. I must also

report that I found four compiler bugs during the :first weekend of using it.

TUG VIII, 1987, Conference Proceedings 101

Nelson H. F. Beebe

was exactly one instance of an incorrect instruction generated-assignment of

a float to an integer was done by a rounding (FIXR), instead of truncating

(FIX), instruction. This was a critical instruction, since it was used in the code

section that converted magnification values to a text string forming part of the

font name. A debugger patch on the executable programs was used until the

compiler developers fixed the problem.

The GNU project's gee compiler, which can generate code for both Motorola

and VAX architectures, found one bug in the driver code, and the drivers revealed

two bugs in the compiler in the Motorola 68000 code generation! All three were

rapidly fixed.

With 4.1BSD Unix, a rather bizarre bug was uncovered which took over a

year to finally track down. The drivers would run correctly up to the point of

the return from the main program to the run-time library caller (determined by

the insertion of print statements), and then would core dump. When run under

control of the sdb or a db de buggers, they terminated normally! We finally found

that the file dose function, which was explicitly documented to do nothing if the

file already was dosed, actually laid a time bomb that blew up after return from

the main program. Putting in a test for an already-dosed file before calling

fdose() defused the bomb.

VAX VMS has a history of having excellent compilers, and benchmarks that

we carried out last year for the evaluations of several candidates for a major

campus computing upgrade bore out the fact that the Fortran compiler, at least,

produces superb code which often cannot be improved by hand-crafted assembly

code.

Our experience with the VMS C compiler has been that it is quite reliable,

but the library has some atrocious problems. VMS has a record-oriented file

system, and with VMS Version 4.0 in 1986, introduced new stream file formats

that look somewhat like Unix files. It turns out, though, that many system

utilities, like print spoolers, do not correctly support these new formats, so the

drivers have been revised to produce only old-style variable-length record text

files, or fixed-blocked binary files. We found, however, that the random access

routines did not correctly position in binary files. The standard exit() function

return codes were VMS-ese, instead of Unix-ese like every other C implemen-

tation seems to follow. The ungetc() function for pushing lookahead back into

the input stream only worked for 128 out of 256 possible byte values. Some

needed functions, like unlink() for file deletion, qsort() for sorting, and system()

for command execution in a subshell, were absent from the library. The read()

routine will only return 512 bytes at a time, even if you ask for more (every other

C implementation I've seen will get as many as you ask for, unless there is no

more data in the file).

Perhaps the worst bug (which is apparently documented as a feature in some

editions of the manuals, though I have never been able to find it) is the treatment

of a simple statement printf("%s" ,longstring), which simply asks for the string to

102 TUG VIII, 1987, Conference Proceedings

A 'lEX DVI Driver Family

be printed. If the string is longer than 256 characters, or some number of about
that size, the stack is wiped out, and the VMS last chance error handler takes

over and informs you that it has reinitialized the stack, so even the debugger

cannot help you. The whole point is that the argument is a 4-byte string

pointeT, and with pointers, the original data should never have to be copied to

a temporary, which is apparently what the run-time library is doing.

This bug was rather hard to track down, because once the call stack is de-

stroyed, you have no way of telling where it happened. Fortunately, the debugger

has an option to trace all function calls, so I started a Telnet log, ran the de-

bugger, and collected a half-megabyte log of call traces. When the stack was

finally wiped out, I nailed the offending printf() call, and was subsequently able

to reproduce the bug with a one-line C program. Since there is another library

routine, fputs(), that prints strings, and it works correctly, I revised the drivers

to use it instead for all potentially long strings.

VMS binary files are stored as 512-byte fixed block records. The file system

does not directly maintain a file byte count, but it can be reconstructed from

the block count, and the offset of the last byte in the last block. Unfortunately,
most utilities assume binary files have completely filled blocks, and in fact, the

operating system will discard a binary file which is closed with the last block

incomplete. Consequently, it has been necessary to assume that ASCII NUL

padding has been used at the end of binary files, and the DVI drivers must have

special code to ignore this padding in font files and DVI files, and to ensure that

before closing a file, enough padding bytes are supplied to fill the last block.

Fortunately, in C, the run-time library I/0 data structures are accessible to

the programmer, so it does not take much code to add this feature. In other

languages, it would probably be necessary to interpose a private level of code

to buffer output and maintain a byte count, so that at file close, the requisite

amount of padding could be supplied.

Most C implementations declare in stdio.h the maximum number of open files
permitted by the run-time library, although the names they choose for this limit

vary. Unfortunately, VMS has yet another misfeature that makes this number

unreliable-quotas, on lots of resources, including the number of open files, and

that quota may be less than the limit set by the C run-time library. Version

2.10 of the drivers therefore includes code to determine the limit dynamically,
in order to avoid attempting a font file opening when it is known beforehand to

be impossible. Previously, a user with a low open file quota might be unable to

run the drivers successfully on a document with many fonts, unless perhaps it

was done piecemeal to limit the number required at one time. The drivers cache

open font files; they just need to know how many they are allowed to have open

to do this successfully.

This survey should have given the reader some appreciation for the grief,

pain, and suffering we software developers sometimes have to go through. There

have probably been more system bugs detected in the DVI driver development

TUG VIII, 1987, Conference Proceedings 103

Nelson H. F. Beebe

than bugs in the DVI code itself.

Errors and Early History

My first exposure to 'IE;X was a talk that Don Knuth gave at Xerox PARC

Laboratories, probably about the summer of 1979. I was in the Bay area for a

conference, and since I had read, and greatly admired, the first three volumes of

his The Art of Computer Programming, but had never met him, I was excited

about hearing him speak.

His talk was entitled The Errors of 'JEX, and in it he discussed the software

development process based on the careful log he kept of errors in the implemen-

tation of 'IE;X, which at the time was in the Sail language, available only on

DEC-lO's and DEC-20's. Since our local machine is a DEC-20, this let us get

'IE;X at a very early stage, but we had no output devices for a long time, and in

my junior position, I hadn't the influence to get the money collected to buy a

200-dot/inch electrostatic printer, or one of the Xerox Dovers.

The growing realization of the enormous importance of the 'IE;X effort led me

to become an enthusiastic supporter of the 'IE;X Users Group, and later, when I

could find the time, to develop a 'IE;X DVI driver myself for the low-resolution

(60H x 72V) Printronix 300 line printer, starting with Mark Senn's driver for the

BBN BitGraph terminal (which, incidentally, is about as far from a bit-mapped
printing device as you can get). Commercial DVI drivers did not then exist,

and even if they had, our extremely tight budget situation would have precluded

acquiring them.

By the time I had added support for a couple of other printers, it became clear

that maintaining similar, but separate, drivers took a prohibitively large effort,

and the concept of a driver family was born. My background in computational
theoretical chemistry has made me extremely sensitive, and well read, about the

subject of software portability, and I confess, with some pride, to holding the

general attitude "If you cannot program it portably, don't bother to program at

all!". Until the late 1970's, the only language in which one could do remotely
portable programming was Fortran, in which I consider myself an expert. For

the reasons described above in the discussion of why I chose C, and not Web, it

became evident that the only other candidate for writing portable software was

C, and the growing popularity of Unix, and workstations, large minicomputers,

and supercomputers using Unix, seems to indicate that this trend will not soon

be reversed.

I too have kept a log of changes made to the drivers, although only since

the summer of 1986 when I first began to make them available to others. Most

changes noted in this revision history (stored as the file OOREVHST.TXT in the

distribution) are for addition of new features, or workarounds for compiler or

104 TUG VITI, 1987, Conference Proceedings

A 'IBX DVI Driver Family

operating system bugs or misfeatures. There are a few programming errors

which have shown up and been corrected; here is a list of most of them.

® The code assumed that the 'lEX \count register values stored in the DVI file

were unsigned 32-bit values; they are actually signed.

Ill Support for the page number range step option was added, but I forgot to

take out the original code which reversed them if the initial value was larger

than the final value.

e I added an optimization in PostScript output to remember the size of the

last rule set, so that a following rule of the same size could be set with fewer

commands (this is quite valuable for the La'!EX Bezier picture mode option,

which draws curves by typesetting many small rules), but forgot to reset a

flag when a new DVI file was started to cause the rule size to be output

again.

111 The command line option parsing routine called an error routine to write its

messages, but that error routine tried to open an error message file whose

name could only be determined after the command line was successfully

parsed.

• The hand-optimization of collapsing of two successive loops of the same range

into one resulted in an array getting indexed by two's, instead of by one's.

e Ports to the Sun and VAX VMS environments caught some instances of

dereferencing null pointers or incrementing them, and of passing null string

pointers where null strings should have been used. A lot of even relatively

mature C code has been bitten by ports to these two machines. Most older C

libraries treated a null string pointer argument as equivalent to a null string;

the Sun library core dumps instead.

fD The DEC-20 KCC compiler was the first C compiler I had used for which

character pointers were not represented like integer pointers, and the run-

time type checking which the KCC developers thoughtfully provided in the

library caught some instances of missing type casts.

• A few off-by-one errors have surfaced on occasion. The most serious was an

array size which was one too small. It was an array allocated on the call

stack, and since stacks on the DEC-20 grow upwards, writing beyond the

end of such an array only overwrites unused space. On the Intel, Motorola,

and VAX architectures, stacks grow downward, so writing beyond the end of

a stack array is likely to wipe out the calling history, causing the program

to crash when the current function attempts to return to its caller. This

overwriting could only happen for a T:EX document with wide pages, which

is why the bug existed for over two years.

• The character painting raster operation on the BBN BitGraph driver was

set so that it worked correctly with black characters on white, but not the

reverse (which I don't like, and consequently, never used); black characters

on black are rather hard to read!

TUG VIII, 1987, Conference Proceedings 105

Nelson H. F. Beebe

" C's case sensitivity let one bug survive for a time-there is a preprocessor

symbol named SUBPATH and a variable named subpath, and there was one

instance where the wrong one was used.

111 The driver code keeps track of the number of open font files, and increments

a counter before the file open attempt. Unfortunately, I forgot to decrement

the counter again ifthe open failed. Since font file open failure is uncommon,

this bug existed for quite some time.

o A bug was caught in September, 1987, which affected only one driver (out

of twenty) in the family, and only with one of the three supported font file

formats, the GF format; some character metrics were referenced before they

had been read from the font file. I never found this locally, because we

normally use the more compact PK format, and earlier this year, removed

all font files in the old disk-hogging PXL format.

• When I added support for font files containing up to 256 characters (Com-

puter Modern fonts use only 128), to handle European and Japanese extended

character sets, I thought that all that was needed was to change a couple of

macro definitions so that 127 and 128 became 255 and 256. Unfortunately,

there were several loops whose indexes ran from 0 to 255, but the loop index

was declared of type BYTE (a private type corresponding to unsigned char);
the last loop iteration incremented the index from 255 to 256, which of course

is equivalent to 0 as an 8-bit byte value, so the loop became infinite. The bug

was not noticed on my main development machine, the DEC-20, because all

integers are stored as 36-bit values.

Performance

A considerable amount of care has gone into the preparation and programming

of the DVI drivers to ensure adequate run-time performance. The consistent use

of the smallest possible integer data types has already been cited in connection

with the Intel iAPX architecture used in the IBM PC family. Run-time profiling

on the DEC-20 and Sun systems has been used to identify hot spots in the code,

and I am reasonably comfortable with the code efficiency.

The VIRTUALFONTS code added in late 1986 provides for the reading of

entire font files with a single read request. The buffer size is dynamically matched

to the exact file size. Subsequent random-access positioning through calls to

fseek() then only result in manipulation of pointers into the buffer, rather than

input requests. This is important when font files reside somewhere else on a

distributed system network, because there is a relatively large latency involved

in I/0 transfers. Particularly in the PK font file format, font file access involves

many seeks to relatively small data packets.

A similar optimization for the input DVI file and output files has yet to be

106 TUG VIII, 1987, Conference Proceedings

A 1EX DVI Driver Family

made. The machine tha.t shows the greatest improvement in disk transfer rates

with increasing data size is the IBM PC, where a speedup factor as large as 9

can be obtained the block size from the default of 128 bytes to

8K bytes; regrettably, this is also the machine with the least amount of memory

available for this Even so, the effect of such an optimization would

only be a few percent, since the driver profiles show that less than 15% of the
total time is spent in reading and writing files.

DVI driver execution times depend heavily on the number offonts used, and

on the amount of output produced. On a Sun 3/280 system using the 'JEXbook

as a test case, the DVI drivers for laser printers run about 3 to 4 times faster
than 'lEX itself.

Commercial, or Public-Domain?

This section is an editorial on the question of proprietary and commercial soft-

ware, versus public-domain and free software.

Some users have raised the questions "Aren't you taking business away from

those firms who have chosen to provide T:EX and 'JEXware commercially?", and

"Isn't it unfair to take software developed at a university and effectively compete

with commercial software?" To both of these, I must answer a qualified yes.

Indeed, there are certainly a few users who got these drivers at little or no cost,

and who otherwise might have purchased a commercial package.

I defend my offering, however, with two important points. First, nobody has

to pay for 'fEX or La'JEX from one of the T:EX site coordinators, apart from a

modest media distribution charge; those with network access never even have to
come up with hard money. Yet there are several companies, small at present,

but growing, who find that they can indeed make an adequate living selling 'lEX
implementations and TEX support.

On the question of university research efforts competing with commercial
products, I suggest that first, university researchers have an obligation to the

tax-paying public who support them to make the results of their work freely

available to others, and that second, in science and technology, this is often how

commercial firms get started.

Much of the computing and software industry began at universities. So

did Emacs and 'lEX, and I believe that neither of them could ever have been

developed in any commercial environment, where projected market returns and

the methodology of design-specification-before-programming would never have

let them be born. Emacs and 'lEX evolved and flourished through the free
exchange of ideas and software by a great many individuals; I do not think any

human could have designed either in complete isolation. Nor do I believe that

they would have the widespread respect and influence they enjoy, had they been

TUG VIII, 1987, Conference Proceedings 107

Nelson H. F. Beebe

commercial products.

At this conference, two of the speakers. from the commercial world stated

that one of their reasons for choosing 'JEX over a proprietary typesetting system

was precisely the fact that it was not tied to any particular company, upon whom

they would then be economically dependent, and that it offered them the choice

of a variety of public-domain and commercial software suppliers.

My second point is that I will not be here forever; apart from questions of

longevity, I may choose at any time to go off and do something else. I do hope

that when that time comes, the DVI driver family will have become mature

enough to survive as a family, and not have degenerated into distantly related

cousins who hardly acknowledge their common ancestry. During the past year

and a half, a very large portion of my time has been devoted to this work, and

since my naive public announcement of their availability in January, 1987 (I ex-

pected perhaps a score of responses, not a score2 !) , the burden of filling orders

and answering telephone, postal, and electronic communication has become al-

most onerous. I can do it because my position at Utah carries a considerable

amount of freedom to do what I think is useful and interesting, and there have

been ample local benefits to justify the effort, even if I had not decided to dis-

tribute the family more widely. I continue to hope that the alternate distribution

channels noted in the next section will remove much of the load.

I confess that I am still unhappy with the high cost of personal computer

implementations of 'JEX, but that is a general problem in the industry, and I do

not fault commercial 'lEX suppliers for doing what everyone else is doing. For

example, where before we could supply access to a Fortran compiler to users at a

very low average software cost (less than US$2 per user per year on our DEC-20),

we now find that a personal computer Fortran compiler costs several hundred

dollars per user. Even if we buy one copy for each half-dozen users, who may

not then use it simultaneously, we still are paying very much more per user than

we do for access to the mainframe compiler (which also is of considerably higher

quality and reliability). But we are living in a new age-the information age-

where information and knowledge now carry a price tag. Except for software, I

cannot think of any other commodity in mankind's history that, once developed,

has had essentially zero costt of reproduction. This situation is completely new,

and rules and customs for dealing with it will take society time to work out.

An end user who is competent on a local computing system should have no

great difficulty in installing the drivers, and one with C programming experience

will even be able to add support for new devices. Many 'lEX users are not,

however, in this class. Individuals without much computer experience may need

t Music and video recording areclose examples, but so far, their mostly analog

form has generally precluded distribution over networks. For digitally-recorded

music, the question of unauthorized reproduction has led to public debate on

the desirability of legislative regulation of the sales of digital recording devices.

108 TUG VIII, 1987, Conference Proceedings

A 'lEX DVI Driver Family

more support, and a commercial supplier may be more satisfactory. Large orga-

nizations who feel the need to make a group commitment to a software vendor

may also feel more comfortable with that approach.

I am probably conceited enough to believe that my code is of high quality,
but as one individual, I cannot possibly provide the support that a professional

staff at a company can.

Another issue that users may wish to consider is extra features, or "bells

and whistles". Some vendors have gone to considerable effort to integrate their
software smoothly into a particular machine environment (such as those that

make use of the Xerox desk-top model and windows), or to perform all kinds of

neat optimizations internally to make the software run faster. For many people,

those features are worth paying extra money for.

Commercial firms generally have to recover costs, and a user with a brand X

printer on a brand Y personal computer may be told that there is just not the

market to justify supporting it. This has already happened to some DVI driver

users that have spoken to me, and I think it is appropriate that public-domain

software is available to fill their needs.

Availability

The DVI driver family can be obtained from a number of sources. The preferred

method is via electronic network, since that does not involve human effort. This
does require some sort of file transfer system, such as ARPANet FTP; the distri-

bution is much too big to send via electronic mail. Failing that, the 'lEX Users
Group site coordinator for your machine class may be able to provide it as part of

the normal 'lEX distribution. Here is a list of the current distribution channels:

ARPANet: ANONYMOUS FTP to SCIENCE.UTAH.EDU

(TOPS-20) or CTRSCI.UTAH.EDU (VAX VMS);

Australian ACSnet:

British Janet server:

Contact munnari!latvax8.lat.oz.au!ccmk;

Contact AbbottP@uk.ac.aston.mail;

European Bitnet server: Contact rz92@dhdurzl.bitnet;

European DECnet server: Contact Calvani@vaxfpd.infnet (reachable through

cernvax. bitnet).

IBM PC floppies: Personal 'IE;X, Inc;

Japanese JUNET and North American Bitnet redistribution channels should

soon be available.

For ANONYMOUS FTP (password GUEST) to either of the Utah machines,

get the file OOREADME.TXT in the login directory; it contains details of how to
retrieve the DVI distribution, and other TEXware and public domain software.

TUG VIII, 1987, Conference Proceedings 109

Nelson H. F. Beebe

For the convenience of Unix sites, a compressed tar file is kept in the mas-
ter archives on SCIENCE.UTAH.EDU. VMS BACKUP savesets are kept on

CTRSCI.UTAH.EDU.

To permit easy updating of source files, each directory contains files with

alphabetic and reverse time-ordered directory listings, and corresponding FTP
command files to retrieve the files in either of those orders.

There is also a tape distribution service handled directly from my office in

Utah. The available formats are:

• ANSI D-format;

• TOPS-10 BACKUP;

• TOPS-20 DUMPER;

• Unix tar;

• VAX VMS BACKUP (1600 bpi or 6250bpi).

Except as noted, the tape density is 1600bpi. ANSI D-format is not recom-

mended, because it does not provide for directory names on the tape, only file
names; extraction must be done carefully, since there are files in different directo-

ries which have the same name. The other formats preserve directory structure,

file names, and file write dates. Send a 2400ft 9-track tape with a cover let-

ter indicating the preferred format and density. The tape distribution normally

includes a large set of Computer Modern fonts computed with \mode=imagen,

since it has been our experience that many sites do not yet have METAFONT

running to produce their own.

Redistribution sites may levy a modest fee to cover their costs. At Utah, we

appreciate donations; this is all a volunteer effort.

I maintain an electronic mailing list and as of November 1987, 14 issues of a

newsletter (in 8 months) have gone out to about 170 subscribers. If you have,

or acquire, the distribution, you should find it useful. Send your request to

BEEBE@SCIENCE.UTAH.EDU. Back issues are present in the distribution as

files OOMAIL. *. I regret that manpower and budget limitations do not permit
postal mailing of printed copies to other sites.

I do not feel that it is appropriate to place technical discussions of this driver

family in other '!EX-related bulletin boards, such as JEXHaX or INFO-TEXT;

however, short announcements of major developments may be posted in those
forums from time to time. If you desire, comments sent to me can be posted in

the next newsletter.

At the time of writing, we have distributed about 250 copies of the driver by

post from Utah, and based on file access counts (which TOPS-20 so considerately
maintains), perhaps about 150 copies have been retrieved via ANONYMOUS

FTP. With some end-user redistribution, and redistribution from the sites listed

above, it seems realistic to assume 500 sites have obtained these drivers.

110 TUG VITI, 1987, Conference Proceedings

A 1E;X DVI Driver Family

Additional Support Software

The DVI driver distribution contains a small amount of additional support soft-

ware, all of which is in the public domain:

make

lptops

lw78

hd and unhd

errs how

keybrd

vaxvms

wist ex

Unix-like make for six different operating systems;

line printer to PostScript converter;

PostScript spooler driver;

dump and undump utilities;

merge source and errors from Microsoft C;

keyboard input package;

VAX VMS C flaw workarounds;

WordStar to La'JEX translator.

The make utility is an important addition, since it allows automatic building

of any of the drivers on each of the supported operating systems.

Ordinary hexadecimal or octal dump programs for output device binary files

are less useful than hd, which produces line breaks for each escape sequence,

and permits embedded comments. unhd can turn the output of hd back into a

binary file, which makes editing a binary file quite convenient. When things go

wrong in the device output, it can be a very tedious exercise to mentally decode
a dump of the file, and having it in a form which can be edited, and in which

each device command starts a new line, makes this task much easier.

Credits

This article would not be complete without proper credits to people and insti-

tutions who have made contributions to the family.

Mark Senn (Purdue University) wrote the original dvibit in C, from which

it all began; he based his work in turn on David Fuchs' (Stanford University)

definitive dvitype program. Stephan v. Bechtolsheim and Bob Brown (Pur-
due), Robert Wells (BBN), and Jim Schaad and Richard Furuta (University of

Washington), improved dvibit before I began on it. Simon Barnes (Schlumberger

Cambridge Research Ltd.), and Robin Rohlicek (BBN) provided useful additions

to dvibit which were generalized and incorporated in Version 2.07.

Contributions for PostScript devices came from Neal Holtz (Carleton Uni-

versity, and Barry Smith (Kellerman & Smith) helped out at an early stage with

a correct description of the font downloading mechanism (which was incorrect

in Apple's documentation).

John Sauter (DEC) prepared dvil3p and dvil75, using one of the existing

drivers as a model.

TUG VIII, 1987, Conference Proceedings 111

Nelson H. F. Beebe

Lon Willett (University of Utah) wrote dviimp, starting from the Hewlett-
Packard LaserJet Plus driver, dvijep.

Marcus Moehrman (Universitiit Dortmund) contributed dvie72 and dvieps.

Matthias Moritz (Katholieke Universiteit Nijmegen) implemented the driver
family on the Atari 520ST+.

I would also like to thank the sites who have offered resources to support
electronic redistribution of the DVI driver family.

If I have missed anyone, please accept my apologies.
Many others world-wide are helping to keep my electronic mail volume at

840Kb/month in 1987! Thanks to them all for their input.

Bibliography

ADOB85 Adobe Systems, Inc., PostScript Language Reference Manual,

and PostScript Language Tutorial and Cookbook, Addison-Wesley
(1985).

ANSI66 American National Standard Programming Language FORTRAN,

ANSI X3.10-1966, American National Standards Institute (1966).

ANSI78 American National Standard Programming Language FORTRAN,

ANSI X3.9-1978, American National Standards Institute (1978).

ANSI83a Military Standard Ada Programming Language, ANSI/MIL-STD-
1815A-1983t, American National Standards Institute (1983).

ANSI83b American National ·Standard Computer Programming Language

Pascal, ANSI/IEEE 770X3.97-1983 (also British Standard BS 6192-
1982, and ISO 7185-1983) (1983).

ANSI86 Draft American National Standard for Information Systems-

Programming Language C, ANSI X3.9-1978, American National
Standards Institute (1986).

ANSI87 Draft American National Standard Programming Language For-

tran Bx, ANSI X3.9-1978, American National Standards Institute
(1987).

BENT86 J. Bentley, "Programming Pearls", Comm. ACM 29, 471-483
(1986).

DACR87 F. da Cruz, Kermit-A File Transfer Protocol, Digital Press (1987).

HARB87 S. P. Harbison and G. L. Steele Jr, C: A Reference Manual, 2nd
ed., Prentice-Hall (1987).

t 1815 is the year of the birth of the world's first computer program-
mer, Ada Augusta, Countess of Lovelace, colleague of Charles Babbage, and
daughter of Lord Byron.

112 TUG VIII, 1987, Conference Proceedings

A 'IEX DVI Driver Family

JENS74 K. Jensen and N. Wirth, Pascal User Manual and Report, 2nd ed.,

Springer-Verlag (1974); revised by A. B. Mickel and J. F. Miner,

3rd ed., Springer-Verlag (1985).

KERN78 B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall (1978).

KNUT84 D. E. Knuth, "Literate Programming", The Computer Journal 27,

97-111 (1984).

KNUT86 D. E. Knuth, Computers and Typesetting, Volume A: The T];;Xbook,

Volume B: T]i;X: The Program, Volume C: The METAFONTbook,

Volume D: METAFONT: The Program, Volume E: Computer Mod-

ern Typefaces, Addison-Wesley (1986).

LAPI87 J. E. Lapin, Portable C and Unix System Programming, Prentice-

Hall (1987).

ROCH85 M. J. Rochkind, Advanced Unix Programming, Prentice-Hall

(1985).

STEE84 G. L. Steele Jr., Common LISP-The Language, Digital Press

(1984).

WIRT76 N. Wirth, Algorithms+ Data Structures= Programs, Prentice-Hall

(1976).

WIRT83 N. Wirth, Programming in Modula-2, 2nd ed., Springer-Verlag (1983).

Unix is a registered trademark of AT&T.

Ada is a registered trademark of the U. S. Government Ada Joint Program

Office.

Turbo C and Turbo Pascal are registered trademarks of Borland Interna-

tional.

DEC-10, DEC-20, LA75, LN03, PDP-11, TOPS-20,VAX and VMS are reg-

istered trademarks of Digital Equipment Corporation.

iAPX is a registered trademark of Intel Corporation.

Inc.

PC, XT, AT, and PS/2 are registered trademarks of IBM Corporation.

Primos is a registered trademark of Prime Computer, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.

Image Writer and LaserWriter are registered trademarks of Apple Computer,

BitGraph is a registered trademark of BBN Computer Corporation.

imPRESS is a registered trademark of Imagen Corporation.

LaserJet is a registered trademark of Hewlett-Packard Corporation.

Pacemark is a registered trademark of OKIDATA Corporation.

Linotronic 300 is a registered trademark of Allied Corporation.

Sun is a registere<l trademark of Sun Microsystems.

TUG VIII, 1987, Conference Proceedings 113

The Use of 1EX in a Commercial Environment

DAVID NESS

TV Guide

Radnor PA 19088

ABSTRACT

Using 'lEX in a commercial environment involves both

pain and pleasure. This paper describes some of both. It

concludes that while the pleasure outweighs the pain as is,

the pain could still be reduced significantly.

Purpose
Vve have been using 'lEX in a 'commercial' environment for nearly three years.

We have also been experimenting with META FONT for a little less than one year.

The purpose of this note is to record some of both the rewards and frustrations

that we have encountered during this experiment.

What Led to the Experiment
At TV GUIDE we render a lot of type. We print in the neighborhood of one

billion copies of our magazine each year. During the year we render about one

million different pages, and bind them into five thousand different 200 page

magazines.

The job of producing this output requires a complex coordination of both

human and automated processes. It is-needless to say-not a simple matter to

obtain information from nearly two thousand TV stations nationwide and get

it laid out and printed in a timely fashion in a magazine which is delivered to

nearly twenty million American homes.

Experimentation with Type
In the course of experimenting with the look and readability of this magazine,

we have many occasions to manipulate type. This involves setting and proofing

lots and lots of different formats and styles of type. As those who have done

TUG VIII, 1987, Conference Proceedings 115

David Ness

this extensively know all too well, this can become quite expensive. Doubly so

when we have to train people in particular typesetting technology only to find

th<d either the people leave or that the typesetting technology becomes obsolete

and replaced by newer and better stuff--which then requires a retraining of the

staff.

Experimentation with type takts many dimensions. It is particularly useful

to be able to develop page formats that test hypotheses about the legibility

and readability of difrerent page and structures. Even seemingly subtle

changes can have enormous consequence v<1hen you are printing a billion copies.

In our situation saving an average of one line every 10 pages saves 300,000,000

pages/ year.

Adapting to an Unknown
It is also clear that typesetting is in a great state of flux. Within

the last five years the cost of the equipment required to set type of the quality

presented in this memo has dropped from more than $100,000 to well under

$5,000. At the present time there is little sign that this dramatic rate of progress

is slowing down. Both scanning and printing equipment seems to be improving

at a great rate. Every day we seem to be able to do more, faster and cheaper.

This makes it difficult, if not i:mpos;ible, to rnake much of a guess where

things will be a few years from now. Major players in the typesetting business

could well fall by the wayside as :rww companies come to the fore. Three years

ago the 'Canor:. Engine' was in a p:reliminary announcement from a "copier com-

pany~" Now Canon is a major play,or in the prinLing business, and have delivered

hundreds of thousands of their engines under Canon, Apple, Corona, QMS, etc.

trademarks.

'IEX affords us reasonable insulation from this innovation by virtually guar-

anteeing that we will be able to participate in the best of it. When we started

our '!EX project Allied wanted in excess of $10,000 for a screen preview de-

vice. Now we get higher quality from an $800 Wyse terminal (about 1000 X 1000

pixels) than we would have gotten from that older device. Today 300 dpi laser

printers cost us about $1,200.

Since the 'IEX community is so broad-and so competitive-innovation is (1)
passed along quickly; and (2) major benefits of innovation are passed on to the

consumers, rather than taken in profit improvements by the manufacturers.

Public Domain-Second Sources
One of the reasons that we decided to use 'lEX for our experimental environment

was that the code for T:E;X is in the public domain. This meant that-worse comes

to worse-we could always track down and innovate our own way around any

particular problems which happened to arise.

Further, wide public availability of 'lEX has produced both considerable in-

novation and alternative sources of supply in the TEX world. In the PC versions

of 'lEX we are offered two widely available products, both of which appear to be

116 TUG VIII, 1987, Conference Proceedings

The Use of '!EX in a Commercial Environment

very faithful to the letter and the spirit of the original version. We have made
use of this, particularly in terms of product innovation, in many directions which

were unanticipated at the time that we made our earliest '!EX decisions.

The publicly available documentation, The TEfXbook, The Joy of'JEX, 11\TFjX,

The PC-Tjj;X Manual, Another Look at TFfX and-of course-issues of TUGBoat

provide lots of valuable information, examples and clues on how to use these

powerful facilities. This is much more help than is available for most of the

other typesetting systems. Beginner's Guide to TEfX and the other helpful (and

sometimes operating system specific) documents published by schools and man-

ufacturers also provide a good secondary source of information.

Finally, there is the sharing of information accomplished through '!EX courses,

local user support groups and-last, not least-TUG itself that help us survive

some of the frustrations and equally (or more often) help us share the 'fruits' of

'!EX labors.

Our Fonts
TV G VIDE requires some unique fonts. For example, we print the numbers of

the TV channels with a little 'TV screen-like' faces. Obviously we have these

characters in our fonts on our traditional typesetting equipment. However, we

are not very likely to find them on any proof equipment, particularly those

with built-in fonts. While we could, no doubt, induce some interest on the

part of some of the suppliers with a sufficiently large payment, it is much nicer

to have the support of the broader '!EX community to help us produce these

characters. We have been able, for example, able to develop some general-

purpose software to help us create some of the characters by hand. This allowed

us to produce some fonts in standard resolutions at standard sizes. Now the

arrival of METAFONT affords us the opportunity to develop our fonts with
resolution and scale independence.

However, using METAFONT isn't easy, and it takes a substantial invest-

ment of time an energy before one can gain any but the simplest control over

the META FONT output. This piece of software has an unusual characteristic.

One gets something important (all of the CM fonts at all reasonable scales and
resolutions) for just about nothing. However, then to go beyond this seems to

require a very large investment before further fruits are obtained.

Producing Listings and Grids
We experiment a lot with different alternatives for listings and grids. There are

a large number of variables associated with getting a reasonable display of type,

and it sometimes takes many attempts before satisfactory results are obtained.

'!EX allows listings and grids to be produced very efficiently, at a low cost. More

importantly, it reduces the turn-around time for producing type from what was

often days to a few minutes.

TUG VIII, 1987, Conference Proceedings 117

David Ness

Particular and Peculiar Problems
One of our toughest problems deals with the width of a column. As Knuth's

beautifully typeset books show, good algorithms allow one to almost completely

avoid hyphenation and ugly space expansion or shrinkage when setting material

at 29 picas. However, when you are setting columns at less than 12 picas, then

some ugly hyphenation or spacing is inevitable unless all of the text is actually

re-written to fit the space. If we are not careful we regularly create text which

is 'intolerably ugly' by 'IE;X's normal standards, and learn to become more and

more tolerant of the intolerable.

Layout
One of our major problems with 'JEX has to due with the difficulty of dealing

with layout problems. This is not to say, of course, that 'lEX can't handle

these problems, but rather only to observe that there are not any very direct

mechanisms in 'lEX or any of the (so far released) macro packages (AMS-'JEX
or 1J\TE]X) to deal with layout problems.

There seem to be some intellectually interesting problems associated with

layout, and I remain hopeful that some members of the '!EX community will find

themselves attracted to the problem. Since '!EX has such substantial capability

for typesetting, it is a shame not to be able to use it easily in the layout context

where it might be so helpful.

Re-Encountering Text
We occasionally also need some relatively straightforward way to re-encounter

some text after making some placement decisions. For example, in magazine

typesetting it is not unusual to have pages that are set two-up followed by pages

which are set three-up. When TEX encounters such a configuration, it has a

tendency to complete the setting of a full paragraph at the width appropriate for

two-up pages before being willing to adjust its \hsize to the width appropriate

for three-up.

It is clear that imposing badness penalties across a break of this kind is

conceptually quite a difficult matter, It would be difficult coding, indeed, to

define-much less implement-a notion of 'best' setting across such a two/three

split. However, in general we are only interested in 'good' solutions to this

problem; we need not worry if the 'best' eludes us. In most cases we would

be quite happy to let TEX decide on the paragraph break with its conventional

methods, if that could then be followed by re-setting the type after the break at

the new width.

We have found it difficult to grapple with this problem, although a letter from

Knuth contains some promising suggestions. We are trying to understand the

full implications of his suggestions for this problem, and it isn't easy. However,

with help we seem to be making some progress.

118 TUG VIII, 1987, Conference Proceedings

The Use of 'lEX in a Commercial Environment

'!EX, Programs and Documentation
The relationship between 'IE;X and (computer) programming activities first oc-

curred when we began to use T]y'C to prepare our program documentation. It

proved to be very helpful when we could use typewriter-like fonts in the docu-

ments to highlight and displays. Once TB)C became a normal part

of the working environment it was natural to extend its capabilities to helping

us with the actual display of programs themselves. We developed the CTEX and

INDEX programs that produce very nice listings of our source code. This has

allowed us to change our standards for code documentation without requiring

a real 'revolution' in the way that we write code--something that would be

required if we were to convert to CWEB, or any similar environment.

We also have incorporated the documentation associated with the programs

into a more general documentation system. This system allows us to keep track

of documents, their version, their status, etc. One of the nice things about 'lEX
is that it is easy to incorporate as a part of a process which finds the document

source, unarchives it, typesets it and then renders it on a typesetter or laser

printer.

We also make use of the fact that 'lEX allows us to easily describe and set

documents that are independent of their final physical size. Sometimes 8 ~in x

l1in documents are convenient. However, often the new computer standard of

5~inx 8~in proves to be desirable. TEX conveniently allows us to largely separate

the task of creating and maintaining the document from the tasks associated with

rendering it.

We are also running an interesting experiment in having users read code.

This is part of a general attempt to get our programmers to indicate their intent

in their program documentation. Since the majority of our users are editorial

professionals, we get lots of helpful (and painful) criticism of the English that

we use in documenting things.

DeThning 'lEX to Match Conventional Typesetters
We also have an interesting situation where the high quality of type set by

'JEX gets in our way. In some circumstances we want to set the equivalent of

galleys that are to be cut to specific lengths later in the composition process.

Conventional typesetting technology allows this in a rather simple way. We

typeset the longest text and then simply observe whether shorter renderings of

the text are legal (i.e., they don't produce widows, for example) by pretending

to 'cut' the text to shorter fragments. When we go to final typesetting, we are

able to tell the typesetter to set type to the appropriate length, and we know

exactly what we get.

TUG VIII, 1987, Conference Proceedings 119

David Ness

If we cut a TEX paragraph, however, TEX will re-set (perhaps all of) the lines
of the text in a different fashion. TEX may well decide to move some words up

or down from line to line to get a better looking paragraph now that the text

is known to be shorter. When we want to mimic conventional (forward only)

typesetters this is not desirable.

What we need to be able to handle this is an ability to de-tune the '!EX
algorithms so that it doesn't consider flowing the text back up into the paragraph

after the cutting decisions are made.

Democratization of Typesetting-Decentralization Issues
TEX allows us to both 'democratize' and 'distribute' typesetting tasks. This

represents a substantial revolution in the process of getting ink committed to

paper.

First, 'lEX allows us to put typesetting capabilities into the hands of a wide

community of possible users. These users can range in sophistication from people

who know little or nothing of typesetting to old-line typesetters who understand

the business quite well. There are many levels of '!EX which correspond to this.

One can know no more than to just put 'funny looking' things (with backslashes

and the like) into the text, and still find 'lEX quite useful.

Second, and perhaps even more important, '!EX allows us to distribute the

typesetting capability down to individual users. We are economically able to put
the ability to look at type into the hands of virtually every user who has a PC at

their disposal. This allows us to distribute typesetting capability to each of our

remote offices, printing sites and anywhere else that it might prove to be useful.

The Separation of Form and Content
If there is a big point to be made by adopting the 'lEX environment, it is
this: Separation of form from content. Very unfortunately today's trends in

typesetting are running precisely contrary to this. There is a naive pull toward

WYSIWYG typesetting that completely integrates the content into the form. For
our purposes-and indeed, I think most other purposes as well-this is clearly an
error. We very definitely want the content of what we do to be quite independent
of the form in which it will finally be rendered. Only in this way can we defer

decisions about commitment to ink and actual type as long as is reasonably

possible in the publishing process.

One can only hope that it will not take too terribly long to realize that-for

the most part-we should provide ourselves with an environment that allows us

to separate worries about the form from worries about the content. 'lEX makes

this not only possible-it makes it quite convenient.

The Arguments Against 'JEX
In our environment 'lEX encounters a lot of resistance. As with many other great

ideas this is no surprise. Let's treat the comments and their likely background

and cause one-by-one.

120 TUG VIII, 1987, Conference Proceedings

The Use of TEX in a Commercial Environment

TEX is for mathematics. I guess TEX is for mathematics. The other day I set
six pages of beautiful notes from a calculus class that I took in my undergraduate
days. However, it is simply poor reasoning to think that because TEX is for

mathematics, it isn't for something else. It works pretty well in lots of different

environments.

TEX is for books. TEX also is for books. I guess it is a fair observation to

suggest that Knuth has paid more attention, at least in print, to considerations

relevant to producing books than for other varieties of typesetting. Perhaps if he
had been principally interested in typesetting articles for the popular magazines,

we might have an emphasis on other facilities in 'IE;X. However, it is my feeling

that the complexity of many of the problems faced in book production assure
us that comfortable solutions associated with magazine production are likely to

evolve.

TEX is too complicated. 'lEX is too complicated. But again, putting ink on

paper is an extremely complicated process if one wants to be able to control

it both exactly and with considerable generality. Each time that I learn more

about how to use 'IE;X in some complicated situation I become more convinced

that the complications are necessary, and indeed desirable. The alternative

would be to give up the control that is actually so important.

TFfX is too cheap. It may seem, at first, that this is an absurd objection. Of

course, it is never stated in these terms. Yet, quite often it is the case that people

with a background in typesetting simply cannot believe that it is possible to

set such good type so cheaply. I am reminded of the fact that in the 1940s
Toni Home Permanents didn't sell when they were first test marketed at 25¢.

When the price was raised to $2, they sold like hot-cakes. People who have deep

commitments to old-time typesetting technology don't want to believe that it is

possible to set acceptable type, with great reliability, on 300 dpi laser printers

generating your own fonts for a combined hardware/software cost of less than
$5,000.

TFfX requires specialists. Again, 'IE;X requires some specialists, but actually it
is less demanding on our environment than many of the conventional typesetting

machines. What TEX allows, in direct contrast to more conventional typesetting
technology, is for different levels of understanding to be effective for different
users.

Thus, these first few objections to TEX do not seem to be very substantial

in our environment. We continue to encounter these arguments, however, and

it will probably be a very long time until they are no longer brought forward.

However, there are a few additional arguments that should be at least discussed.

TFfX source is too ugly. This does seem to me to be a valid criticism of 'IE;X.
For people who so obviously care so deeply about the appearance and quality
of all output, it strikes me as odd to have such an ugly input language. While

'lEX is obviously quite logical in its structure, it is often difficult to make input
read easily or look nice. It is mindful of APL or FORTH. Spaces count some places,

TUG VIII, 1987, Conference Proceedings 121

David Ness

and don't count other places, so one has to be a bit careful about breaking lines

in macro definitions, or about spacing out definitions so that they look readable.

TfiiX is too hard to debug. Again, this strikes me as largely a valid criticism.

Exactly which space in a macro causes a particular (unwanted) space to appear in

some output can occupy hours of tracing down. Further, when a macro definition

blows up, a character gets misplaced in an alignment or, (horror of horrors) we

overflow our font tables or macro definition space, it can take a considerable

amount of work to (1) understand what is going on; and (2) to fix it. Here,

again, I have the basic impression not that this is all wrong, but rather just that

it is a good deal more complicated than it really needs to be.

TFfX is a hard language to program in. This, too, seems to be valid. One need

only look at the complexity ofthe definitions in 11\TEX, and at the fact that 11\TEX

requires nearly ~ million characters of text, to understand that 'programming' in

'lEX is hard work. Of all of the tasks that need to be performed, detecting and

handling error conditions seems to be one of the most difficult. Programming

'lEX to do things is generally difficult, but nevertheless rewarding.

Of course, some of the macro packages deal with this problem. However, I

find that I rarely wa_nt aU of the constraints of the non-plain macro packages.

I would sometimes be very happy to be able to pull out the list processing

capability or the token-processing parts of 11\TEX, for example. The fact that

'lEX is hard to program in means that it is difficult to find and 'lift' parts of

these macro packages without absorbing them in toto. This actually makes the

point about the 'look' of 'JEX.
Finally, TFfX needs some 'features'. We are about to fall into some difficulties

along at least two fronts. First, and to us the most important of these areas, is

that of layout. We somehow need to be able to exact more flexible control over

the layout of documents than the very long \parshape commands will easily

allow. We need to be able to mark flows of text, and then re-encounter the text.

We also need to develop either some 'features' or some philosophy which will

help us properly define the role of . DVI vis-a-vis POSTSCRIPT, and how all of

this should be related to 'specials' in 'JEX. If we don't act reasonably quickly

in this dimension, we may lose some of the considerable value gained by having

had such an early and dear definition of problems and solutions by Knuth.

Where a:re we going?
We will continue to use 'lEX in our experimentation. Indeed, we are actually

integrating some use of it into operational systems as a regular part of the process

of producing some of our type. We are increasing the proportion of the type that

we set via 'JEX, and are gradually obsoleting other technologies so that we can

focus our support facilities on this particular way of producing type.

Needs
The 'fEX community is a robust one, but-at least so far-it has not proven

to be particularly responsive to the needs of those of us who daily operate in

122 TUG VITI, 1987, Conference Proceedings

The Use of '!EX in a Commercial Environment

a commercial environment where deadlines are the rule of the day. The 'lEX
community is academic-in both the best and worst senses of that word. 'lEX
help is truly priceless, often given freely and quite wonderfully, but sometimes

not available at all. Acadewic concern, quite reasonably, is more often guided

by interest than by the thought of reward. This sometimes means that we can

get quite difficult problems solved for free if they are interesting, but often can't
get simple problems solved for any price if they are boring.

As a simple example, information that circulates quite freely in the academic

community is not necessarily available to commercial users. A lot of TEX related

information is shared in formal and informal networks that most commercial

organizations are not a part of. Thus we are outside of the mainstream.

Commercial organizations often need to be able to 'count on' things a little

more. That's the bad part of using TEX in a commercial environment. Generally,

we can also afford to pay for them. That's the other side of the coin.

TUG VIII, 1987, Conference Proceedings 123

Literate Programming in C

SILVIO LEVY

Mathematics Department

Princeton University

Princeton, NJ, 08544

ABSTRACT

This paper reviews the idea of literate programming

and the basics of Knuth's WEB documentation system, then
discusses in general terms the use of (a version of) WEB with

C programming. It also summarizes the author's experi-
ence in adapting WEB to C; this may be useful to those who
would like to try literate programming in other languages.

The author's version of C WEB is available for distribution.

What Is Literate Programming?

"Literate programming'' is a phrase introduced by Don Knuth [1984] to des-
ignate a style of writing programs in which documentation and code are of equal
importance, and are written more or less simultaneously. One aims not only

at writing code that works, but also at explaining to oneself and other possible

readers of the program how and why the code works. This is best done by pre-
senting concepts and algorithms in human language and in the order that seems
most convenient for exposition to humans-which is often not the order that is

most convenient for the use of the computer.
The inclusion of "oneself' in the previous paragraph may sound silly, but

is actually crucial: a programmer who goes back to a program he or she wrote

six months before and did not document adequately generally finds it as incom-
prehensible as if it had been written by someone else. Explaining the code to
oneself also helps one make fewer mistakes, thus reducing debugging time.

Knuth developed the idea of literate programming several steps beyond the

TUG VIII, 1987, Conference Proceedings 125

Silvio Levy

documentation facilities offered by most programming languages, which generally
consist merely of some way of embedding comments in the code. He invented WEB,

a documentation system consisting of two parts: tangle, which takes a source

program containing pieces of code and explanatory T£X text and rearranges

the code according to the user's instructions, producing a computer program

ready to be compiled; and weave, which from the same source produces a T£X
document, including various useful indexes and fully formatted code.

Thus "WEB" is not just a program but a class of programs, like "compiler", in

the sense that can be realized in different ways, and for different programming

languages [Knuth 1984]. Knuth's implementation was designed for Pascal, and

in fact incorporates additional facilities, like macros and string handling, that

enhance Pascal's capabilities. The use of this "first WEB system" is exemplified

in [Knuth 1984] (a fascinating paper, which deserves to be read independently of

the merits of WEB), and fully described in a manual [Knuth 1983]. The manual is

short, because a programmer familiar with Pascal and having at least a nodding

acquaintance with 'lEX really doesn't have much else to learn in order to start

using WEB: the possibly hard part is to acquire the discipline and the verbal skills

necessary to express oneself clearly ...

C Versions of WEB

Pascal presents many shortcomings when used for system programming, not

all of which are addressed by WEB (see the article by Nelson Beebe in these

proceedings). For those of us who would like to write literate programs in other

languages, the solution is to adapt WEB.

In the spring of 1986 I set out to write such an adaptation to C, because

the only existing one at the time (to my knowledge) used troff as a typesetting

language [Thimbleby 1983], which seemed a bit of a step backwards. I worked

on it part-time for about four months until I had something that satisfied me.

Since then at least one more version of C WEB has come out [Guntermann and

Schrod 1986]. For technical details of my version the reader is referred to [Levy
1987]; here I will limit myself to discussing a few points of wider interest and

illustrating the use of C WEB with real-life examples. (These examples illustrate

features inherited from Knuth's WEB, unless otherwise stated.)

C has a well-developed macro facility, handles strings reasonably well, and

allows conditional compilation. There go three reasons to choose Pascal WEB over
standard Pascal. Is there a reason, then, to choose C WEB over C? The answer,

for me, has been an emphatic "yes". Here, for example, is the WEB description

of a routine from the program I've been working on most recently:

7. The next function reads from the standard input the data for a triangulated

polyhedron and builds the structure representing it. Various types of data are

read, each according to a conventional format described below; roughly speaking,

126 TUG Vill, 1987, Conference Proceedings

Literate Pwgramming in C

we start with the combinatiorial information (number of triangles and edge

identifications), then move on to the geometric information (total angle at each

vertex and enough vertex positions to uniquely determine the metric).

(Function definitions 7) =
read_poly()

{

}

(Read n_faces and initialize pointers in the first n_faces elements off 8);

(Read edge information and fill the rest of the face structures 9);

(Go over faces, concatenating vertices in cycles 10);

(Check data consistency 11 } ; (Build tree spanning the vertices 12);

(Read vertex angles 14);

(Read a sufficient number of initial vertex positions and of extrapolated

vertex positions 16);

Each of the.high-level instructions above expands to a bit of C code, defined

and explained in some other section of the source file-wherever it seems to

belong from the expository point of view. (Sections are automatically numbered

by WEB for ease ofreference.) Here, for example, is the expansion of (Check data

consistency 11 }:

11. Among the simplest checks that we can carry out to verify whether the

data just read make sense is Euler's formula: for a convex polyhedron, n_faces +
n_vertices = n_edges + 2. Furthermore, since all the faces are assumed to be

triangles, we must have n_edges = 3 * n_faces/2, which, together with Euler's

formula, gives n_vertices = n_faces/2 + 2.

(Check data consistency 11) =
if (n_edges f. 3 * n_faces /2) {

}

l"printf(stderr,
11 Imcompatibleunumberuofuedgesu(%d)uandufacesu(%d)\n11 ,

n_edges, n_faces); exit(l);

if (n_vertices f. n_faces /2 + 2) {
l"printf(stderr,

}

"Polyhedronuisunotuausphere! u (%duverticesuforu%dufaces) \n",
n_vertices, n_faces); exit(l);

This code is used in section 7.

At the end of the program weave prints an index containing all occurrences

of variables more than one letter long, as well as other words or phrases that the

user decides should appear in the index. For example, in the portion of the source

TUG VIII, 1987, Conference Proceedings 127

Silvio Levy

corresponding to section 11 (and elsewhere) I included the line Cl~consistency

checksCI>; here's how the entry appears in the index:

complex: ~-

consistency checks: 9, 11, 14.

cos: 46, 66.
cprintf: 62.

cross_product: 26, 37.

csub: 18, 21, 22, 29, 37, 61, 62, 63, 76.
cur_edge: 13, 22, 23, 52, 61.

cur_face: 20, 63.

cur_vertex: 10, 41, 42, 46.

Other noteworthy points in this index sample are underlined references,
which are implicitly generated when a variable declaration is found in the source

file, as in the statement

double cross_product();

and the boldface entry complex, indicating a user-defined variable type. When

my version of C weave finds code such as

typedef struct { double real; double imag; } complex;

in the source, it automatically starts treating the identifier complex as a type,

formatting it in boldface and allowing it in the declaration of new variables.
Another area in which the facilities of C allowed me to innovate was the

handling of the intermediate C file. In principle this file is for machine consump-

tion only, so it doesn't have to be nicely formatted; but what happens when the
compiler, say, detects an error in your code? The error is a lot easier to find if

the compiler informs you of its location in your WEB source file, not in the inter-

mediate C file. So when tangle is writing the C file it preserves the line breaks

from the source and inserts #line preprocessor commands wherever necessary

to ensure that the compiler knows at each point what line of the source a given

line of the C file comes from. This helps with most debuggers, as well (not all

debuggers know about #line, although they should).

Evaluation

The gain in clarity obtained by using WEB over C should now be obvious. Are
there any drawbacks? After all, it costs something to write documentation, run a

preprocessor (tangle), and print a document (weave+ '!EX). The cost of running
tangle is negligible in my system (about one quarter of the compilation time

128 TUG VIII, 1987, Conference Proceedings

Literate Programming in C

of the resulting program). Printing the document takes relatively long (several

minutes for the thirty-page program discussed above), but I only do it when

I want a global view of the program; otherwise I just consult the source file.

Finally, I agree with Knuth's experience [1984, section L] that the total time

for writing and debugging a program ends up being less, in spite of the added

documentation.

C WEB does, however, have some shortcomings. The main of them is that

it is not as flexible as one might hope: if you don't like something about the

formatting of C code, for example, you may have to create a private version of

C WEB with your own formatting rules (this is not very hard, though). I intend

to make the rules user-definable in a future release. C WEB should also be more

versatile in handling multiple source files, so useful in C programming; although

I introduced a WEB command to perform file inclusion at the WEB level (similar

to the #include command of C), juggling many source files is still somewhat

clumsy.

Distribution

My version of C WEB is written in C and should run under any operating

system with only minor changes. (The port from UNIX to VMS, done by Bj¢rn

Larsen from the University of Oslo, required four changes.) It comes with source,

manual and examples in a directory, which you can get via anonymous FTP

from princeton. edu (change to directory pub/ cweb). Alternatively, send a mail

message to levy!llprinceton.edu or, if you can't establish a mail link, send a

written request, specifying whether you want a half-inch tape, quarter-inch tape,

PC or Mac floppy. (For tapes or floppies we charge a nominal handling fee.)

Comments and suggestions about the program are welcome. If you port it

to other operating systems, or make changes that are likely to be interesting to

other people, please share them with me; they may become part of later releases.

Bibliography

Klaus Guntermann and Joachim Schrod, WEB adapted to C. TUGboat, 7 (1986),

134-137.

Donald E. Knuth, The WEB System of Structured Documentation. Stanford Uni-

versity Computer Science Report CS980 (1983).

Donald E. Knuth, Literate Programming. The Computer Journal, 27 (1984),

97-111.

Silvio Levy, WEB adapted to C: another approach. TUGboat, 8 (1987), 12-13.

H. Thimbleby, Cweb. Preprint, University of York (1983).

TUG VIII, 1987, Conference Proceedings 129

Porting lEX to the IBM RT

RICHARD SIMPSON

IBM Corporation

Austin, Texas

ABSTRACT

Richard discussed his successful port of TEX to the

IBM RT workstation. He now has a working INITEX,

VIRTEX, Y.TEX, A_MS- 'lEX, and BIBTEX, also preview

and print capability.

Richard was not able to submit his contribution to the

proceedings before the publication date. It will appear in

a later TUGBOAT.

-Eo

TUG VIII, 1987, Conference Proceedings 131

Text Formatting and the Maryland Lawyer

ALLEN R. DYER, ESQUIRE

2922 Wyman Parkway

Baltimore, MD 21211

(301) 243-7283

ABSTRACT

The Maryland State Bar Association Economics of

Law Practice Section is currently involved in a standard-
ization effort involving text formatting of legal documents

in the Maryland legal community. The Economics of Law

Practice Section has endorsed the 'lEX environment and
is actively encouraging those law firms interested in text

formatting to voluntarily standardize on 'JEX.

Introduction

In April of 1987 the Maryland State Bar Association Economics of Law Prac-

tice Section (MSBA Economics Section) voted to endorse 'lEX as the standard
for text formatting within the Maryland legal community. This presentation

provides some background to that endorsement, describes some of the goals of

the MSBA standardization effort, and seeks to enlist the support of the 'lEX
user community.

The recent introduction of the 'lEX implementations by PC'JEX and Addi-
son Wesley on MS-DOS machines and trade magazine publicity about "desktop
publishing" made the Maryland legal community aware of the availability of high

quality text formatting. Once the MSBA became aware of the opportunity and

capabilities offered, there was little delay before action was taken.
The following chronology gives some idea of the period of time which elapsed

from the introduction of 'lEX usage in the MSBA Planning Subcommittee to the
endorsement of 'lEX and the implementation of a plan to promote widespread

TUG VIII, 1987, Conference Proceedings 133

Allen R. Dyer, Esquire

use of the TEX environment.

Nov 86- First use of TEX in MSBA Planning Subcommittee on Automation

Apr 87- Endorsement of 1E;X as standard for Maryland legal community.

May 87- Submission of Interim Report of Planning Committee to the Board

of Governors using TgX.

Jun 87 - Article explaining lEX endorsement appears in The MSBA Bar

Journal.

Aug 87- Creation of Economics Section Text Formatting Subcommittee.

Aug 87- Tentative plans for a special 'lEX reference issue of the MSBA Bar

Journal in early 1988.

Doubtless there are few TUG members that could not enumerate a dozen

reasons why TEX is a superb choice for high quality text formatting. However,

the MSBA Economics Section chose TEX as the standard text formatting en-

vironment not because of 1E;X's admittedly superior capabilities but, rather,

because of TE:;X's public domain roots. The MSBA Economics Section Council

felt vendor independence was absolutely necessary for any software that was to

be strongly recommended for extensive use in the legal process.

Goals

The MSBA text formatting standardization effort seeks improvement in the

legal process by the following specific goals:

Better legal documents;

Establishment of the legal community as a worthwhile market for software

developers;

Increased communication between the academic community and the legal

community;

Experimentation with voluntary MSBA software standards; and,

Stimulation of similar efforts in the bar associations of other states.

134 TUG VIII, 1987, Conference Proceedings

Text Formatting and the Maryland Lawyer

Better Legal Documents

The American legal is heavily dependent upon written documents.

Accordingly, a major portion of the man-hours expended in the practice of law

involves the planning, creation, and analysis of documents. Therefore, any im-

provement of the ability of the legal community to deal with documents would

have a wide ranging effect on the cost and quality of our legal system.

While the use of TEX obviously produces a better looking legal document

there may also be corresponding improvement in the content of the legal docu-

ment.

Current word processing practice in the law office is heavily dependent on the

particular features of the word processing software used by the individual firm.

And in most small to medium sized law offices the legal secretary is responsible

for selecting a previously prepared document, or set of document clauses, and

manually customizing a copy of the previous document by multiple finds and

replaces throughout the entire document. The use of TEX would allow a more

powerful use of macros and definitions at the beginning of a document to restrict

all necessary changes to one location in the document.

An even more positive advance would be the development of automatic doc-

ument production systems that could use TEX as a backend. For example, an

attorney could be presented with series of questions which called for the use of

the attorney's legal judgment and then, based upon the attorney's input, an

expert system could construct a legal document with appropriate TEX codes for

final review by the attorney and submission to the TEX processor.

The Legal Community as a Software Market

There are currently 622,000 attorneys in the United States and 16,000 of

these attorneys practice in Maryland. This amounts to a ratio of 1 attorney

for every 375 laymen. Therefore, a programmer of a legal application program

is initially limiting his/her potential customer base to about one fourth of one

percent of the general population. Obviously, any software house developing

software specifically for legal applications must be able to make a significant

penetration of the legal market or else be forced to price the software out of the

reach of the smaller firms.

Furthermore, if the legal market is divided into incompatible groupings (dif-

ferent hardware, operating systems, character codes, etc.) the potential cus-

tomer base rapidly decreases even more. The MSBA Economics Section hopes

to prevent a splintering of the already small legal market by encouraging a text

TUG VIII, 1987, Conference Proceedings 135

Allen R. Dyer, Esquire

formatting standard. Accordingly, the cost of developing legal applications could

be spread over the greatest number of lawyers.

Communication between Academics and Lawyers

Unlike many of the professions, lawyers are relatively isolated from the aca-

demic community. In fact, the adversarial nature of law practice tends to divide

lawyers into groups of attorneys dependent upon the clienteles of the attorneys.

Such isolation slows the dissemination of new approaches to legal problems and

slows the introduction of new technology in the law office.

The MSBA TEX Standardization Project is an effort to provide a common

language between academics and lawyers relating to the mechanics of document

production. The anticipated benefit to the legal community would be more effi-

cient production of legal documents and access to new information and perspec-

tives for dealing with information based problems. The benefits to the academic

community would be greater access to the challenging problems of legal process

plus an opportunity to make direct contributions to a process that is increasingly

intertwined with day to day life.

Experimentation With Voluntary Software Standards

The MSBA has not attempted to encourage software standardization in the

past. This hesitancy to attempt standardization stemmed from many reasons

including:

Fear of vendor dependence;

Lack of any stable, mature, unchanging software;

Unwillingness to interfere with the marketplace;

Lack of any truly superior software to endorse; and,

Lack of any perceived benefits from standardization.

As a result, Maryland lawyers have been faced with continuing difficulties

in transferring machine readable information between law offices, getting vendor

support for problems unique to lawyers, finding properly trained personnel, and

sharing practice tips involving the use of computers in the practice of law. These

problems tend to get even more complicated since most attorneys have little, if

136 TUG VIII, 1987, Conference Proceedings

Text Formatting and the Maryland Lawyer

any, technical training and, therefore, have difficulty describing hardware or

software problems.

An especially poignant example is the history of word processing use in Mary-

land law offices. The last decade of legal word processing in Maryland has seen

dozens of "popular" vvord processing programs; at least a half dozen "stan-

dard" operating systems; three major "dedicated stand alone" word processor

machines; and a gamut of different physical and electronic media formats for

document storage.

The experience of the Maryland Bar with the word processing Tower of Babel

has resulted in sufficient frustration with vendor incompatibilities and recurring

office personnel retraining costs to justify experimenting with standardization.

If endorsement of the 'lEX environment does reduce the confusion that is seem-

ingly inherent in software selection then consideration can be given to a strong,

continuing participation of the MSBA in the shaping of the software environment

in the law office.

Promoting Standardization in Other States

The Maryland State Bar Association, through the Economics Section, has

done more in the area of text formatting standardization than any other state

level bar association. If the project is reasonably successful in Maryland then

other state bar associations could be expected to benefit from similar efforts.

Accordingly, every effort is being made to organize the MSBA project in a generic

fashion that will allow easy transfer of results and materials to other states. The

MSBA would benefit not only in prestige but also in an increase in the total

legal software market size for TEX related products.

Examples of TEX Usage by Maryland Lawyers

To date, the most visible user of 'lEX has been the Maryland Office of the

Public Defender(OPD). The OPD Death Penalty Section has used TEX and the

LaTEX macro package to publish a newsletter to update defense attorneys on

recent developments in death penalty law and, also, to petition the Governor of

Maryland for commutation of the death sentence of Doris Foster. On February

24, 1987, subsequent to receipt of the 'lEX formatted petition, Governor Hughes

commuted Ms. Foster's death sentence to life imprisonment.

TUG VIII, 1987, Conference Proceedings 137

Allen R. Dyer, Esquire

How 'lEX Users Can Help

Before discussing ways TUG members could help with the MSBA 1E;X ef-

fort, I would like to thank two TUG members, Chris Biemesderfer and Richard

Furuta, who have helped get the project to the current stage.

Other TUG members that are interested in participating in this standard-

ization project have a variety of options, including:

1. Writing an article for a special Bar Journal issue. The MSBA Economics

Section hopes to convince the Maryland Bar Journal to devote a special issue

to text formatting. An Appendix at the end of this article sketches the general

content that is desired.

2. Advertisements in the special issue. Vendors of 1E;X related products can

provide the MSBA Economics Section with bargaining power by offering to ad-

vertise in the proposed special issue of the Bar Journal. Additionally, Maryland

attorneys would always have ready access to vendor information whenever they

referred back to the special issue.

3. Macro Development. Assuming a significant number of attorneys decide

to move into the 1E;X environment, there will be a demand for macro packages

related to the sometimes arcane area of legal document formatting.

4. Service on MSBA Economics Section Subcommittee. I am looking for

individuals willing to participate in a correspondence committee on text format-

ting. The makeup of the subcommittee will be a mixture of technically oriented

attorneys and members of the 'lEX community. You do not have to be a Mary-

land resident or an attorney to participate. Meetings will be conducted by mail

and/or by electronic messaging (BITNet?).

5. Suggestions. Even if you do not have the time for any of the above

committments, any suggestions you have would be greatly appreciated.

For more information please contact: Allen Dyer, Chair of the MSBA Eco-

nomics of Law Practice Subcommittee on Text Formatting Standardization.

Typesetting by Stephen Bencze of TE)CSource, Houston

138 TUG VIII, 1987, Conference Proceedings

Text Formatting and the Maryland Lawyer

Appendix

Special Issue - Economics of Law Practice Section

POSSIBLE CONTENTS

1. What is Text Formatting?

Standards - Why

History of Word Processing in MD Legal Community

History of 1EX
'!EX's Legal Status- Trademark, Public Domain, AMS

2. Installing 'lEX
'lEX Hardware Requirements

Macro Packages for 'lEX
'lEX Training

Using WS, MS WORD, WordPerfect with 1EX
'lEX Startup at a Medium Size Law Firm

3. Text Formatting Concepts and Legal Practice

Levels of Abstraction with 'lEX
a. Direct Document Production

b. Variable Names

c. Program Driven

SGML and 'JEX

Normalization of Legal Language

Symbolic Logic as a Legal Reasoning Tool

4. Using 'lEX in Legal Practice

Use of 'lEX at the OPD

Handling Correspondence with 'lEX and/or La'JEX

Using 'lEX for a Simple Will

Using 'lEX for Pleadings

5. Reference Material

Glossary- Computers/Typesetting

Vendors List

Colophon Article

'lEX User's Group

TUG VIII, 1987, Conference Proceedings 139

Of Metafont and PostScript

LESLIE CARR

Department of Electronics and Computer Science

The University

SOUTHAMPTONS095NH

U.K.

E-MAIL lac@uk.ac.soton.cm

ABSTRACT

META FONT, a design language for alphabets, has been

used to provide fonts for the 'JEX family of typesetting sys-

tems. PosTSCRIPT, a language for representing graphical

objects and text, is provided as an interface to the marking

engines of many top-quality printing devices. This paper

describes an attempt to coerce METAFONT's font designs

into PosTSCRIPT's representation of graphical objects.

All the work was done in a UNIX environment, so the

tools used are those indigenous to UNIX, e.g. sed, yacc

and leJ:-. Apologies to those who do not live in a UNIX

world.

1. By Way of Introduction

'JEX arrived at our site a year ago. A certain amount of work had to be done to

make it function with our compiler/machine combination; this became a large

amount of work to make TEX use the 13 PosTSCRIPT fonts provided in our first

Laser Writer Plus. That work made us curious about the relationship between

PosTSCRIPT's fonts and those used by 'lEX-how were the character representa-

tions similar? Several months were spent in trying to coerce METAFONT ('lEX's

font-creating program) to produce PosTSCRIPT-like font descriptions: this paper

documents the results of that work.

TUG VIII, 1987, Conference Proceedings 141

Leslie Carr

1.1 METAFONT for the uninitiated

Knuth descibes METAFONT as

... a system for the design of alphabets suited to raster-based devices

that print or display text. 1

METAFONT programs are precise mathematical descriptions of the shapes

of letters in various alphabets. These descriptions are parameterised so that

attributes such as boldness or slantedness or size can be varied by adjusting the

values of the parameters. It is this facility that gives METAFONT its METRness.

1.2 PosTSCRIPT for the uninitiated

The purpose of PosTSCRIPT is

... to describe the appearance of text, graphical shapes and sampled

images on printed pages. 2

PosTSCRIPT is used on many printing machines and display devices and is

set to become "an industry standard" page description language (PDL). In the

PosTSCRIPT graphics model, text characters are treated as ordinary graphical

objects, and are described in the same manner.

1.3 Why bother mixing the two?

PosTSCRIPT is a PDL whose main concern is with the rendering of text and

graphics. The fonts available to it are, for the most part, those licensed to Adobe

Systems by the Allied Corporation and the International Typeface Corporation.

Using META FONT as a type design system allows technical/foreign typefaces to

be used by any software package on any PosTSCRIPT device.

Although METRFONT programs describe characters in terms of smooth curves,

the characters themselves are output in terms of an array of pixels that must

be painted on the physical device. At the moment, this "pixel array" is sent

to the PosTSCRIPT interpreter as data for the imagemask command. If the

character is magnified, then its digital nature is revealed. However, if original

smooth curves that define the character's outline are sent to the PosTSCRIPT

interpreter, then PosTSCRIPT itself will work out the pattern of pixels to be

painted, and any amount of scaling can be done.

1 The METAFONTbook
2 PosTSCRIPT Language Reference Manual, Addison Wesley

142 TUG VIII, 1987, Conference Proceedings

Of Metafont and PostScript

1.4 Scaleable Fonts

Scaleable fonts have a great advantage- you only need one font description file

for all the sizes of that font. At Southampton, we have 23 files devoted to the

descriptions of half a dozen sizes and several different magnifications of the cm·r
font.

Traditionally, characters which are to be at different sizes are slightly

different in their shapes (hence 23 descriptions of the one font!), although Brian

Reid (Unix review, July 1987, page 55) states that this practise is dying out:

Essentially all current manufacturers of high-quality phototypesetting

equipment use optical scaling on their fonts. Off the top of my head, I

can't think of any typesetter manufacturer in the United States that

offers more than two versions of a font in a given size and style. Most,

in fact, use just one. Although it's true that some little, old, gray-haired

men with tweezers-if left to their own devices-would set half a dozen

different styles in hot type depending on the magnitude and image they

were trying to create, the fact is that technology has simply swept away

that sort of thing. The people in the typesetting industry right now,

independently of the laser printer market, have stopped using typeface

variations across different sizes.

1.5 Curves

Fortuitously, both METAFONT and PosTSCRIPT use Bezier cubics3 as their

method of curve specification. A Bezier curve is completely specified by 4

points-the start point, the end point and two control points. The curve will

leave the start point heading for control point 1 and enter the end point heading

from control point 2.

Start Point
EndPoint

A Bezier curve

METAFONT will automatically calculate the two control points so as to give

the "nicest" curve, but PosTSCRIPT requires that all four points be explicitly

given.

3 See J. D. Foley and A. Van Dam Fundamentals of Interactive Computer

Graphics, Addison Wesley, for a full treatment of Bezier cubics

TUG VIII, 1987, Conference Proceedings 143

Of Metafont and PostScript

3. METRFONT chops lines up to stop them exceeding 72 characters in length.

Unfortunately, it chops numbers across a line! Run firstaid on doit.after,

saving the result§ in doi t. aided

:first:aid < doit.~:ft!il:!: > doit.aid.ed.

firstaid is a C program generated by lex 5 which simply looks for a line

that ends with a digit followed by a line that starts with a digit and joins

the two together.

4. METRFONT prints out a path description each time a path or subpath

is evaluated. As the calculation of a path may involve the calculation of

many subpaths, it is necessary to delete all those paths which are later

incorporated into superpaths. Run nocycles on the result to get rid of

these superfluous path descriptions. The result is called doi t. cycles.

nocycles < doit.aided > doit.cycles

N ocycles works very crudely-it simply deletes any path which is non-

cyclic on the basis that an area must be cyclic to be :filled. This brings

problems, as we will see below.

5. Using paths, a C program produced by lex and yacc6 , translate each

character's path data into a group of curveto and fill commands suitable

for PosTSCRIPT. paths assumes that each character's description is made

up of a number of filled regions, and each region is bounded by a cyclic

set of B ezier curves.

paths < doit.cyclss > doit.paths

6. METRFONT simply prints out the paths that it follows without any in-

dication of what it is doing with those paths. Most of the time they are

acting as the boundaries of a region to be filled-some of the time they

act as boundaries of a region to be erased. There are two situations to be

watched out for here, one is the use of plain's erase macro and the other

is when pensiroke is being used on a cyclic path.

For this reason, two modifications were made to plain.mf

a. the string ERASED is output when the erase macro is called

b. the string FILLEDCYCLE is output when the pensiroke macro is

called on a cyclic path (e.g. in the characters O,o and Q)

Paths marked with ERASED are dealt with by the paths command (pre-

vious) by using unfill instead of jill, but paths marked FILLED CYCLE

5 A lexical analyser generator
6 Yet Another Co1npiler Co1npiler

TUG VIII, 1987, Conference Proceedings 145

Leslie Carr

are dealt with at this stage.

When the string FILLEDCYCLE is encountered, the last two cyclic

paths describe the inside and outside of the region to be filled. Make

sure that the :first path does not have a separate fill command attached

to it, and put the PosTSCRIPT eofill command at the end of the second

path. This will ensure that PosTSCRIPT :finds out which of the regions

is on the outside, and which is on the inside.

This function is provided by an ed7 script, filledcycles.

£illedcycl0s < doit.p&ths > doit.chars

7. You are now left with a :file of character definitions. All that is necessary

to turn it into a downloadable PosTSCRIPT font is to :fill in the auxilliary

font information thai PosTSCRIPT requires.

e Fill in the Metrics dictionary from the PL :file. It would be possible to

alter plain.mf so that the beginchar macro would output this automati-

cally.

t~ Fill in the font's Encoding Vector. Currently each character is named

Char-n, where n is its ASCII code. In this case the encoding vector is

trivial.

., Fill in a suitable value for the FontMatrix array. This can be obtained

from the currenttransform variable during the execution of the modesetup

macro. This will tell PosTSCRIPT the size ofthe co-ordinate system used

to define the character, and also any slanting applied to oblique or italic

fonts. Please note that any transforms are applied to METRFONT's paths

after they have been calculated, so a slanted font (e.g. cmsllO) would come

out straight without transferring currenttransform into FontMatrix. This

method will not work with some fonts (such as maths italic) which do

not have all of their characters slanted.

This step has not yet been completely automated as NeWS has no font

operators to speak of.

3. The Problems

The current problems fall into two divisions-practical and theoretical.

7 similar to sed, but works on files instead of streams

146 TUG VIII, 1987, Conference Proceedings

Of Metafont and PostScript

3.1 Practical Problems

The major problem encountered is that of resolution. METAFONT~is designed

to do intelligent digitisation for low resolution devices, whereas PosTSCRIPT is

not. All METAFONT's curves are massaged to give the best fit for the underlying

device pixels, knowing that the pixel-pattern will never change size or orientation

with respect to the device raster. The PosTSCRIPT outline characters are meant

to be scaled and rotated-and unfortunately most PosTSCRIPT devices fall into

the low-resolution category. The result is that trying to use a PosTSCRIPT

version of the cmrlO characters on an Apple LaserWriter leaves them blotchy

and uneven--some strokes are too thick, some too thin and curves have ugly

spots and pimples on them. This problem should diminish with the use of high-

resolution devices such as the Linotronic 300 Imagesetter.

Another problem encountered is the sheer size of the PosTSCRIPT character

definitions generated. Each character has dozens of subpaths (a cmr M has

over 60), each of which requires 6 parameters (two co-ordinates for each of two

control points and an end point), leading to over 400 PosTSCRIPT tokens to

describe the character. The Apple LaserWriter has a limit of 500 items on its

operand stack; this is exceeded by many character descriptions so the procedures

for each character are split into subprocedures each 300 tokens long by the paths

command.

3.2 Theoretical Problems

The major barrier to the use of this method is METAFONT's use of pens. META

FONT has two types of pens-fixed pens and flexible pens. The fixed pen is used

with a pickup command and has a constant shape throughout the path it draws;

the flexible pen varies its width and angle of inclination throughout the path it

draws by use of the penpos command. The fixed pens are part of 'bare' META

FONT, the flexible pens are a fiction of the plain macro package, implemented as

a cyclic path which outlines the stroke of the flexible pen.

All paths are stroked out with one of METAFONT's fized pens; this fixed pen

overlaps the path that is stroked out, effectively adding half of its breadth to the

region that is to be filled. Altering the width of this pen will alter the shapes

of the corners-a large pen will give round corners, smaller pens will give sharp

corners. In the cmrlO font, the crisp pen has diameter zero, so serifs have square

corners. In the cmttlO font, crisp is set to a larger value and the serifs end in

semicircles. Because the shape of the current pen (not necessarily circular!) can

NOT be taken into account in PosTSCRIPT, these differences in the character

shapes will not be seen.

This is a fundamental problem: given a path p and a pen q (whose shape

is also an arbitary path), METAFONT effectively envelopes p with respect to the

shape of q; PosTSCRIPT can do nothing other than stroke it to produce a line of

constant width. This incompatibility comes to light when the width of the pen

is significant to the shape of the character.

TUG VIII, 1987, Conference Proceedings 147

Leslie Carr

Flexible pens are used for most of the cmr characters, but some maths sym-

bols are defined purely in terms of the strokes of fixed-width pens. At the

moment, the conversion process will not deal with them properly as they are not

the result of :filling a cyclic path.

4. The way forward?

The aim of this work has been to alter METRFONT and its macro packages as

little as possible. Perhaps delving into the innards of the METRFONT program

itself and liberating the exact information that PosTSCRIPT needs is the only

way forward. It could also provide true PosTSCRIPT META fonts, where not

only the size, but also the boldness and sans-serifness is stated as an argument

to PosTSCRIPT's 'makefont' command.

5. The Sources

Here are the sources for the commands in section 2.

5.1 firstaid.l

%%

char >~<ch;

[0-9\.]\n[0-9\.)] {£or(ch=yytext; •ch; ch++)i£(•ch!='\n')putchar(•ch);}

5.2 nocycles

5.3 nocyclesl.l

'!.'!.

choices: \n print£("choices: ! ");

\n\ \.\. print£("! .. ");

148 TUG VIII, 1987, Conference Proceedings

5.4 paths.l

P1

P2

%%

This\ is\ HETAFONT.*\n\>~<*.*

Font\ metrics\ vritten\ on.*

Output\ vritten\ on.>~<

\([a-zA-Z0-9_]+\.m£(\))?

[\t]

\n

ERASED

{P1}[0-9]+{P2}

11 controls 11

[-+]?[0-9]+(\. [0-9]+)?

\(

\)

\[[0-9]+\](\))?

\.\.

\,

11 J a:Eter choices:u

{lineno=3;}

{/* nothing >~</}

{/>~< nothing */}

{I* nothing >~</}

{/,. nothing>~</}

lineno++;

return(ETEXT);

return(PTEXT);

return(COTEXT);

return(A.TEXT);

return(CYTEXT);

Of Metafont and PostScript

{ssce.n:f(yyte:x:t, "%£", ll:val); return(NUMBER);}

return(LPAR);

return(RPAR);

{sscan£(yytext,"[%d]",i:chnum); return(CHARNO);}

return(DOTDOT);

return(COKMA);

TUG VIII, 1987, Conference Proceedings 149

Leslie Carr

5.5 paths.y

%token PTEXT COTEXT ATEXT CYTEXT NUMBER LPAR RPAR DDTDDT COMMA CHARND ETEXT

%%

font: many_chardefs

many_chardefs: chardef

chardef:

many_chardefs chardef

{printf("{ {\n"); n=O;}

many_paths CHARNO

{if(n '/. l'!AXELEMENTS != O)printf("} exec\n");

printf("} /Char-'/.d exch def\n", chnum);}

many_paths: path

path:

pathi:

first_coord:

many_paths path

pathi ETEXT {if(cycle){

}

printf("closepath unfill\n");

addtostack(3);

}

path1 {if(cycle){

}

print:f("cl.osepath fill\n");

addtostack(3);

}

PTEXT :first_coord {fx=x; fy=y; print:f(" moveto\n");

addtostack(1); }

other_coords

coord

other_coords: the_rest

150 TUG VIII, 1987, Conference Proceedings

Of Metafont and PostScript

other_coords the_rest

the_rest: DOTDOT COTEXT coord ATEXT coord DOTDOT last_coord

{print:f("curveto\n"); addtostack(i);}

last_coord: coord

I CYTEXT {x=:fx; y=£y; cycle=i; print£("%£ %£ ", x, y);

addtostack(2);}

coord: LPAR !lUMBER {x=val;} COMMA IIUl!BER {y=val;} RPAR {print:f("'/.:f '/.:f ",x,y);

addtostack(2);}

%%
:float val, x,y,:fx,:fy;

int chnum,cyc1e,lineno,n;

char cmdname[20];

#include "lex.yy.c"

#define MAXELEMEIITS 300

yyerror(s)

char •s;{

:fprint:f(stderr,"%s: %s on line '/.d\n", cmdname, s, lineno);

exit(i);

}

addtostack(d)

int d;{

int i;

:for(i=i; i<=d; i++)

}

main(argc,argv)

int argc;

char **argv;{

i:f(++n % MAXELEMEIITS

strcpy(cmdname,argv[O]);

O)print:f("} exec\n{ ");

print:f("%%!\n/un:fill {1 setgray :fill 0 setgray} de:f\n");

return(yyparse());

}

TUG VIII, 1987, Conference Proceedings 151

Leslie Carr

5.6 filledcycles

#!/bin/sh

TMP=/tmp/fc.$$

cat > $TMP

while fgrep FILLEDCYCLE $TMP >/dev/nUll

do

ed $TMP >/dav/null 2>/dev/null <<EOF

/FILLEDCYCLE/s///

s/fill/eofill/

?fill?

s/fill/%No filling/

EOF

done

cat $TMP

rm $TMP

5.7 log2ps

#!/bin/sh

sed -e 1 /befora choices/,/-$/d' $1 I

firstaid I

nocyclesi I sed -e '/-Path.•["e]$/d' I tr '!' '\012' I

paths I

filledcycles

5.8 plain.mf

The definition of erase has been changed to the following.

de£ erase text t = begingroup interim default_vt_:=_;

cullit; t vithweight _; cullit;

message "ERASED"; endgroup enddef;

The definition of cyclestroke has been changed as follows.

de£ cyclestroke_ =
begingroup interim turningcheck:=O;

message "FILLEDCYCLE";

addto pic_ contour path_.l.t_ vithweight 1;

152 TUG VIII, 1987, Conference Proceedings

Participants, 1987 'I'EX Users Group Meeting

Participants, 19871EX Users Group Meeting

NIVERSITY OF WASHINGTON, SEATTLE,

24-26 AUGUST 1987

Notes: 169 participants;

*indicates exhibitor

Robert A. Adams

University of British Columbia

Vancouver, B.C., Canada

Walter Andrews

University of Washington

Seattle, Washington

Bernadette V. Archuleta

Los Alamos N a tiona! Laboratory

Los Alamos, New Mexico

*David Babcock

Personal TEX, Inc.

Mill Valley, California

William W. Babcock

Northern Michigan University

Marquette, Michigan

*James K. Bailey

Personal TEX. Inc.

Mill Valley, California

Ronna Bailey

National Center for

Atmospheric Research

Boulder, Colorado

David T. Barfoot

The Open University

Dorset, England

David Barnes

Oregon Software, Inc.

Portland, Oregon

Elizabeth M. Barnhart

TV Guide

Radnor, Pennsylvania

Stephan v. Bechtolsheim

TEX Users Group

Providence, Rhode Island

Nelson Beebe

University of Utah

Salt Lake City, Utah

Barbara N. Beeton

American Mathematical Society

Providence, Rhode Island

Gary S. Benson

Los Alamos National Laboratory

Los Alamos, New Mexico

Eric Berg

Stanford University

Stanford, California

*Randolph A. Best

Digital Composition Systems

Phoenix, Arizona

Chris Biemesderfer

Space Telescope Science Institute

Baltimore, Maryland

Cliff Binstock

Great-West Life

Englewood, Colorado

William Black

University of Oxford

Oxford, England

*Mark Bloore

FTL systems Inc.

Toronto, Ont., Canada

Jeffrey Boes

Lear-Siegler

Grand Rapids, Michigan

TUG VIII, 1987, Conference Proceedings 153

University of Washington, Seattle, 24-26 August 1987

Eileen Boettner

National Center for Atmospheric Research

Boulder, Colorado

Susan Brooks
The Open University

Milton Keynes, England

Virginia A. Brower
Stanford Linear Accelerator Center

Stanford, California

Mimi Burbank
Supercomputer Computations

Research Institute

Florida State University

Tallahassee, Florida

*Lance Carnes

Personal '!EX, Inc.

Mill Valley, California

Margot Casey

Los Alamos National Laboratory

Los Alamos, New Mexico

Luigi Cerofolini
University of Bologna

Bologna, Italy

S. Bart Childs

Texas A & M University

College Station, Texas

*Jill Colantuone
Addison-Wesley Publishing Co.

Reading, Massachusetts

Arvin C. Conrad

Menil Foundation

Houston, Texas

Jeffrey L. Copeland
Interactive Systems Corp.

Santa Monica, California

Mary Coventry
University of Washington

Seattle, Washington

Michael Crampin
The Open University

Milton Keynes, England

John Crawford
Ohio State University

Columbus, Ohio

Jackie Damrau
University of New Mexico

Albuquerque, New Mexico

Michael Doob

University of Manitoba

Winnipeg, Manitoba, Canada

Karl Dusenbury

Lawrence Livermore National Lab

Livermore, California

Allen R. Dyer
Computer Law Laboratory

Baltimore, Maryland

Robert Elliott
EG & G Energy Measurements, Inc.

Las Vegas, Nevada

Maureen V. Eppstein

Stanford University

Stanford, California

Shawn Farrell
McGill University

Montreal, Que., Canada

Michael J. Ferguson
INRS Telecommunications

Verdun, Que., Canada

Barbara Forrest
Los Alamos National Laboratory

Los Alamos, New Mexico

Jim Fox
University of Washington

Seattle, Washington

*Frank C. Frye
Computer Composition Corp.

Madison Heights, Michigan

Donna Gardner
University of Washington

Seattle, Washington

Thaddeus A. Gerards

The Open University

Heerlen, Netherlands

Helen M. Gibson

The Wellcome Institute

London, England

Regina M. Girouard
American Mathematical Society

Providence, Rhode Island

Kari E. Gluski

University of Michigan

Ann Arbor, Michigan

154 TUG VIII, 1987, Conference Proceedings

James L. Godwin

Library of Congress

Washington, D.C.

Donald H. Goldhamer

University of Chicago

Chicago, Illinois

* Gail Goodell

Addison-Wesley Publishing Co.

Reading, Massachusetts

Yas Gotoh

dit Company, Ltd.

Tokyo, Japan

Raymond E. Goucher

'!'EX Users Group

Providence, Rhode Island

John S. Gourlay

Ohio State University

Columbus, Ohio

* Gayla Groom

Kellerman & Smith

Portland, Oregon

Antonio F. Gualtierotti
IDHEAP

Lausanne, Switzerland

Dean Guenther
Washington State University

Pullman, Washington

Hope Hamilton
National Center for Atmospheric Research

Boulder, Colorado

Sherry P. Haney

Martin Marietta Energy Systems

Oak Ridge, Tennessee

Ann A. Hanson

Talaris Systems, Inc.

San Diego, California

Marvin V. Harlow
Los Alamos National Laboratory

Los Alamos, New Mexico

Jim D. Harmon

Re/Spec Incorporated

Albuquerque, New Mexico

Martin V. Harriman
Intel Corp.

Los Gatos, California

Participants, 1987 '!'EX Users Group Meeting

*Martin Havlicek

Kellerman & Smith

Portland, Oregon

Jorg S. Heinemann

Siemens AG

Miinchen, Germany

Douglas R. Henderson
University of California

Berkeley, California

* Amy K. Hendrickson

'!'EXnology, Inc.

Brookline, Massachusetts

Mild~ed H. Hoak
Los Alamos National Laboratory

Los Alamos, New Mexico

John D. Hobby

AT & T Bell Laboratories

Murray Hill, New Jersey

Alan Hoenig
City University of New York

New York, N. Y.

Sandy Honken

Ohio State University

Columbus, Ohio

Anita Z. Hoover

University of Delaware

Newark, Delaware

Doris T. Hsia

Stanford University

Stanford, California

*Janice Hughes
Addison-Wesley Publishing Co.

Reading, Massachusetts

Nancy M. Hunt

Sandia National Labs

Livermore, California

Rjay R. Ilg
dit Company,Ltd.

Tokyo, Japan

Patrick D. Ion
Mathematical Reviews

Ann Arbor, Michigan

Calvin W. Jackson
Calif. Institute of Technology

Los Angeles, California

TUG VIII, 1987, Conference Proceedings 155

University of Washington, Seattle, 24-26 August 1987

*Peter Jacobsen

DocuSoft Publishing Technologies, Inc.

Vancouver, B.C., Canada

* Katherine R. Johnson

AM Varityper

Kent, Washington

Regina A. Johnson

Los Alamos National Laboratory

Los Alamos, New Mexico

Yvonne Johnson

Los Alamos N a tiona! Laboratory

Los Alamos, New Mexico

Abdo R. Jooya

The Open University

Heerlen, The Netherlands

Helmut Jurgensen

University of Western Ontario

London, Ont., Canada

* William Kastor

Personal 'IE;X, Inc.

Mill Valley, California

* David Kellerman

Kellerman & Smith

Portland, Oregon

* David A. Kennedy

DocuSoft Publishing Technologies, Inc.

Vancouver, B.C., Canada

*Robert L. Kister

K-Talk Communications

Columbus, Ohio

Kazuhiro Kitagawa

Keio University

Yokohama, Japan

Carol Klos

Stratus Computer, Inc.

Marlborough, Massachusetts

William J. Kollar

MRJ Incorporated

Oakton, Virginia

Richard B. Lane

University of Montana

Missoula, Montana

Steen Larsen

UNI-C Aarhus

Aarhus, Denmark

Scott Larson

The Davis Group

Seattle, Washington

Dan C. Latterner

Mathematical Reviews

Ann Arbor, Michigan

J. S. Lee

Northrop Corp.

Palos Verdes Peninsula, Calif.

Silvio Levy

Princeton University

Princeton, New Jersey

Betty Lim

Applicon

Ann Arbor, Michigan

ChinS. Lin

Southwest Research Institute

San Antonio, Texas

Doug Lind

University of Washington

Seattle, Washington

Pierre MacKay

University of Washington

Seattle, Washington

Lucille Maestas

Los Alamos National Laboratory

Los Alamos, New Mexico

Laurie D. Mann

Stratus Computer, Inc.

Marlborough, Massachusetts

Mary W. Marler

Vanderbilt University

Nashville, Tennessee

Carole D. McCartney

TV Guide

Radnor, Pennsylvania

Robert W. MCGaffey

Oak Ridge National Lab

Oak Ridge, Tennessee

Claudia H. McNellis

Library of Congress

Washington, D.C.

Marie McPartland-Conn

GTE Laboratories

Waltham, Massachusetts

156 TUG VIII, 1987, Conference Proceedings

Robert A. Messer

Albion College

Albion, Michigan

Tom Milliman

University of New Hampshire

Durham, New Hampshire

Patricia A. Monohon

University of Washington

Seattle, Washington

*Jerry Nakao

AM Varityper

Kent, Washington

Norman Naugle

Texas A & M University

College Station, Texas

David Ness

TV Guide

Radnor, Pennsylvania

Albert Nijenhuis

Seattle, Washington

Stephanie S. O'Hara

University of Maryland,

Baltimore County

Catonsville, Maryland

Anthony Parks

Varityper

Randolph, New Jersey

David Parmenter

Digital Equipment Corp.

Nashua, New Hampshire

John Peterson

University of Washington

Seattle, Washington

Noel Peterson

Library of Congress

Washington, D.C.

Craig R. Platt

University of Manitoba

Winnipeg, Manitoba, Canada

Mark R. Probert

EG & G Energy Measurements, Inc.

Goleta, California

Sebastian P. Rahtz

Southampton University

Southampton, England

Participants, 1987 TEX Users Group Meeting

Doug Ravenel

University of Washington

Seattle, Washington

Phyllis J. Renzetti

U.S. Geological Survey

Reston, Virginia

Norman Richert

University of Houston

Houston, Texas

James M. Roberts

Univ. of California, San Diego

La Jolla, California

* David L. Rodgers

ArborText, Inc.

Ann Arbor, Michigan

Eugene S. Rodolphe

New York University

New York, N.Y.

Chris A. :Rowley

The Open University

London, England

Yoshiteru Sagiya

dit Company, Ltd.

Tokyo, Japan

Nobuo Saito

Keio University

Tokyo, Japan

Yasuki Saito

Nippon Telephone & Telegraph Corp.

Tokyo, Japan

Brian T. Schellenberger

SAS Institute, Inc.

Cary, North Carolina

William Schwarz

State University of New York

Albany, New York

Richard Simpson

IBM Corp.

Austin, Texas

* Brian Skidmore

Addison-Wesley Publishing Co.

Reading, Massachusetts

James F. Slagle

TV Guide

Radnor, Pennsylvania

TUG VIII, 1987, Conference Proceedings 157

University of Washington, Seattle, 24-26 August 1987

*Barry Smith

Kellerman & Smith

Portland, Oregon

Bernd Stiimke

Siemens AG

Miinchen, Germany

Carol K. Sullivan
U.S. Geological Survey

Menlo Park, California

* Henry Suwinsky
Addison-Wesley Publishing Co.

Reading, Massachusetts

Rilla Thedford
Intergraph Corp.

Huntsville, Alabama

Christina A. Thiele

Carleton University

Ottawa, Ont., Canada

*Dave Thomas

Digital Composition Systems

Phoenix, Arizona

Margaret M. Thomas

Talaris Systems, Inc.

San Diego, California

David W. Thompson
Lawrence Livermore National Lab

Livermore, California

Peter Thompson

TV Guide

Radnor, Pennsylvania

Ted Toyota
Sony Corp.

Tokyo, Japan

John R. Travis

Software Research Association

Tokyo, Japan

* Tibor Tscheke
Univ-druckerei H. Sturtz AG

Wiirzburg, Germany

Douglas R. Turner

Dept. of Health and Human Services

Atlanta, Georgia

Mary Ann Vigil

Los Alamos National Laboratory

Los Alamos, New Mexico

Kent J. Wada
University of British Columbia

Vancouver, B.C., Canada

Kent A. Wagner

TV Guide

Radnor, Pennsylvania

James W. Walker
University of South Carolina

Columbia, South Carolina

Stacy Waters
University of Washington

Seattle, Washington

Samuel B. Whidden

American Mathematical Society

Providence, Rhode Island

Michael Wiesenberg

Hew lett-Packard

Palo Alto, California

Bruce Wolman

Kaos A/S

Elisenberg, Oslo, Norway

Steve Woods
University of Washington

Seattle, Washington

Jean Wunderlich
The Davis Group

Seattle, Washington

Cheryl R. Wurzbacher

Addison-Wesley Publishing Co.

Reading, Massachusetts

Ralph E. Youngen

American Mathematical Society

Providence, Rhode Island

James P. Zablosky

University of British Columbia

Vancouver, B.C., Canada

* Lian Zerafa
FTL systems Inc.

Toronto, Ont., Canada

Note: 169 participants.

158 TUG VIII, 1987, Conference Proceedings

The 'IEXNIQUES SERIES

Publications on 'lEX and its Environment
Available from the 'lEX Users Group

1. VAX Language-Sensitive Editor (LSEDIT) Quick Reference Guide

for use with the LnEX Environment and Iffi.TEX Style Templates

2. Table-Making with INRS'JEX by Michael J . Ferguson

3. User's Guide to the Idx'JEX Program by R. L. Aurbach

4. User's Guide to the Glo'JEX Program by R. L. Aurbach

5. Proceedings of the Eighth 'lEX Users Group Annual Meeting
University of Washington, Seatt le, Wash., August 24- 26, 1987

Dean Guenther, Editor

