
LATEX3
Project Team

A Modern Regression Test Suite for TEX
Programming

Frank Mittelbach, Joseph Wright, Will Robertson

2014-07-28, TUG 2014 Portland, Oregon



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



How it began

— Don’s approach when developing TEX

▶ Literate Programming:
▶ Tangle and Weave

▶ Trip test for TEX
▶ get into a devilish mindset

— My takeaway from that
▶ Literate Programming:

▶ doc.sty and and later docstrip.tex

▶ Ideas for regression tests for LATEX
▶ ensure LATEX 2ε maintains (most) of the typesetting

functionality of LATEX 2.09 correctly
▶ add tests for each bug fix
▶ add tests for each interface (changed or unchanged)



How it began

— Don’s approach when developing TEX
▶ Literate Programming:

▶ Tangle and Weave
▶ Trip test for TEX

▶ get into a devilish mindset

— My takeaway from that
▶ Literate Programming:

▶ doc.sty and and later docstrip.tex

▶ Ideas for regression tests for LATEX
▶ ensure LATEX 2ε maintains (most) of the typesetting

functionality of LATEX 2.09 correctly
▶ add tests for each bug fix
▶ add tests for each interface (changed or unchanged)



How it began

— Don’s approach when developing TEX
▶ Literate Programming:

▶ Tangle and Weave
▶ Trip test for TEX

▶ get into a devilish mindset

— My takeaway from that
▶ Literate Programming:

▶ doc.sty and and later docstrip.tex

▶ Ideas for regression tests for LATEX
▶ ensure LATEX 2ε maintains (most) of the typesetting

functionality of LATEX 2.09 correctly
▶ add tests for each bug fix
▶ add tests for each interface (changed or unchanged)



How it began

— Don’s approach when developing TEX
▶ Literate Programming:

▶ Tangle and Weave
▶ Trip test for TEX

▶ get into a devilish mindset

— My takeaway from that
▶ Literate Programming:

▶ doc.sty and and later docstrip.tex
▶ Ideas for regression tests for LATEX

▶ ensure LATEX 2ε maintains (most) of the typesetting
functionality of LATEX 2.09 correctly

▶ add tests for each bug fix
▶ add tests for each interface (changed or unchanged)



Excursion on doc and docstrip

— Requirements
▶ It should be easily available
▶ It should work on any platform TEX works

— Initial ideas (doc):

▶ Use a format that works both directly (as a LATEX package)
▶ But could also be automatically formatted (with a suitable

setup)

— Extensions (docstrip):

▶ Strip out documentation lines to speed up loading
▶ Provide features for generating several files from one source
▶ Provide features for reorganizing code, adding licenses, etc.
▶ Provide installation support into different directories



Excursion on doc and docstrip

— Requirements
▶ It should be easily available
▶ It should work on any platform TEX works

— Initial ideas (doc):
▶ Use a format that works both directly (as a LATEX package)
▶ But could also be automatically formatted (with a suitable

setup)

— Extensions (docstrip):

▶ Strip out documentation lines to speed up loading
▶ Provide features for generating several files from one source
▶ Provide features for reorganizing code, adding licenses, etc.
▶ Provide installation support into different directories



Excursion on doc and docstrip

— Requirements
▶ It should be easily available
▶ It should work on any platform TEX works

— Initial ideas (doc):
▶ Use a format that works both directly (as a LATEX package)
▶ But could also be automatically formatted (with a suitable

setup)

— Extensions (docstrip):
▶ Strip out documentation lines to speed up loading
▶ Provide features for generating several files from one source
▶ Provide features for reorganizing code, adding licenses, etc.
▶ Provide installation support into different directories



How it continued (Validating LATEX 2.09)
Writing test files for regression testing: checking bug fixes and
improvements to verify that they don’t have undesirable side
effects; making sure that bug fixes really correct the problem
they were intended to correct; testing interaction with various
document styles, style options, and environments. We would
like three kinds of validation files:

1. General documents.
2. Exhaustive tests of special environments/modules such as

tables, displayed equations, theorems, floating figures,
pictures, etc.

3. Bug files containing tests of all bugs that are supposed to
be fixed (as well as those that are not fixed, with comments
about their status).

A procedure for processing validation files has been devised;
details will be furnished to anyone interested in this task.

Estimated time required: 2 to 3 weeks, could be divided up.



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



What was needed (back then in the ‘90s)?

— Verification

▶ of coding (interfaces, functionality)
▶ of documentation

— Assembling a complex distribution

▶ unpacking sources files and generating production files
▶ typesetting and verifying documentation
▶ adding license information

— Installation independence

▶ several developers, different OSes, different installations

— Full automation

▶ as few manual steps as possible



What was needed (back then in the ‘90s)?

— Verification
▶ of coding (interfaces, functionality)
▶ of documentation

— Assembling a complex distribution

▶ unpacking sources files and generating production files
▶ typesetting and verifying documentation
▶ adding license information

— Installation independence

▶ several developers, different OSes, different installations

— Full automation

▶ as few manual steps as possible



What was needed (back then in the ‘90s)?

— Verification
▶ of coding (interfaces, functionality)
▶ of documentation

— Assembling a complex distribution
▶ unpacking sources files and generating production files
▶ typesetting and verifying documentation
▶ adding license information

— Installation independence

▶ several developers, different OSes, different installations

— Full automation

▶ as few manual steps as possible



What was needed (back then in the ‘90s)?

— Verification
▶ of coding (interfaces, functionality)
▶ of documentation

— Assembling a complex distribution
▶ unpacking sources files and generating production files
▶ typesetting and verifying documentation
▶ adding license information

— Installation independence
▶ several developers, different OSes, different installations

— Full automation

▶ as few manual steps as possible



What was needed (back then in the ‘90s)?

— Verification
▶ of coding (interfaces, functionality)
▶ of documentation

— Assembling a complex distribution
▶ unpacking sources files and generating production files
▶ typesetting and verifying documentation
▶ adding license information

— Installation independence
▶ several developers, different OSes, different installations

— Full automation
▶ as few manual steps as possible



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



What to test? & How to test?

— Typical problems with LATEX code
▶ Many hidden dependencies
▶ Packages that hook into various layers of LATEX
▶ Packages that overlay/replace macros

— Questions
▶ How do you verify correctness of typography (other than

by looking at the .dvi or .pdf)?
▶ How do you verify correctness of interfaces?
▶ How do you avoid generating false positives?

— Approach
▶ Use verified .log files for comparison
▶ Provide commands that add suitable data to the .log file
▶ Provide a mechanism to hide irrelevant details during

comparison



What to test? & How to test?

— Typical problems with LATEX code
▶ Many hidden dependencies
▶ Packages that hook into various layers of LATEX
▶ Packages that overlay/replace macros

— Questions
▶ How do you verify correctness of typography (other than

by looking at the .dvi or .pdf)?
▶ How do you verify correctness of interfaces?
▶ How do you avoid generating false positives?

— Approach
▶ Use verified .log files for comparison
▶ Provide commands that add suitable data to the .log file
▶ Provide a mechanism to hide irrelevant details during

comparison



What to test? & How to test?

— Typical problems with LATEX code
▶ Many hidden dependencies
▶ Packages that hook into various layers of LATEX
▶ Packages that overlay/replace macros

— Questions
▶ How do you verify correctness of typography (other than

by looking at the .dvi or .pdf)?
▶ How do you verify correctness of interfaces?
▶ How do you avoid generating false positives?

— Approach
▶ Use verified .log files for comparison
▶ Provide commands that add suitable data to the .log file
▶ Provide a mechanism to hide irrelevant details during

comparison



Output “relevant” data to the .log

— In general limit output to a suitable minimum
— Use \typeout, \showthe, etc. for “results”
— Avoid using \tracingall or other macro expansion tracing

settings (like \show\somecommand) as this displays internal
implementation details that we should not be concerned
with (normally)

— A few \tracing... parameters may be useful, e.g.,
\tracingparagraphs or \tracingpages

— For typesetting verification try \showlists, \showbox or
\showoutput but be careful that they do not generate too
much output that is difficult to verify

— In some cases you may end up visually verifying the
printed page and then freezing its symbolic representation
via \showoutput or \tracingoutput



.log file cleanup
— A TEX or LATEX .log file receives a lot of irrelevant data

some of which may change from run to run (or from
installation to installation)

— To reduce the “noise” we post-process each .log drop
some lines and modify others

— The commands \START, \END, \OMIT and \TIMO are used in
the source to define the areas in the .log used for
comparison (data outside the regions is dropped)

— Further sanitizing
▶ shortening file path info to avoid differences between

installations
▶ drop empty lines (different web2c implementations put

different amounts in)
▶ drop line numbers in “on line <num>”
▶ …

— …but don’t go too far



Putting it all together
— .lvt are the test files; .tlg the expected test results
— A Makefile supports the various activity goals:

check <name> Without argument picks up all .lvt files, runs
the tests, cleans the logs and compares them to the
tlg files, otherwise runs only tests for <name>

doc Generates all documentation (.dtx etc.) and
verifies that all of them compile successfully

clean Cleans source and temp directories from any
intermediate files

unpack Unpacks sources files e.g., running .ins files
install Installs unpacked files into local TEX tree

ctan Runs all tests and generates a (set of) .zip files

save <name> <engine> Save the current test result for
<name>.lvt as a new .tlg file
(use <name>.lvt-<engine> if engine is given)



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



A Time Line

— ‘80s trip test for TEX
— 1992 validate.tex for LATEX
— 1993 Extensive test files written for verifying LATEX2.09

typesetting results are still valid with LATEX 2ε (close to 300)
— 1994 Makefile system for building and testing the LATEX 2ε

distribution

— 1997 Again looking for volunteers to improve the
regression tests for LATEX 2ε

— not much luck unfortunately
— 2008 Replacing the Makefiles with Perl Cons — Unix only
— 2011 Add .bat files as alternative for Windows

— not really a satisfying solution either
— 2014 Develop new Lua-based system



A Time Line

— ‘80s trip test for TEX
— 1992 validate.tex for LATEX
— 1993 Extensive test files written for verifying LATEX2.09

typesetting results are still valid with LATEX 2ε (close to 300)
— 1994 Makefile system for building and testing the LATEX 2ε

distribution

— 1997 Again looking for volunteers to improve the
regression tests for LATEX 2ε

— not much luck unfortunately

— 2008 Replacing the Makefiles with Perl Cons — Unix only
— 2011 Add .bat files as alternative for Windows

— not really a satisfying solution either
— 2014 Develop new Lua-based system



A Time Line

— ‘80s trip test for TEX
— 1992 validate.tex for LATEX
— 1993 Extensive test files written for verifying LATEX2.09

typesetting results are still valid with LATEX 2ε (close to 300)
— 1994 Makefile system for building and testing the LATEX 2ε

distribution

— 1997 Again looking for volunteers to improve the
regression tests for LATEX 2ε

— not much luck unfortunately
— 2008 Replacing the Makefiles with Perl Cons — Unix only

— 2011 Add .bat files as alternative for Windows
— not really a satisfying solution either

— 2014 Develop new Lua-based system



A Time Line

— ‘80s trip test for TEX
— 1992 validate.tex for LATEX
— 1993 Extensive test files written for verifying LATEX2.09

typesetting results are still valid with LATEX 2ε (close to 300)
— 1994 Makefile system for building and testing the LATEX 2ε

distribution

— 1997 Again looking for volunteers to improve the
regression tests for LATEX 2ε

— not much luck unfortunately
— 2008 Replacing the Makefiles with Perl Cons — Unix only
— 2011 Add .bat files as alternative for Windows

— not really a satisfying solution either

— 2014 Develop new Lua-based system



A Time Line

— ‘80s trip test for TEX
— 1992 validate.tex for LATEX
— 1993 Extensive test files written for verifying LATEX2.09

typesetting results are still valid with LATEX 2ε (close to 300)
— 1994 Makefile system for building and testing the LATEX 2ε

distribution

— 1997 Again looking for volunteers to improve the
regression tests for LATEX 2ε

— not much luck unfortunately
— 2008 Replacing the Makefiles with Perl Cons — Unix only
— 2011 Add .bat files as alternative for Windows

— not really a satisfying solution either
— 2014 Develop new Lua-based system



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



The New Needs

— Support for multiple distributions

▶ core LATEX 2ε and main packages
▶ Babel (which had a different release cycle)
▶ The evolving expl3 language layer for LATEX3
▶ Third-party code

— Support for multiple Operating Systems

▶ Linux / Unix
▶ Windows
▶ MacOS

— Support for multiple “TEX-like” engines

▶ pdfTEX
▶ XƎTEX
▶ LuaTEX



The New Needs

— Support for multiple distributions
▶ core LATEX 2ε and main packages
▶ Babel (which had a different release cycle)
▶ The evolving expl3 language layer for LATEX3
▶ Third-party code

— Support for multiple Operating Systems

▶ Linux / Unix
▶ Windows
▶ MacOS

— Support for multiple “TEX-like” engines

▶ pdfTEX
▶ XƎTEX
▶ LuaTEX



The New Needs

— Support for multiple distributions
▶ core LATEX 2ε and main packages
▶ Babel (which had a different release cycle)
▶ The evolving expl3 language layer for LATEX3
▶ Third-party code

— Support for multiple Operating Systems
▶ Linux / Unix
▶ Windows
▶ MacOS

— Support for multiple “TEX-like” engines

▶ pdfTEX
▶ XƎTEX
▶ LuaTEX



The New Needs

— Support for multiple distributions
▶ core LATEX 2ε and main packages
▶ Babel (which had a different release cycle)
▶ The evolving expl3 language layer for LATEX3
▶ Third-party code

— Support for multiple Operating Systems
▶ Linux / Unix
▶ Windows
▶ MacOS

— Support for multiple “TEX-like” engines
▶ pdfTEX
▶ XƎTEX
▶ LuaTEX



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



Today’s Issues

— Flexibility
▶ Different packages require different setups
▶ Hardwiring structual decisions is a no-go

— Engine output differences
▶ Slight differences in log file data formatting often result in

.tlg differences
▶ Different capabilities result in different output (e.g., extra

nodes in listings)
▶ New engines have bugs that surface

— Register numbers changing
▶ expl3 code additions use up additional registers

invalidating existing .tlg files
▶ Resolution: preallocate registers to allow adjusting for this

without changes to the .tlgs



Today’s Issues

— Flexibility
▶ Different packages require different setups
▶ Hardwiring structual decisions is a no-go

— Engine output differences
▶ Slight differences in log file data formatting often result in

.tlg differences
▶ Different capabilities result in different output (e.g., extra

nodes in listings)
▶ New engines have bugs that surface

— Register numbers changing
▶ expl3 code additions use up additional registers

invalidating existing .tlg files
▶ Resolution: preallocate registers to allow adjusting for this

without changes to the .tlgs



Today’s Issues

— Flexibility
▶ Different packages require different setups
▶ Hardwiring structual decisions is a no-go

— Engine output differences
▶ Slight differences in log file data formatting often result in

.tlg differences
▶ Different capabilities result in different output (e.g., extra

nodes in listings)
▶ New engines have bugs that surface

— Register numbers changing
▶ expl3 code additions use up additional registers

invalidating existing .tlg files
▶ Resolution: preallocate registers to allow adjusting for this

without changes to the .tlgs



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



The New System
— Automation provided for

▶ compilation
▶ testing
▶ generation of documentation
▶ packaging for CTAN

— Support for
▶ managing dependencies
▶ executing all tests in full isolation

— One setup script per module / bundle
▶ available on any modern TEX installation
▶ minimal content if conventions are followed
▶ customization possible as needed

— Extensive documentation of capabilities



The New System
— Automation provided for

▶ compilation
▶ testing
▶ generation of documentation
▶ packaging for CTAN

— Support for
▶ managing dependencies
▶ executing all tests in full isolation

— One setup script per module / bundle
▶ available on any modern TEX installation
▶ minimal content if conventions are followed
▶ customization possible as needed

— Extensive documentation of capabilities



The New System
— Automation provided for

▶ compilation
▶ testing
▶ generation of documentation
▶ packaging for CTAN

— Support for
▶ managing dependencies
▶ executing all tests in full isolation

— One setup script per module / bundle
▶ available on any modern TEX installation
▶ minimal content if conventions are followed
▶ customization possible as needed

— Extensive documentation of capabilities



The New System
— Automation provided for

▶ compilation
▶ testing
▶ generation of documentation
▶ packaging for CTAN

— Support for
▶ managing dependencies
▶ executing all tests in full isolation

— One setup script per module / bundle
▶ available on any modern TEX installation
▶ minimal content if conventions are followed
▶ customization possible as needed

— Extensive documentation of capabilities



Default directory layout
— Individual package (module)

mymodule/
build.lua
support/
testfiles/
source files (.dtx, .ins, etc)

— Bundle
mybundle/

build.lua
mymodule-1/

build.lua
support/
testfiles/
source files (.dtx, .ins, etc)

mymodule-2/
...



Sample build script (breqn)

#! /usr/bin/env texlua

-- Build script for breqn

module = "breqn"

-- variable overwrites (if needed)

unpackfiles = {"*.dtx"}
excludefiles = {"*/breqn-abbr-test.pdf",

"*/eqbreaks.pdf"}
unpackopts = "-interaction=batchmode"

-- call standard script

kpse.set_program_name ("kpsewhich")
dofile (kpse.lookup ("l3build.lua"))



Sample build scripts (bundle))
#! /usr/bin/env texlua

-- Build script for mybundle

bundle = "mybundle"

kpse.set_program_name ("kpsewhich")
dofile (kpse.lookup ("l3build.lua"))

#! /usr/bin/env texlua

-- Build script for mymodule-1

bundle = "mybundle"
module = "mymodule-1"

maindir = ".."

kpse.set_program_name ("kpsewhich")
dofile (kpse.lookup ("l3build.lua"))



Configuration for more complex scenarios
-- Common settings for LaTeX3 development repo, used by l3build script

checkdeps = checkdeps or {maindir .. "/l3kernel",
maindir .. "/l3build"}

typesetdeps = typesetdeps or {maindir .. "/l3kernel"}
unpackdeps = unpackdeps or {maindir .. "/l3kernel"}

cmdchkfiles = {"*.dtx"}
checksuppfiles = {"etex.sty", "lualatexquotejobname.lua", "minimal.cls",

"regression-test.cfg"}
unpacksuppfiles = {"docstrip.tex"}

typesetcmds = "\\AtBeginDocument{\\DisableImplementation}"

... etc ...

Then used in build.lua like this:

dofile (maindir .. "/l3build/l3build-config.lua")
dofile (maindir .. "/l3build/l3build.lua")



Outline

History

The Needs

Approach

A Time Line

The New Needs

Today’s Issues

The New System

Live Demo



Live Demo (comma lists)

— expl3 has a data type for manipuliating “comma lists”
— Offer that as a standalone interface for LATEX 2ε
— Tasks:

▶ write xclists.dtx and xclists.ins
▶ add a simple build.lua
▶ write some test files (.lvt)
▶ use it for testing, documenting, distribution generation


	History
	The Needs
	Approach
	A Time Line
	The New Needs
	Today's Issues
	The New System
	Live Demo

