
Zebrackets: A Score of Years and Delimiters

Zebrackets: A Score of Years and Delimiters

Michael Cohen, Blanca Mancilla, and John Plaice

U.Aizu, Mentel, GrammaTech and UNSW Australia

TUG meeting, July 2016

Zebrackets: A Score of Years and Delimiters

Zebrackets: striated parentheses and brackets

��a �b�c# d" �e�f% g$!
�a �b�c(d' 	e
f* g)&

In expressions with many parentheses and brackets, striations can
be added programmatically to better distinguish matching pairs in
a specified region of a text.

In this example, the delimiters are four times normal size to
accentuate the striations.

Zebrackets: A Score of Years and Delimiters

A bit of history

I TUG 1993: Cohen presented the paper “A pseudo-dynamic
contextually adaptive font.” His implementation used a
combination of Perl, C, and sh.

I 2014: Plaice and Cohen revived this work.

I 2016: Mancilla and Plaice reworked the whole system in
Python to make it more flexible and usable.

Zebrackets: A Score of Years and Delimiters

Another look at our example

��a �b�c# d" �e�f% g$!
�a �b�c(d' 	e
f* g)&

font = cmr size = 10
magnification = 4 style = foreground
encoding = binary index = unique
slots = 5 mixcount = true
origin = 0 direction = topdown

Zebrackets: A Score of Years and Delimiters

Index: unique, depth, or breadth

unique: �a �b �c� d� �e �f� g��

depth: �a �b �c� d� �e �f� g��

breadth: �a �b �c� d� �e �f� g��

encoding = unary style = foreground
magnification = 2 mixcount = true
origin = 0 direction = topdown

Zebrackets: A Score of Years and Delimiters

Style: foreground, background, or hybrid

foreground: �a �b �c� d� �e �f� g��

background: �a �b �c� d� �e �f� g��

hybrid: �a �b �c� d� �e �f� g��

encoding = unary index = unique
magnification = 2 mixcount = true
origin = 0 direction = topdown

Zebrackets: A Score of Years and Delimiters

Encoding: unary, binary, or demux

unary: �a �b �c� d	 �e �f� g�� �h �i �j� k� l	 �m�

binary: �a �b �c
 d	 �e �f� g�� �h �i �j� k� l �m�

demux: �a �b �c
 d	 �e �f� g�� �h �i �j� k
 l	 �m�

index = unique style = foreground
magnification = 2 mixcount = true
origin = 0 direction = topdown

Zebrackets: A Score of Years and Delimiters

Mixcount: true or false

true:

� �a �b �c# d" �e �f% g$!

�a �b �c(d' 	e
f* g)&
false:

� �a �b �c! d! �e �f" g"

�a �b �c$ d# �e �f% g$#

index = unique style = foreground
magnification = 2 encoding = binary
origin = 0 direction = topdown

Zebrackets: A Score of Years and Delimiters

Origin: 0 or 1

0: �a �b �c� d� �e �f� g��

1: �a �b �c� d� �e �f� g��

index = unique style = foreground
magnification = 2 encoding = binary
direction = topdown mixcount = true

Zebrackets: A Score of Years and Delimiters

Direction: topdown or bottomup

topdown: �a �b �c
 d	 �e �f� g�� �h �i �j� k� l �m�

bottomup: �a �b �c
 d� �e �f	 g�� �h �i �j� k� l �m�

index = unique style = foreground
magnification = 2 encoding = binary
origin = 0 mixcount = true

Zebrackets: A Score of Years and Delimiters

Fonts

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

0 � � � � � � � �
� 	
 � � � �

1 � � � � � � � �
� � � � � � � �

python3 zebrackets/zebraFont.py

--kind parenthesis --style foreground

--slots 3 --size 12 --family cmr

--magnification 2

Magnification = n means
(
2

1
2

)n
.

Zebrackets: A Score of Years and Delimiters

Architecture of system

I The user writes a LATEX file with suffix .zbtex.

I In this file, the user makes annotations of the form
\zebracketstext{· · · }, or delimited by
\begin{zebrackets}· · · \end{zebrackets} pairs, with
appropriate parameters.

I These annotations designate regions of text in which
delimiters are to be transformed with striated glyphs.

I This striation is done by explicitly designating which glyph in
a font should be used, or automatically.

I For explicit striation, fonts must be created explicitly using
the \zebracketsfonts command.

Zebrackets: A Score of Years and Delimiters

Automatic striation

I There is a two-pass algorithm over the text in that region.

I Unless the slots and glyphs are specified explicitly, the first
pass computes the number of slots (maximum 7) needed to
striate all of the delimiters in that region of text, Should, in
theory, more slots than 7 be needed, then 7 are chosen, and
the counting for striation purposes wraps through 0 in the
appropriate encoding.

I The second pass generates the transformed text, replacing
delimiters in the text with specific glyphs in the new fonts,
which are generated on-the-fly, as needed.

I All parameters have default values.

Zebrackets: A Score of Years and Delimiters

Conclusions

I User adds annotations in the source file; these are interpreted
by the zebraParser.py script to generate a LATEX file.

I Implementation is slow, because of use of Python, lack of
caching of font information, and redundant error checking.

I Proof of concept is successful, future work requires a grand
vision, probably not based on TEX.

Zebrackets: A Score of Years and Delimiters

��	�

