
TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 1

FreeTypeMFModule2: Integration of
METAFONT, GF, and PK inside FreeType

Jaeyoung Choi, Saima Majeed, Ammar Ul
Hassan and Geunho Jeong

Abstract

METAFONT is the structured font definition that has
the ability to generate variants of different font styles
by changing its parameter values. It doesn’t require
to create a new font file for every distinct font de-
sign. It generates the output fonts such as Generic
Font (GF) and its relevant TeX Font Metric (TFM)
file on demand. These fonts can be utilized on any
size of the resolution devices without creating new
font file according to the preferred size. However,
METAFONT (MF), Generic Fonts (GF), and Packed
Fonts (PK compressed form of GF) cannot be uti-
lized beyond the TeX environment as it requires the
additional conversion overhead. Furthermore, exist-
ing font engine such as FreeType doesn’t support
such fonts.

In this paper, we have proposed a module for
FreeType which not only adds the support of META-
FONT, but also adds the support of GF and PK
font under Linux environment. The proposed mod-
ule automatically perform such conversions without
relying on other libraries. By using the proposed
module, users can generate variants of font styles
(by MF) and use it on the desired resolution devices
(by GF). The proposed font module reduces the cre-
ation time and cost for creating the distinct fonts
styles. Furthermore, it reduces the conversion and
configuration overhead for TeX-oriented fonts.

1 Introduction

In the recent era, development in technology is in-
creasing rapidly. In such environments, there is al-
ways a need of better and reliable medium for com-
munication. Traditionally, fonts were used as means
of communication. A font was collection of small
pieces of metal which has particular size and style of
the typeface. With the enhancement, modern fonts
were introduced which were expected to sum up both
the letter shape as it is presented on the metal and
the ability of the typesetter by providing information
that how to set position and replace the character as
appropriate. Such technique was not reliable as the
concept of pen and paper was considered the slow
and inefficient way of communication. This tradi-
tional technique was replaced by the modern fonts.
A new concept of digital systems aroused where these
modern fonts are utilized which replaced the pen and
paper usage. Therefore, modern font is implemented

as digital data file which contains set of graphically
related characters, symbols or glyphs.

The ability of science and technology to improve
human life is known to us. With the rapid increase in
development of science and technology, world is be-
coming “smart”. People will automatically be served
by smart devices. In such smart devices, digital fonts
are commonly used than analog fonts. As font is
the representation of text in a specific style and size,
therefore, designers can use various font setting to
give meaning to their ideas in text. Text is still con-
sidered the most appropriate and an elective source
to communicate and gather information, respectively.
Although a different styles of digital fonts have been
created but still they do not meet the requirements
of all the users and users cannot alter digital font
styles easily [1]. A perfect application for the satis-
faction of users’ diversified requirements concerning
font styles does not exist [2].

Currently, popular digital fonts, either bitmap
or outline, have limits on changing font style [3].
These limitations are removed by another type of
fonts such as parameterized fonts e.g. METAFONT
which will be discussed later in depth. METAFONT
provides the opportunity to the font designers to
create a different font styles by just changing some of
its parameter values. It generates the TeX-oriented
bitmap font such as Generic Font (GF) and its equiva-
lent TeX Font Metric (TFM) file. However, the usage
of METAFONT directly in the digital environment
is not easy as its specific to TeX oriented environ-
ment and the current font engines, the FreeType
rasterizer doesn’t support the METAFONT, Generic
Font (GF), and Packed Font (PK). In order to use
the METAFONT, GF, and PK font, users have to
specifically convert them into its equivalent outline
font. When METAFONT was created, the hard-
ware of the PCs was not fast enough to perform
the runtime conversion of METAFONT into outline
font. Therefore, users are not able to get advantage
from the METAFONT to get different font styles.
Currently, the hardware which are being utilized
in system are fast enough to perform such conver-
sions on runtime. If such fonts will be supported
by the current font engines, then the workload of
the font designers will be reduced. As the font de-
signers have to create a separate font file for every
distinct style. Such recreation task is time taken
especially in case of designing the CJK (Chinese-
Japanese-Korean) characters due to its complex let-
ters and shape. Therefore, such benefits given by
METAFONT can be applied to the CJK font to pro-
duce high quality font in an efficient manner. Our
previous work, FreeType MF Module[10] have been



? 2 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

accomplished for the direct usage of METAFONT
excluding TeX-based bitmap fonts, inside FreeType
rasterizer. But the work was somehow based on the
external library such as mftrace during the internal
conversion. Therefore, such library has disadvantages
related to the performance and quality. Hence, the
purpose of this research is to present a module inside
the FreeType that will directly use the METAFONT,
GF, and PK font in Linux environment.

In Section 2, the primary objective of this work
is discussed. In Section 3, the METAFONT process-
ing with its compiler/interpreter such as mf program
are explained. In Section 4, the related research re-
garding the conversion of METAFONT is discussed
along with their drawbacks. The implementation
of the proposed module is discussed in Section 5.
The experiments on the proposed module and per-
formance evaluation along with other modules of
FreeType rasterizer is presented in Section 6. Sec-
tion 7, describes the concluding remarks.

2 Objective of the Research

With the enhancement in development and technol-
ogy, typography also get the fame. The primary
focus of this work is to understand the digital fonts,
TeX-oriented bitmap fonts and find out the ways how
to utilize it in Linux environment using the current
font engines. Hence, the objective of this research is:

1. To save time of the designer to study the details
of each font design from scratch and then create
font file for every distinct design

2. To generate variants of different font styles using
parametrized font such as METAFONT

3. To utilize the TeX-based bitmap fonts such as
GF which is specific to TeX environment inside
Freetype font engine

4. To increase the performance by using compact
form of GF such as Packed Font (PK)

5. To set the automatic magnification and resolu-
tion according to the display in case of Generic
Font

3 METAFONT processing with mf
program

METAFONT, a TEX font system, had been intro-
duced by D. E. Knuth [4] is an organized font defi-
nition which allows the font designers to change the
style of font as per their requirements by changing
values of parameters. METAFONT benefits the user
in a way that they don’t need to write the different
font file for every unique style. It is considered as pro-
gramming language which contain lines and curves
drawing guidelines which are later interpreted by

the interpreter/compiler of METAFONT such as mf
program to draw the glyphs into a bitmaps and keep-
ing the bitmaps into a file when done. Mf program
determines the exact shapes by solving mathematical
equations imposed by METAFONT. To process the
METAFONT using mf program, users must have the
knowledge of mf invocations [5]. Figure 1 shows the
proper way of processing the METAFONT using mf
program. It can accept plenty of other commands.
Therefore, in order to get the correct GF file, these
commands are provided e.g. mode, mag, and META-
FONT file to process. The mode command specify
the printed mode, if leave this out the default will
be used such as proof mode where METAFONT will
outputs at a resolution of 2602dpi; this is not usually
required without TFM. The mag command takes
the font resolution in pixels per inch along with the
METAFONT file. In result, mf program generates
the TeX-oriented bitmap font file such as GF, its
relevant Font metric file named: TFM, and log file.

Figure 1: mf invocations

For example, if the device is 600dpi and specify
the magnification 3 along with mode then mf pro-
gram will perform calculations internally and will
generate the output in the form of GF at 1800dpi,
along with its corresponding tfm and log file.

Generic Font (GF) is TeX-oriented bitmap font
generated by the mf program by taking METAFONT
as an input along with other information related to
the output device. GF font files are generated for
each output device with specific scaled sizes. Such
font files contain the character shapes in a bitmap
form. However, the information relevant to the char-
acters shape are stored in the TeX font metric (TFM)
file. To give meaning to the GF font, its correspond-
ing TFM is required as TeX only reads the font
metric file instead of GF. These fonts are utilized
in TeX typesetting systems. To view or print, these
fonts are converted into device-independent (.dvi)
files. Later, DVI drivers are required to interpret the
data given in device independent files as .dvi files



TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 3

cannot be read directly by the TeX. Such conversions
are performed by the utility named; gftodvi. It reads
binary generic font and convert them into device-
independent files. In order to preview, utility named
xdvi is being utilized. As GF files are unreadable,
therefore, such conversions are required in order to
view.

The Packed Font (PK) is bitmap font format
utilized in the TeX typesetting systems. It can be
obtained by compressing the GF font. As GF files are
larger in size, therefore, the size of the PK is half of
their GF counterparts. The content stored in PK files
are same as GF. Such file format is intended to be
easy to read and interpreted by the device drivers. It
reduces the overhead of loading the font on memory.
Due to its compression nature, it reduces the memory
requirements for those drivers that loads and stores
the each font file on memory. They are also easier
to convert into a raster representation. (This also
makes it possible for a driver to skip a particular
character quickly if it knows that the character is
unused).

4 Related Works

4.1 Existing Font Systems

VFlib [6] is a virtual font system that can handle the
variety of font formats e.g. TrueType, Type1, and
TeX-bitmap fonts. It handles the library itself and
the database font file where it defines the implicit
and explicit fonts. Although it supports different
font formats but for some fonts it make use of the
external libraries, as shown in Figure 2. Furthermore,
it doesn’t support the METAFONT but it has the
ability to handle the TeX-bitmap fonts. The font
searching mechanism utilized in VFlib is time con-
suming, if the font doesn’t appear in the database.
Therefore, to handle such fonts, various font drivers
will be called to check whether the requested font can
be opened or not. Hence, such font systems are not
suitable to add the METAFONT support because of
reliance and taking care of database.

Figure 2: VFlib Reliance

An alternative to such font engines is FreeType
[7] font rasterizer. It has the ability to handle dif-
ferent font styles regardless of platform dependency

unlike T1lib [8] font rasterizer. However, it doesn’t
support the TeX-oriented bitmap fonts and META-
FONT. But it provides the intuitive interfaces which
allows the end-users to add the new font module to
enhance the functionality of the engine. Therefore, se-
lection of the FreeType font engine is the best choice
for adding the TeX-oriented bitmap fonts because
it has no dependency and database issues. If there
is a module inside Freetype which will support the
TeX-oriented bitmap fonts such as GF and PK, then,
users can get advantage of such fonts that are only
specific to TeX-environment. No pre-conversion by
utilizing the DVI drivers will be required to preview
TeX-oriented fonts.

4.2 Researches on adding METAFONT
support in existing font systems

As mentioned in Section 4.1, FreeType font engine
provides the capability to add the new font mod-
ule. MFCONFIG [2] added an indirect support of
METAFONT inside FreeType. It provides an intu-
itive way to use METAFONT on Linux environment.
As shown in Figure 3, it allows the users to utilize
the METAFONT but it has some dependency prob-
lem as it is built on high-level font libraries such
as FONTCONFIG [9] and Xft. Due to such de-
pendencies it affects the performance of the module
compared to font driver modules of FreeType. It is
unable to handle the TeX-oriented bitmap fonts such
as GF and PK. Therefore, adding the functionality
of TeX-bitmap fonts is inadequate as it’s not directly
implemented inside Freetype.

FreeType MF Module [10], a METAFONT mod-
ule inside the FreeType font engine resolves the de-
pendency and performance issues which were stimu-
lated in MFCONFIG. Its performance is relatively
faster than MFCONFIG as it is implemented inside
the FreeType. In order to use the METAFONT, it
requires to transform it into outline font. Hence,
FreeType MF Module performs such conversions but
relying on mftrace. Although, it generates a high-
quality output but during conversion font file in-
formation is vanished due to reliance on mftrace.
As shown in Figure 4, when the request of META-
FONT is received by the FreeType, it sends it to
FreeType MF Module. When it comes to its sub-
module named: Transformation Module, it utilizes
mftrace. Mftrace has its own drawbacks. It was
specifically designed for translating METAFONT
fonts to Type1 or TrueType formats by internally
utilizing the autotrace and potrace libraries for vec-
torization purpose. Approximate conversion gives ap-
proximate outline and lost information about nodes
and other control points [11]. Although, it processes



? 4 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

Figure 3: MFCONFIG Internal Architecture

the METAFONT but is unable to process TeX-based
bitmap fonts such as Packed Font (PK) and Generic
Fonts (GF). Therefore, to add a support of GF or
PK inside FreeType MF Module is inconvenient due
to dependency on external library which slower down
the performance of the module.

The proposed FreeType MF Module2 intends to
resolve the problems of FreeType MF Module, and is
able to support TeX-bitmap fonts along with META-
FONT. The module can process METAFONT and
GF independently without relying on external library
e.g. mftrace. It can be easily installed and removed,
as it is implemented just like the default FreeType
driver module. Therefore, METAFONT and TeX-
oriented bitmap fonts can be used as the existing
digital font formats using the proposed module.

5 Implementation of the Module

To use the digital fonts, FreeType is a powerful li-
brary to render the text on screen. It is capable
of producing the high quality glyph images of the
bitmap and outline font formats. When FreeType
receives a request of font from the client application,
it sends the font file to the responsible module driver
for the manipulation. Otherwise, it displays an error
message to the client if the requested font file is not
supported. Similarly, the proposed module is directly
installed inside the FreeType to process the request of
METAFONT and TeX bitmap font such as Generic
Font (GF) and Packed Font (PK). As shown in Fig-
ure 5, when FreeType receives the METAFONT or
GF request it directs into FreeType MF Module2.

5.1 METAFONT (MF) Request

When FreeType sends the METAFONT request to
FreeType MF Module2, its submodule Request An-
alyzer API analyzes the font file. It analyzes that
the requested font file is the exact METAFONT file
or the wrong one by analyzing its style parameters.
After analyzing, it checks whether the requested font
is already manipulated by the font driver or the new
request is arrived via Cache. If the requested font is
found in the Cache, it sends directly to the engine
for manipulation. But if the font is not found in
the Cache, it sends the METAFONT request to the
Conversion Module. After receiving the request, it
utilizes its submodule named: Script Handler. The
core functionality of the module is performed in this
module. It calls the scripting module based on the
request. On METAFONT request, it calls the MF
Script module by passing the METAFONT file.

As shown in Figure 6, MF Script Module calls
its submodule named: Font Style Extractor Module.
It extract the font style parameters from the META-
FONT file. For example, the METAFONT request
given to the module with the italic style, this will
extract the italic style parameters from the META-
FONT file and apply into it. Once it extracts the
font style parameters, its corresponding outline will
be generated with the requested style by utilizing
Vectorization Module. After extracting the charac-
ters outline, it is necessary to remove the redundant
nodes from the characters shapes to make the bet-
ter quality. Therefore, Node Redundancy Analysis
will receive the transformed METAFONT and ana-
lyze the outline contours and remove the redundant
nodes from the font to create the simplified outline.
Once simplification task is done, auto-hinting will be



TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 5

Figure 4: FreeType MF Module Architecture

Figure 5: FreeType MF Module2 Architecture

performed on the font using Hinting Module. After
hinting, the corresponding outline font will be gener-
ated with the Outline Converter module and sends
the outline font file to the module named: Response
API. It updates the Cache with the newly generated
outline font for reusability and high performance.
After updating, FreeType renders this outline font
that was created from the METAFONT with the
requested style parameter values.

5.2 Generic Font (GF) Request

When FreeType sends the GF request to the pro-
posed module, it sends the requested font to the
Request Analyzer API module. It checks whether
the requested GF font is converted with correct use
of mf compiler or not by analyzing the device specific
information. If the requested GF file is not gener-
ated by the correct use of mf compiler, then Request
Analyzer API module will not proceed as it has to



? 6 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

Figure 6: MF Script Internal Architecture

compute file name by using font parameters such as
device resolution and magnification. But if the GF
font is generated by the correct use of mf compiler,
then its TeX font metric file must exist.

On GF request, its TFM must be provided for
internal computation related to character shapes.
Furthermore, TeX only reads the TFM instead of
GF as all the font relevant information is provided
by the TFM. Once Request Analyzer API module
analyzes the GF request, then it checks in the Cache
to get the manipulated font if exist. If requested
font doesn’t exist in the Cache, then the request will
be forwarded to the Conversion Module where its
submodule named: Script Handler handles the GF
request along with its relevant tfm file.As shown in
Figure 7, when GF Script receives the GF file, its
submodule Extractor Module plays the main func-
tionality. Its internal module of Font Info Extractor
extracts the font related information from the TeX
font metric file and extracts a sequence of bitmaps
at a specified resolution from GF file.

After extraction, it merges the extracted infor-
mation and gives meaning to the unreadable gf file in
the form of characters images via Merge Extracted
Info Module. From such bitmap relevant font, it
makes character images. After merging and creating
the vectorize kind of images, it extracts the outline of
the characters via Outline Extractor Module. After
extracting the outline, it sends the extracted out-
lined characters to the Simplify Module, which is
capable of analyzing the font and removes the re-
dundant nodes from the font in order to make the
good quality outline. As a result, it outputs the sim-
plified outline using the Outline Converter module
internally. The newly created outline font is sent to
the Response API, which updates the Cache with

the generated outline font for later reusability. Once
Cache updated, it sends back the response to the
core FreeType module for further processing. Lastly,
FreeType renders this outline font that was made
from the requested GF with the styled parameter
values at a specified resolution.

Figure 7: GF Script Internal Architecture

5.3 Packed Font (PK) Request

On PK font request, FreeType performs the same
functionality till Conversion Module as it performs
in Sections 5.1 and 5.2. Once Script Handler receives
the requested PK font, it utilizes PK Script. As
shown in Figure 8, Extractor Module extracts the
raster information from the packed file. It internally
utilizes the GF Script for extracting the font infor-
mation from the relevant tfm file using it submodule
Font Info Extractor. After extraction, it performs
the autotracing on the merged font via Autotracing
Module, which outputs the character images. Once
done, it sends the transformed output to the Outline
Extractor Module where it obtains the outline of
the characters. After getting the outlined character
images, it performs the outline contour analysis and
remove the nodes redundancy from the outlines us-
ing the submodule named: Outline Contour Analysis
Module. It sends the simplified output to the Outline
Converter which creates the good quality outline font



TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 7

file. The generated outline font file is send to the
Response API which updates the Cache and sends to
the corresponding FreeType module for rendering.

Figure 8: PK Script Internal Architecture

The proposed module provides the direct sup-
port of METAFONT, GF, and PK. It is perfectly
compatible with the default module drivers of the
FreeType. It can manipulate the request with the
desired style parameters and scale size. In result,
it provides the better quality outline font without
utilizing the external libraries.

6 Experiments and Performance
Evaluation

In order to test the proposed module, an application
server is being utilized. The application server is
responsible for rendering the text on the screen by
taking the font file from the FreeType along with
the requested text to be printed. FreeType can only
process those fonts which are supported by it. When
the client application sends the METAFONT, GF, or
PK request to the FreeType, it internally processes
the requested font using the proposed module and
sends the newly generated outline font file along with
the input text to the application server to display it
on screen.

For testing purpose, the METAFONT font Com-
puter Modern is used. The Computer Modern fonts
are examined with the four unique styles: Normal,
Italic, Bold, and Bold+Italic. These styles are gener-
ated by tweaking the METAFONT parameters. In
order to verify the quality of the proposed module
results, authors used the same four styles of another
font family named: FreeSerif. The sample text com-
prises of words and characters, including the space
characters.

The same font family is utilized to test the
FreeType MF Module with the same four font styles.
Changing the parameter values and generating new
styles are explained in [10]. The same concept is ap-
plied on the proposed module for experiments. The
only difference comes in case of GF and PK fonts.
In order to manipulate such fonts, information of
the printer device and font resolutions of the specific
device is required. Furthermore, such TeX-oriented
bitmap fonts cannot be directly viewed on the screen,
it requires DVI drivers which makes proof sheets from
a GF bitmap file where characters from the gf appear
one per page in the form of .dvi file. Therefore, in the
proposed module the GF and PK fonts are directly
manipulated by the module without requiring the
DVI drivers and previewers. It accepts the input text
by the client application and internally calculates
the font resolution in pixels per inch. Afterwards, it
internally processes the GF and PK file as described
in Sections 5.2 and 5.3, and generates the resultant
output with the desired style.

When FreeType sends the METAFONT request
to the proposed module, it internally manipulates
the request by extracting the styled parameters from
the source file. Default style of Computer Modern
METAFONT is generated by extracting the default
parameters. The four font styles such as Normal,
Bold, Italic, and Bold+Italic are generated by the
module, and it generates the similar output in Figure.
9(a), (b), (c), (d). Using one Computer Modern
METAFONT file, user can generate different font
styles based on the desire and requirement.

When FreeType receives the Generic Font re-
quest by the client application server, it sends it
to the proposed module along with the input text,
where it extracts the font related information from
the TFM file and resolution information from the
GF file. After that it internally calculates the font
resolution in pixels per inch by referring to a de-
vice definition. Later, it generates the output on
the resulted font resolution, as similar to as shown
in Figure 9. The default style of Generic Font is
generated by extracting the default style parame-
ters at 1200dpi. The remaining font styles such as
Bold, Italic, and Bold+Italic are generated by the
module at the calculated resolution similar to the
results in Figure 9(b), (c), (d). The GF results dif-
fer slightly due to the variations in resolution than
METAFONT. The authors tested the GF font with
different magnifications at the time of manipulation.

Once GF font is obtained by the METAFONT,
it has a larger size which takes a lot of memory dur-
ing the manipulation. In order to reduce the memory
consumption, it’s converted into packed form using



? 8 draft: May 24, 2019 11:21 TUGboat, Volume 0 (9999), No. 0

(a) Normal Style Packed Font (b) Bold Style Packed Font

(c) Italic Style Packed Font (d) Bold-Italic Style Packed Font

Figure 9: Text printed with Packed Font (PK)

Table 1: Average time of Rendering (in milliseconds)

the utility gftopk. It contains the same information
and style parameters which were utilized at the time
of GF experiment. Therefore, their resultant out-
put only differs at the performance level rather than
quality. The resultant output for the PK request
is similar like GF at the same font resolution. As
shown in Figure 9,font styles such as Normal, Bold,
Italic, and Bold+Italic are generated by the mod-
ule. The authors compared the obtained results with
the FreeType MF Module. Therefore, it is concluded
that the results are quite similar and proposed mod-
ule handles the TeX-oriented bitmaps fonts along
with the METAFONT inside the FreeType without
reliance related to the conversions.

The authors have not only considered the quality
factor of the generated font using the proposed mod-
ule, but also the performance factor. As shown in Ta-
ble 1, the performance of FreeType MF Module is rel-
atively slower on processing the Bold and Bold+Italic
font style of METAFONT. It takes time due to the
dependency on the external library such as mftrace.
Therefore, the proposed module overcomes such per-
formance and dependency issues and added the dual
functionality by integrating the TeX-oriented fonts.
The GF font takes a little more time compared to
PK font but less time than METAFONT font as it
is already in the compiled form. The PK font takes
a less time than METAFONT and GF, as it is the
compressed and compiled form of GF.



TUGboat, Volume 0 (9999), No. 0 draft: May 24, 2019 11:21 ? 9

The proposed FreeType MF Module2 provides
the parameterized font support to the users. The
proposed module doesn’t require the preconversion
before giving it to the FreeType rasterizer. The client
applications which utilizes the FreeType internally
can utilize the METAFONT and TeX-oriented bit-
map fonts such as GF and PK using the proposed
module. Users can utilize such fonts as it utilizes the
TrueType fonts using the FreeType. The proposed
module can be utilized in the FreeType font engine
as a default driver module. The proposed module
will work the same as the other driver modules works
in the FreeType. It is able to support the real time
conversions on a modern Linux environment.

7 Conclusion

In this paper, a module is proposed for the FreeType
font rasterizer which enhanced its functionality by
adding the parameterized and TeX-oriented bitmap
fonts. FreeType supports many different font for-
mats but doesn’t support the fonts which are utilized
only in the TeX environment such as GF and PK. It
is unable to support the parametrized font such as
METAFONT. Although the recent studies provided
a way to utilize the METAFONT inside FreeType,
however, it has the dependency issues which effects
the performance of the module. Furthermore, it can
only handle the METAFONT request. Therefore, the
proposed module overcome these issues and added
the TeX-oriented bitmap support as well. Using the
proposed module, users can use the METAFONT,
GF, and PK fonts without using other drivers for con-
version purpose. Such fonts are specific to the TeX
environment, therefore, using the proposed module
users can utilize these fonts outside the TeX environ-
ment.

Furthermore, the proposed module overcome
the disadvantages of the outline fonts which limits
the users to change the font style using the existing
font file. It requires to create the different font file
for every distinct font style with the different sizes
as well. Therefore, for creating a new font style in
outline fonts for the CJK fonts consumes time and
cost, as these are complicated in shapes as compared
to the alphabet-based fonts. A various studies have
been conducted to implement the CJK fonts, such
as Hongzi[14], including the use of a structural font
generator using METAFONT for Korean and Chi-
nese[15]. It might take a longer time to process CJK
METAFONT fonts, which have complicated shapes
and have more than several thousands of phonemes.
The proposed module optimization and utilization
for the CJK fonts will be considered in future.

References

[1] Donald E. Knuth, S. Song. Development of Ko-
rea Typography Industry, Appreciating Korean
Language, 2013.

[2] Jaeyoung Choi, Sungmin Kim, Hojin Lee, Ge-
unho Jeong, MFCONFIG: METAFONT plug-
in module for Freetype rasterizer TUG 2016
(TUGboat, 2016): 163170.

[3] Y. Park., Current status of Hangeul in 21th
century. Type and Typography magazine The
T, 7th.

[4] Donald E.Knuth, Computers and typesetting.
Volume c: The Metafontbook. TUGboat, 1986.

[5] Web2c: A TeX implementation.
http://tug.org/texinfohtml/web2c.html

[6] H. Kakugawa, M. Nishikimi, N. Taka-
hashi, S. Tomura, and K. Handa. A
general purpose font module for multilin-
gual application programs. Software: Prac-
tice and Experience, 31(15):1487–1508, 2001.
dx.doi.org/10.1002/spe.424

[7] David Turner, Robert Wilhelm, Werner Lem-
berg, FreeType, www.freetype.org.

[8] Rainer Menzner, A library for generat-
ing character bitmaps from Adobe Type
1 fonts. http://www.fifi.org/doc/t1lib-
dev/t1lib doc.pdf.gz

[9] Donald E.Knuth Metafont: The Program.
Addison-Wesley, 1986.K. Packard, Fontconfig,
Gnome User’s and Developers European 2002.

[10] Jaeyoung Choi, Ammar Ul Hassan, Ge-
unho Jeong, FreeType MF Module, 2016.
https://tug.org/tug2018/preprints/choi-
freetype.pdf

[11] Scalable Fonts for MetaFont, mftrace
http://lilypond.org/mftrace/

[12] Autotrace library.
http://lilypond.org/mftrace/

[13] Karel Piska, Creating Type 1 Fonts from
METAFONT Sources, Comparison of Tools,
Techniques and Results, 2004.

[14] Javier Rodr’ıguez Laguna: Hong-Zi: A Chinese
METAFONT, Communications of the TEX
Users Group, TUGboat, Vol 26, No.2 pp.125-
141,2005.

[15] Jaeyoung Choi, Gyeongjae Gwon, Minju Son,
Geunho Jeong, ”Next Generation CJK Font
Technology Using the Metafont”, LetterSeed
15, pp.87-101, Korea Society of Typography,
2017. 6.


	Introduction
	Objective of the Research
	METAFONT processing with mf program
	Related Works
	Existing Font Systems
	Researches on adding METAFONT support in existing font systems

	Implementation of the Module
	METAFONT (MF) Request
	Generic Font (GF) Request
	Packed Font (PK) Request

	Experiments and Performance Evaluation
	Conclusion

