
TUGboat, Volume 0 (1900), No. 0 900

Parsing complex data formats in LuaTeX with
LPEG

Henri Menke

Abstract
Even though it is possible to read external files in
TEX, extracing information from them is rather dif-
ficult. Ad-hoc solutions tend to use nested if state-
ments or regular expressions provided by several
macro packages. However, these quick hacks don’t
scale well and quickly become unmaintainable.
LuaTEX comes to the rescue with its embedded
LPEG library for Lua. LPEG provides a Domain
Specific Embedded Language (DSEL) that allows to
write grammars in a natural way. In this article I
will give a quick introducing to Parsing Expression
Grammars (PEG) and then show how to write sim-
ple parsers in Lua with LPEG. Finally we will build
a JSON parser to demonstrate how easy it is to even
parse complex data formats.

1 Quick introduction to LPEG and Lua
The LPEG library [1] is an implementation of Parsing
Expression Grammars for the Lua language. It pro-
vides a Domain Specific Embedded Language for this
task. Its domain is obviously parsing. It is embed-
ded in Lua using overloading of arithmetic operators
to give it a natural syntax. The language it imple-
ments is PEG. The LPEG library has been included
in LuaTEX since the beginning [2]. The examples in
this article are based on the talk “Using Spirit X3 to
Write Parsers” which was given by Michael Caisse
at CppCon 2015 [3], where the speaker introduces
the Spirit X3 library for C++ to write parsers using
PEG. The Spirit library is not too dissimilar from
LPEG and if you are looking for a parser generator
for C++, I recommend it.

To make sure that we are all on the same page
and the reader can easily understand the syntactic
constructions used throughout this manuscript, we
review some aspects of the Lua language. First of all,
it is to note that all variables are global by default,
whereas local variables have to be preceded by the
local keyword.

local x = 1

Most of the time we want definitions to be scoped
so this pattern will show up very often. Another im-
portant thing to note about the Lua language is that
in contrast to many other programming languages,

functions are first class variables. That means that
when we declare a function, what we actually do is
assign a value of type function to a variable. That
is to say, that these two statements are equivalent.

function f(...) end f = function(...) end

Lua implements only a single complex datastructure,
the table. Tables in Lua act as arrays and key-value
storage at the same time, in fact it is possible to mix
both forms of access within a single instance as in
the following example.

local t = { 11, 22, 33, foo = "bar" }
print(t[2], t["foo"], t.foo) -- 22 bar bar

Note that array indexing in Lua starts at 1. For
tables and strings Lua offers a useful shortcut. When
calling a function with a single literal string or table,
parentheses can be omitted. In the following snippet
the statements on the left are equivalent to the ones
on the right.

f("foo") f"foo"
f({ 11, 22, 33 }) f{ 11, 22, 33 }

Especially when programming with LPEG this short-
cut can save a lot of typing and, when used to it,
makes the code a lot more readable. I will make
extensive use of this technique.

2 Why use PEG?
Before we delve into the inner workings of LPEG, let
me first give some motivation as to why we would
like to build parsers using PEG. Imagine trying to
verify that input has a certain format, e.g. a date
in the form day-month-year: 09-08-2019. One ap-
proach might be to split the input at the hyphens and
verify that each field only contains numbers, which
is simple enough to implement using TEX macro
code. However, the task quickly becomes more com-
plicated when further requirements come into play.
Only because something is made up of three groups
of numbers doesn’t make it a valid date. In situations
like these, regular expressions (regex) sound like a
good solution and in fact, the regex to parse a “valid”
date looks faily innocent.

[0-3][0-9]-[0-1][0-9]-[0-9]{4}

I put “valid” in quotation marks, because obviously
this regex misses several cases, such as different num-
ber of days in different months or leap years. I en-
courage the reader to look up a regular expression
which covers these special cases, to get an impression
as to how quickly regex gets out of hand. To top it
off, neither a pure TEX solution nor regex implemen-



901 TUGboat, Volume 0 (1900), No. 0

tations in TEX are fully expandable which is often
desirable. Maybe they can be made fully expandable
but not without tremendous effort.

3 What is PEG?
The question remains, how does PEG help us here?
Let’s first look at a more or less formal definition of
PEG, adapted from Wikipedia [4]. A parsing expres-
sion grammar consists of:

• A finite set 𝑁 of non-terminal symbols.
• A finite set Σ of terminal symbols that is dis-
joint from 𝑁.

• A finite set 𝑃 of parsing rules.
• An expression 𝑒𝑆 termed the starting expres-
sion.

Each parsing rule in 𝑃 has the form 𝐴 ← 𝑒, where 𝐴
is a nonterminal symbol and 𝑒 is a parsing expression.

To illustrate this, we have a look at the following
imaginary PEG for an email address.

⟨name⟩ ← [𝚊 − 𝚣]+  ("." [𝚊 − 𝚣]+)∗

⟨host⟩ ← [𝚊 − 𝚣]+ "."  ("𝚌𝚘𝚖"/"𝚘𝚛𝚐"/"𝚗𝚎𝚝")
⟨email⟩ ← ⟨name⟩ "@" ⟨host⟩

The symbols in angle brackets are the non-terminal
symbols. The quoted strings and expressions in
square brackets are terminal symbols. The entry
point 𝑒𝑆 is the rule named email (although the entry
point is not specially marked). The present grammar
translates into natural language rather nicely. We
start at the entry point, the email rule. The email
rule tells us that an email is a name, followed by a
literal @, followed by a host. The symbols name and
host are non-terminal, so they can’t be parsed with-
out furhter information so we have to resolve them.
A name is specified as one or more characters in the
range a to z, followed by zero or more groups of a
literal dot, followed by one or more characters a to z.
A host is one or more characters a to z, followed by
a literal dot, followed by one of the literals com, org,
or net. Here the range of characters and the string
literals are terminal symbols, because they can be
parsed from the input without further information.

As a little teaser, we will have a look how the
above grammar translated into LPEG.

local name = R"az"^1 * (P"." * R"az"^1)^0
local host = R"az"^1 * P"."

* (P"com" + P"org" + P"net")
local email = name * P"@" * host

We can already see that there is sort of a mapping to
translate PEG into LPEG, but at first sight it seems
like this translation is almost 1:1. We will learn what
the symbols mean in the next section.

4 Basic parsers
LPEG provides some basic parsers to make our life a
little easier. These map the terminal symbols in the
grammer. Here they are with examples:

• lpeg.P(string) Matches the provided
string exactly. This matches “hello” but not
“world”:

lpeg.P("hello")

• lpeg.P(n) Matches exactly n characters.
To match any single character we could use

lpeg.P(1)

There is a special character which is not
mapped by any encoding which is the end
of input. In LPEG there is a special rule for it:

lpeg.P(-1)

• lpeg.S(string) Matches any character in
string (Set). To match any whitespace we
use:

lpeg.S(" \t\r\n")

• lpeg.R("xy") Matches any character be-
tween x and y (Range). Matching any digit is
done using

lpeg.R("09")

To match any character in the ASCII range we
can combine lowercase and uppercase letters:

lpeg.R("az", "AZ")

It is tedious to constantly type the lpeg. prefix which
is why we omit it from now on. This can be achieved
by assigning the members of the lpeg table to the
corresponding variables.

local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R -- etc.

5 Parsing expressions
By themselves these basic parsers are rather use-
less. The real power of LPEG comes from the ability
to arbitrarily combine parsers. This is achieved by
means of parsing expressions. The available parsing
expressions are listed in table 1. Below I show some
examples where the quoted strings in the comments



TUGboat, Volume 0 (1900), No. 0 902

represent input that is parsed successfully by the
associated parser unless stated otherwise.

Description PEG LPEG
Sequence 𝑒1𝑒2 patt1 * patt2
Ordered choice 𝑒1|𝑒2 patt1 + patt2
Zero or more 𝑒∗ patt^0
One or more 𝑒+ patt^1
Optional 𝑒? patt^-1
And predicate &𝑒 #patt
Not predicate !𝑒 -patt
Difference patt1 - patt2

Table 1 Available parsing expressions in
LPEG with their name and corresponding
symbol in PEG. Note that the difference op-
eration is an extension by LPEG and not
available in PEG.

• Sequence: This implements the “followed by”
operation, i.e. the parser matches only if the
first pattern is followed directly by the second
pattern.

P"pizza" * R"09" -- "pizza4"
P(1) * P":" * R"09" -- "a:9"

•Ordered choice: The ordered choice parses the
first operand first and only if it fails continues
to the next operand. So the ordering is indeed
important.

R"az" + R"09" + R".,;:?!"
-- "a", "9", ";"
-- "+" fails to parse

• Zero or more, one or more, and optional:
These are all captured by the same contruct
in LPEG, the exponentiation operator. A posi-
tive exponent 𝑛 parses at least 𝑛 occurences of
the pattern, a negative exponent −𝑛 parses at
most 𝑛 occurences of the pattern.

R"az"^0 + R"09"^1
-- "z86", "abcde99", "99"
R"az"^1 + R"09"^1
-- "z86", "abcde99"
-- "99" fails to parse
R"az"^-1 + R"09"^1
-- "z86", "99"
-- "abcde99" fails to parse

•And predicate and not predicate: These two
expressions are special in that they don’t con-
sume any input. For the not predicate this is

obvious because it only matches if the parser it
negates does not match.

R"09"^1 * #P";"
-- "86;"
-- "99" fails to parse
P"for" * -(R"az"^1)
-- "for()"
-- "forty" fails to parse

•Difference: The difference expression will
match the first operand only if the second
operand does not match. This can be useful to
match C style comments which collect every-
thing between the first /* and the first */.
However, care must be taken that the second
operand cannot successfully parse parts of the
first operand. If that is the case, the resulting
rule will never match.

P"/*" * (1 - P"*/")^0 * P"*/"
-- "/* comment */"
P"helloworld" - P"hell"
-- will never match!

6 Simple examples
Let us study a simple example which parses two
words separated by a space. The LPEG grammar is
stored in the variable rule. The rest of the example
shows the boilerplate that is necessary.

local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R

local input = "cosmic pizza"

local rule = R"az"^1 * P" " * R"az"^1
print(rule:match(input) .. " of " .. #input)

This will print on the terminal “13 of 12” because all
the input has been consumed and the parser stopped
at the end of input which is the 13th “character” in
this string. As we can see the function rule:match
parses a given input string using a given parser and
returns the number of characters parsed. Another
way to invoke a parse is using lpeg.match(rule,
input), which is equivalent to rule:match(input).

The next example will be slightly more com-
plicated. We will parse a comma-separated list of
colon-separated key-value pairs.

local input = [[foo : bar ,
gorp : smart ,
falcou : "crazy frenchman" ,
name : sam]]

The double square brackets denote one of Lua’s long



903 TUGboat, Volume 0 (1900), No. 0

strings, which can have embedded newlines. The
colons and commas that separate keys and values,
and entries, respectively, are surrounded by white-
space. To match all possible optional whitespace we
use the set parser and the optional expression.

local ws = S" \t\r\n"^0

With this the specification for the key field is simply
one or more letters or digits surrounded by optional
whitespace.

local name = ws * R("az", "AZ", "09")^1 * ws

The value field on the other hand can have either the
same specification as the key field, which does not
allow embedded whitespaces, or it can be a quoted
string, which allows anything between the quotes. To
this end we specify the grammar for a quoted string,
which is simply the double quotes character, followed
by anything that is not double quotes, followed by
double quotes. The whole thing may be surrounded
by optional whitespace.

local quote =
ws * P'"' * (1 - P'"')^0 * P'"' * ws

Therefore an entry in the key-value list is a name,
followed by a colon, followed by either a quote or a
name, followed by at most one comma. The whole
key-value list is of course just any number of entries,
so we apply the zero or more expression to the afore-
mentioned rule.

local keyval =
(name * P":" * (quote + name) * P","^-1)^0

Matching the rule against the input in the same way
as the previous example gives “67 of 66”.

7 Grammars
The literal parser P has a second function. If its argu-
ment is a table, the table is processed as a grammar.
The table has the following layout:

P{"<entry point>",
<non-terminal> = <parsing expression>
...

}

The string “entry point” is the name of the rule to be
processed first. Afterwards the rules are listed in the
same manner as they were assigned to variables in the
previous example. To refer to non-terminal symbols
from within the grammar, the lpeg.V funtion is used.
Collecting the aforementioned rules into a grammar
could look like this:

local rule = P{"keyval",
keyval =
(V"name" * P":" * (V"quote" + V"name")
* P","^-1)^0,

name =
V"ws" * R("az", "AZ", "09")^1 * V"ws",

quote =
V"ws" * P'"' * (1 - P'"')^0 * P'"'
* V"ws",

ws = S" \t\r\n"^0,
}

It becomes a little more verbose because names of
non-terminal symbols have to be wrapped in V"...".
That is why I personally do not normally include
general-purpose rules like the ws rule in the example
into the grammar, because chances are high I want to
use it elsewhere again. The level of verbosity might
seem like a disadvantage but the encapsulation is
much better that way. It also makes it much easier
to define recursive rules, as we will see later.

8 Attributes
In the previous section we have parsed some inputs
and confirmed their vailidity by a successful parse
and we received the length of the parsed input. An
important question remains, how do we extract infor-
mation from the input? When a parse is successful,
the basic parsers synthesize the value they encoun-
tered which I am going to call their attribute. These
attributes can be extracted using LPEG’s capture
operations.

The simplest capture operation is lpeg.C(patt)
which simply returns the match of patt. Here we
parse a strip of only lowercase letters and print the
result.

local rule = C(R"az"^1)
print(rule:match"pizza") -- pizza

Another, very powerful capture is the table cap-
ture lpeg.Ct(patt) which returns a table with all
captures from patt. This allows us to write a very
simple parser for comma separated values (CSV) in
only three lines.

local cell = C((1 - P"," - P"\n")^0)
local row = Ct(cell * (P"," * cell)^0)
local csv = Ct(row * (P"\n" * row)^0)

local t = csv:match[[a,b,c
d,e,f
g,,h]]

The variable t now holds the table representing



TUGboat, Volume 0 (1900), No. 0 904

the CSV file and we can access the elements by
t[<row>][<column>], e.g. to access the “e” in the
middle of the table we can use t[2][2].

There are two more captures which I think are
worth mentioning, the grouping capture and the fold-
ing capture. The grouping capture lpeg.Cg(patt
[, name]) groups the values produced by patt, op-
tionally tagged with name. The grouping capture
is mostly used in conjunction with the folding cap-
ture lpeg.Cf(patt, func) which folds the captures
from patt with the functions func. The most com-
mon application is parsing of key-value lists. The key
and the value are captured independently at first but
are then grouped together. Finally they are folded
together with an empty table capture.

local key = C(R"az"^1)
local val = C(R"09"^1)

local kv = Cg(key * P":" * val) * P","^-1
local kvlist = Cf(Ct"" * kv^0, rawset)

kvlist:match"foo:1,bar:2"

9 Actually useful parsers
Now that we know how to parse input and extract
data, we can go ahead and start constructing parsers
that are acutally useful. We will now construct a
parser for floating point numbers. The parser pre-
sented here has some limitations. It doesn’t handle
an integer part that only contains a sign, i.e. -.1 will
not parse. It also doesn’t handle hexadecimal, octal,
or binary literals. This is left as an exercise to the
reader. To construct a possible grammar for floating
point numbers, let’s take a look at what they look
like.

integer part

+123⏞
fractional part

.45678⏞⏞⏞⏞⏞
⏟⏟⏟⏟⏟⏟⏟⏟⏟

mantissa
e-90⏟
exponent

With that we formulate the first rule in our grammar,
namely

number = (V"int" * V"frac"^-1 * V"exp"^-1)
/ tonumber,

i.e. a number has an integer part, followed by an
optional fractional part, followed by an optional ex-
ponent. The division by number that we see here
is called a semantic action. A semantic action is
applied to the result of the parser ad-hoc. In general
it is a bad idea to use semantic actions, because they

don’t fit into the concept of recursive parsing and
introduce additional state to keep track of. Neverthe-
less there are some cases when semantic actions are
useful, like in this case, where we know that what we
just parsed is a number and we merely convert the
resulting string into Lua’s number type.

Now let’s parse the integer part. Here I show all
the rules that go into it at once.

int = V"sign"^-1 * (R"19" * V"digits"
+ V"digit"),

sign = S"+-",
digit = R"09",
digits = V"digit" * V"digits" + V"digit",

So the integer part is an optional sign, followed by a
number between 1 and 9, followed by more digits or
just a single digit. A sign is of course just the char-
acter + or -. A single digit is just a number between
0 and 9. The digits rule is recursive, because many
digits are either a single digit followed by more digits,
or just that single digit.

Next is the fractional part, which is very easy.
It is just a period followed by digits.

frac = P"." * V"digits",

Last the exponential part, which is also simple.
It is either a lower- or uppercase E, followed by an
optional sign, followed by digits.

exp = S"eE" * V"sign"^-1 * V"digits",

Now let’s check this parser with some test input.
We expect the result to be the same number that we
input and we expect it to be of Lua type number.

local x = number:match("+123.45678e-90")
print(x .. " " .. type(x))

Output: 1.2345678e-88 number
The full code of the number parser is given as

part of the JSON parser in the Appendix in lines
5–14.

10 Complex Data Formats: JSON
JSON is short for JavaScript Object Notation and is
a lightweight data format that is easy to read and
write for both humans and machines. JSON knows
six different data types of which two are collections.
These are null, bool, string, number, array, and
object. This maps nicely to Lua where null maps
to nil, bool maps to boolean, string and number
map to their eponymous counterparts, and array
and object both map to Lua’s table type.

On the top level there is always an object, i.e. a
JSON file looks roughly like this [5]



905 TUGboat, Volume 0 (1900), No. 0

{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New",
"onclick": "CreateNewDoc()"},
{"value": "Open",
"onclick": "OpenDoc()"},
{"value": "Close",
"onclick": "CloseDoc()"}

]
}

}}

Before we begin writing a parser for this, we
introduce a few general purpose parsers first, which
are also not part of the grammar.

local ws = S" \t\n\r"^0

This rule matches zero or more whitespace characters,
where whitespace characters are space, tab, newline
and carrige return.

local lit = function(str)
return ws * P(str) * ws

end

This function returns a rule that matches a literal
string surrounded by optional whitespace. This is
useful to match keywords.

local attr = function(str,attr)
return ws * P(str) / function()

return attr
end * ws

end

This function returns an extension of the previous
rule, in that it matches a literal string and if it
matched returns an attribute using a semantic ac-
tion. This is very useful for parsing a string but
returning something unrelated, e.g. the null value
of JSON will be represented by Lua’s nil.

As mentioned before, at the top level a JSON
file expects an object, so this will be the entry point.

local json = P{"object",

As discussed before JSON supports different kinds
of values, so we want to map these in our parsing
grammar.

value =
V"null_value" +
V"bool_value" +
V"string_value" +
V"number_value" +

V"array" +
V"object",

So a value is any of the value types defined by the
JSON format. That was easy, but now we have to
define what these values are and how to parse them.
We begin with the easiest ones, the null and bool
values:

null_value = attr("null", nil),
bool_value = attr("true", true)

+ attr("false", false),

These two types are defined entirely by keyword
matching. We use the attr function to return a
suitable Lua value. Next we define how to parse
strings:

string_value = ws * P'"'
* C((P'\\"' + 1 - P'"')^0)
* P'"' * ws,

A string may be surrounded by whitespace and is
enclosed in double quotes. Inside the double quotes
we can use any character that is not the double quote,
unless we escape it \". The value of the string with-
out surrounding quotes is captured. To parse number
values, we will reuse the number parser defined in
the previous section

number_value = ws * number * ws,

This concludes the parsing of all the simple datatypes
and we move on to the aggregate types, starting with
the array.

array = lit"["
* Ct((V"value" * lit","^-1)^0)
* lit"]",

An array is simply a comma-separated list of values
that is enclosed in square brackets. The list is cap-
tured as a Lua table. The final and most complicated
type to parse is the object.

member_pair = Cg(V"string_value" * lit":"
* V"value") * lit","^-1,

object = lit"{"
* Cf(Ct"" * V"member_pair"^0, rawset)
* lit"}"

An object is a comma-separated list of key-value pairs
enclosed in curly braces, where a key-value pair is
a string, followed by a colon, followed by a value.
To pack this into a Lua table, we use the grouping
and folding captures that we discussed before. This
concludes the JSON grammar.

}



TUGboat, Volume 0 (1900), No. 0 906

The full code of the parser is given in the Appendix
with a little nicer formatting. Now we can go ahead
an parse JSON files.

local result = json:match(input)

The variable result will hold a Lua table which can
be indexed in a natural way. For example, if we had
parsed the JSON example given in the beginning of
this section, we could use

print(result.menu.popup.menuitem[2].onclick)
-- OpenDoc()

This way we could write configuration files for our
document, parse them on-the-fly when firing up Lua-
TEX, and configure the style and content according
to the specifications.

11 Summary and Outlook
Parsing even complex data formats like JSON is
relatively easy using LPEG. A possible next step
would be to parsing the LuaTEX input file in the
process_input_buffer callback and replace tem-
plates in the file with values from JSON.

References
[1] R. Ierusalimschy, A text pattern-matching

tool based on Parsing Expression Grammars,
Software: Practice and Experience 39(3),
221–258 (2009).

[2] T. Hoekwater, LuaTEX, TUGboat 28(3),
312–313 (2007).

[3] M. Caisse, Using Spirit X3 to Write Parsers,
https://www.youtube.com/watch?v=xSB-
WklPLRvw (2015). (CppCon)

[4] Wikipedia, Parsing expression grammar,
https://en.wikipedia.org/wiki/Parsing_ex-
pression_grammar (online). (Accessed on
July 15, 2019)

[5] D. Crockford, JSON Example, https://json.org/ex-
ample.html (online). (Accessed on July 15,
2019)

Henri Menke
9016 Dunedin
New Zealand
henrimenke@gmail.com



907 TUGboat, Volume 0 (1900), No. 0

12 Appendix: Full code listing of the JSON parser

1 local lpeg = require"lpeg"
2 local C, Cf, Cg, Ct, P, R, S, V =
3 lpeg.C, lpeg.Cf, lpeg.Cg, lpeg.Ct, lpeg.P, lpeg.R, lpeg.S, lpeg.V
4
5 -- number parsing
6 local number = P{"number",
7 number = (V"int" * V"frac"^-1 * V"exp"^-1) / tonumber,
8 int = V"sign"^-1 * (R"19" * V"digits" + V"digit"),
9 sign = S"+-",
10 digit = R"09",
11 digits = V"digit" * V"digits" + V"digit",
12 frac = P"." * V"digits",
13 exp = S"eE" * V"sign"^-1 * V"digits",
14 }
15
16 -- optional whitespace
17 local ws = S" \t\n\r"^0
18
19 -- match a literal string surrounded by whitespace
20 local lit = function(str)
21 return ws * P(str) * ws
22 end
23
24 -- match a literal string and synthesize an attribute
25 local attr = function(str,attr)
26 return ws * P(str) / function() return attr end * ws
27 end
28
29 -- JSON grammar
30 local json = P{
31 "object",
32
33 value =
34 V"null_value" +
35 V"bool_value" +
36 V"string_value" +
37 V"number_value" +
38 V"array" +
39 V"object",
40
41 null_value =
42 attr("null", nil),
43
44 bool_value =
45 attr("true", true) + attr("false", false),
46
47 string_value =
48 ws * P'"' * C((P'\\"' + 1 - P'"')^0) * P'"' * ws,
49
50 number_value =
51 ws * number * ws,
52
53 array =



TUGboat, Volume 0 (1900), No. 0 908

54 lit"[" * Ct((V"value" * lit","^-1)^0) * lit"]",
55
56 member_pair =
57 Cg(V"string_value" * lit":" * V"value") * lit","^-1,
58
59 object =
60 lit"{" * Cf(Ct"" * V"member_pair"^0, rawset) * lit"}"
61 }


