
The Design of the HINT File Format

Martin Ruckert

Abstract

The HINT file format is intended as a replacement
of the DVI or PDF file format for on-screen reading
of TEX output. Its design should therefore meet the
following requirements: reflow of text to fill a win-
dow of variable size, convenient navigating of text
with links in addition to paging forward and back-
ward, efficient rendering on mobile devices, simple
generation from existing TEX input files, and an ex-
act match of traditional TEX output if the window
size matches TeX’s paper size.

This paper describes the key elements of the
design and motivates the design decisions.

Why do we need a new file format?

The first true output file format for TEX was the
DVI format[2]. When PostScript became available,
it was soon supplemented by dvips[7], and now, most
people I know use pdftex to produce TEX output in
PDF format. There are two good reasons for that:
To begin with, the PDF format is a perfect match[4]
for the demands of the TEX typesetting engine, but
first and foremost, the PDF format is in wide spread
use. It enables us to send documents produced with
TEX to practically anybody around the globe and
be sure that the receiver will be able to open the
document and that it will print exactly as intended
by its author (unless a font is neither embedded in
the file nor available on the target device) .

But the main limitation of the PDF format is
its inherent inability to adapt to the given window
size. For reading documents on mobile devices, the
HTML format is a much more convenient format.
Part of the concept of HTML is a separation of con-
tent and presentation: the author prepares the con-
tent, the browser decides on the presentation—at
least in principle. It turns out that designers of web
pages spare no effort to control the presentation,
but often the results are poor. Different browsers
have different ideas about presentation, users’ pref-
erences and operating systems interfere with font
selection, and all that might conflict with the pre-
sentation the author had in mind. When is comes
to eBooks, the popular epub format[3] is derived
from HTML and inherits its advantages as well as
its shortcomings. As a consequence, eBooks when
compared with printed books are often of inferior
quality.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 13 Jul 2019 16:59 901

What is needed, is a document format, that
meets the demands of the TEX typesetting engine
and that gives the author as much control over the
presentation as possible but still can adapt to a given
paper format—be it real or electronic paper. These
two design objectives guided the development of the
HINT file format.

While the TEX typesetting engine, its internal
representation of data, its algorithms, and its de-
bugging output, was the driving force of the devel-
opment of the HINT file format, giving the whole
project its name (the recursive acronym for “HINT

Is Not TEX”), the result is not limited to the TEX
universe. In the contrary, it makes the best parts of
TEX available to all systems that use the HINT file
format.

Faithful Recording of TEX output

At the beginning of the design, the primary necessity
was the ability to faithfully capture the output of the
TEX typesetting engine.

To build pages, TEX adds nodes to the so called
“contribution list”. The content of a HINT file is ba-
sically a list of all these nodes from which a viewer
can reconstruct the contributions and build pages
using TEX’s original algorithms. So with few excep-
tions, TEX nodes are matched one-to-one by HINT

nodes.
Of course, we need characters, ligatures, kerns,

rules, hlists and vlists; and as in TEX, dimensions are
expressed as scaled points. But even a simple and
common construction like \hbox to \hsize {. . . }
requires new types of nodes: a horizontal list that
may contain glue nodes and has a width that de-
pends on \hsize which is not known when the HINT

file is generated. To express dimensions that de-
pend on \hsize and \vsize, HINT uses linear func-
tions w+h ·\hsize+ v ·\vsize, called extended di-
mensions. Linear functions are a good compromise
between expressiveness and simplicity. The com-
putations that most TEX programs perform with
\hsize and \vsize are linear and in the viewer,
where \hsize and \vsize are finally known, ex-
tended dimensions are easily converted to ordinary
dimensions. Necessarily, HINT adopts TEX’s con-
cepts of stretchability, shrinkability, glue, and lead-
ers.

One of the highlights of TEX is its line breaking
algorithm. And because line breaking depends on
\hsize, it must be performed in the viewer. But
wait, an expensive part of line breaking is hyphen-
ation and this can be done without knowledge of
\hsize. So HINT defines a paragraph node, its width

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59



is an extended dimension, and all the words in it con-
tain all possible hyphenation points in the form of
TEX’s discretionary hyphens. To maintain complete
compatibility between TEX and HINT, two types of
hyphenation points had to be introduced: explicit
and automatic. TEX uses a three pass approach for
breaking lines: In the first pass, TEX will not at-
tempt automatic hyphenation and uses only discre-
tionary hyphens that are already provided by the au-
thor. Likewise HINT will use in its first pass only the
explicit hyphenation points. Given the same value
of \hsize, TEX and HINT will produce exactly the
same line breaks. In a paragraph node, HINT also
allows vadjust nodes and a new node type for dis-
played formulas to make sure that the positioning
of displayed equations and their equation numbers
is exactly as in TEX.

The present HINT format has also an experi-
mental image node that can stretch and shrink like
a glue node. Therefore, images stretch or shrink to-
gether with the surrounding glue to fill the enclosing
box. The insertion of images in TEX-documents is
common practice. But TEX treats images as “exten-
sions” that are not standardized. In a final version
of HINT, I expect to have a more general media node.
I think it is better to have a clearly defined, limited
set of media types that is supported in all imple-
mentations than a wide variation of types with only
partial support.

One node type of TEX that is not present in
HINT is the mark node. TEX’s mark nodes contain
token lists, the “machine code” for the TEX inter-
preter, and for reasons explained next, HINT does
not implement token lists.

Efficient and Reliable Rendering

On mobile devices, rendering must be efficient and
files must be self-contained. To meet these goals,
the proper foundation is laid in the design of the file
format.

The most important decision was to ban the
TEX interpreter from the rendering application. A
HINT file is pure data. As a consequence, TEX’s out-
put routines (and with them mark nodes) were re-
placed by a template mechanism. Templates, while
not as powerful as programs, will always terminate
and can be processed efficiently. Whether they offer
sufficient flexibility has to be seen. It is a fact, how-
ever, that only very few users of TEX or LATEX write
their own output routines. So it can be expected
that a collection of good templates will serve most
authors well.

902 preliminary draft, 13 Jul 2019 16:59 TUGboat, Volume 0 (2001), No. 0

The current template mechanism of HINT is still
experimental. It is sufficient to replace the output
routines of plain TEX and LATEX.

HINT files contain all necessary resources, no-
tably fonts and images, making them completely
self-contained. Embedding the fonts will make HINT

files larger—the effect is more pronounced for short
texts and less significant for large books—and it
makes HINT files independent of local resources and
of local character encodings. Indeed, a HINT file does
not encode characters, it encodes glyphs. While
HINT files use the UTF8 encoding scheme, it is pos-
sible to assign arbitrary numbers to the glyphs as
long as the assignment in the font matches the as-
signment in the text. The only reason not to depart
from the standard UTF8 encoding is the ability to
search for user-entered strings.

Zoom and Size Changes

On mobile devices it is quite common to switch
within one application between landscape or por-
trait mode to use the screen space as efficient as
possible. Further, users usually can adjust the size
of displayed content by zooming in or out.

For rendering a HINT file, these operations sim-
ply translate into a change of hsize and vsize,
with consequences for line and page breaking. While
changing line breaks affects only individual para-
graphs, changing a page break has global implica-
tions which makes precomputing page breaks im-
practical. Consequently, the HINT file format must
support rendering either the next page or the previ-
ous page based alone on the top or bottom position
of the current page and this implies that it must
be possible to parse the content of a HINT file in
forward as well as in backward direction.

A HINT file encodes TEX’s contribution list in
its content section. To support bidirectional pars-
ing, each encoding of a node starts with a tag byte
and it ends with the very same tag byte. From the
tag byte, the layout of the encoding can be derived.
So decoding in backward direction is as simple as
decoding in forward direction. Changes in the pa-
rameters of TEX, for example paragraph indentation
or baseline distance, pose another problem for bidi-
rectional parsing. HINT solves this problem by us-
ing a stateless encoding of content. All parameters
are assigned a permanent default value. To specify
these defaults, HINT files have a definition section.
Any content node that needs a deviation from the
default values must specify the new values locally.
To make local changes efficient, nodes in the con-
tent section can reference suitable predefined lists

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59



of parameter values specified again in the definition
section.

Simple and Compact Representation

On the top level, a HINT file is a sequence of sections.
To locate each section in the file, the first section of
a HINT file is the directory section; it’s a sequence of
entries that specify location and size of each section.
The first entry in the directory section, the root en-
try, describes the directory section itself. The HINT

file format supports compressed sections according
to the zlib specification[1]. Using the directory, ac-
cess to any section is possible without reading the
entire file.

The directory section is preceded by a banner
line: It starts with the four byte word hint and the
version number; it ends with a line-feed character.
The directory section is followed by two mandatory
sections: the definition section and the content sec-
tion. All further sections, containing fonts, images,
or any other data, are optional. The size of a section
must be less or equal to 232 byte. This restriction
is strictly necessary only for the content section. It
sets a limit of about 500 000 pages and ensures that
positions inside the content section can be expressed
as 32 bit numbers.

For debugging, the specification of a HINT file
also describes a “long” file format. This long file
format is a pure ASCII format designed to be as
readable as possible. Two programs, stretch and
shrink, convert the short format to the long format
and back, and constitute—as literate programs[5]—
the format specification[8].

Since large parts of a typical content section
contain mostly character sequences, there is a spe-
cial node type, called a text node, optimized for the
representation of plain text. It breaks with two con-
ventions that otherwise are true for any other node:
The content of a text node can not be parsed in
backward direction, and it depends on a state vari-
able, the current font. To mitigate the restriction
to forward parsing, the size of a text node is stored
right before the final tag byte. This enables a parser
to move from the final tag byte directly to the be-
ginning of the text. Since text nodes can not span
multiple paragraphs, they are usually short.

Inside a text, all UTF8 codes in the range 25 + 1
to 220 encode a character in the current font; codes
from 0x00 to 0x20 and 0xF8 to 0xFF are used as con-
trol codes. Some of them are reserved as shorthand
notation for frequent nodes—for example the space
character 0x20 encodes the inter-word-glue—others

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 13 Jul 2019 16:59 903

introduce font changes or mark the start of a node
given in its regular encoding.

The two forms of content encoding, as regular
nodes or inside a text node, introduce a new require-
ment: when decoding starts at a given position, it
must be possible to decide whether to decode a regu-
lar node, an UTF8 code, or a control code. Control
codes have only a limited range and the values of
tag bytes can be chosen to avoid that range. Con-
flicts between UTF8 codes and tag bytes can not be
avoided. Hence positions inside text nodes are re-
stricted to control codes. A position of an arbitrary
character inside a text node can still be encoded be-
cause there is a control code to encode characters
(with a small overhead).

Clear Syntax and Semantics

Today, there are many good formal methods to spec-
ify a file format, and the time when file formats
where implicit in the programs that would read or
write these files seems like ancient history. The spe-
cification of the HINT file format, however, is given
as two literate programs: stretch and shrink. The
first reads a HINT file and translates it to the “long”
format and the second goes the opposite direction
and writes a HINT file.

Of course, these programs use modern means
like regular expressions and grammar rules to de-
scribe input and output and are, to a large extend,
generated from the formal description using lex and
yacc. For this purpose, the cweb system[6] for lit-
erate programming had to be extended to generate
and typeset lex and yacc files. I consider this rep-
resentation an experiment. I tried to combine the
advantages of a formal syntax specification with the
less formal exposition of programs that illustrate the
reading and writing process and can serve as refer-
ence implementations. The programs stretch and
shrink can also be used to verify that HINT files
conform to the format specification.

Specifying semantics is a difficult task and a
formal specification is entirely impossible if the cor-
rectness depends partly on personal taste. Fortu-
nately the new file format is just an “intermediate”
format as part of the TEX universe. So the follow-
ing commutative diagram is an approximation to a
formal specification:

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59



Currently the programs HiTEX and HINTcl men-
tioned in the diagram are still under development.
HiTEX is a modified version of TEX that produces
HINT files as output; HINTcl is a command line pro-
gram, that reproduces TEX’s page descriptions as if
\tracingoutput where enabled. While it does not
actually produce a DVI file, its output can be com-
pared to the page descriptions in TEX’s .log file to
make sure the diagram above would indeed be com-
mutative. The prototypes available so far do not yet
support all the features of TEX or HINT.

Conclusion

The experimental HINT file format proves that file
formats supporting efficient, high quality rendering
of TEX output on electronic paper of variable size
are possible. The upcoming prototypes for a TEX
version (HiTEX) that produces such files and viewer
programs on Windows and Android will provide a
test environment to investigate and improve con-
cepts and performance in practice.

In the long run, I hope that a new standard for
electronic documents will emerge that enjoys wide
spread use, provides the output quality of real books,
is easy to use and powerful enough to encode TEX
output, offers the author maximum control over the
presentation of her or his work, and can cope with
the variations in screen size and screen resolution of
modern mobile devices.

References

[1] P. Deutsch and J.-L. Gailly. Zlib compressed data
format specification version 3.3. Technical report,
RFC Editor, 1996.

[2] David Fuchs. The format of TEX’s DVI files.
TUGboat, 3(2):14–19, October 1982.

[3] EPUB 3 Community Group. epub 3.
http://www.w3.org/publishing/groups/epub3-cg.

[4] Hans Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the Ninth
European TEX Conference, volume 15a of MAPS,
pages 181–196. Elsevier Science, September 1995.

[5] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Center for the Study of
Language and Information, Stanford, CA, 1992.

904 preliminary draft, 13 Jul 2019 16:59 TUGboat, Volume 0 (2001), No. 0

[6] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation. Addison
Wesley, 1994. https://ctan.org/pkg/cweb.

[7] Tom Rokicki. Dvips: A DVI-to-PostScript
translator.

[8] Martin Ruckert. HINT: The File Format. August
2019. ISBN 978-1079481594.

� Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
ruckert (at) cs dot hm dot edu

preliminary draft, 13 Jul 2019 16:59 preliminary draft, 13 Jul 2019 16:59


