TUGboat, Volume 0 (9999), No. 0

The Unreasonable Effectiveness of Pattern
Generation

Petr Sojka and Ondfej Sojka

Abstract

Languages are constantly evolving organisms, and
so are the hyphenation rules and needs. The effec-
tiveness and utility of TEX’s hyphenation have been
proven by its usage in almost all typesetting sys-
tems in use today. The current Czech hyphenation
patterns were generated in 1995 and no hyphenated
word database is freely available.

We have developed a new Czech word database
and have used the patgen program to efficiently
generate new effective Czech hyphenation patterns
and evaluated their generalization qualities. We have
achieved almost full coverage on the training dataset
of 3,000,000 words and validated the patterns on the
testing database of 105,000 words approved by the
Czech Academy of Science linguists.

Our pattern generation case study exemplifies an
effective solution of widespread dictionary problem.
The study has proved the versatility, effectiveness
and extensibility of Liang’s approach to hyphenation
developed for TEX. The unreasonable effectiveness
of pattern technology has lead to applications that
are and will be used even more widely even 40 years
after its inception.

...the best approach appears to be to embrace the
complexity of the domain and address it by harnessing
the power of data: if other humans engage in the
tasks and generate large amounts of unlabeled, noisy
data, new algorithms can be used to build high-quality
models from the data. (Peter Norwig, [7])

1 Introduction

In their famous essays, Wigner [18], Hamming [1]
and Norwig [7] consider mathematics and data-
driven approaches miraculously, unreasonably effec-
tive. One of the very first mathematically founded
approaches that harnessed the power of data was
Franklin Liang’s language-independent solution for
TEX’s hyphenation algorithm [6] and his program
patgen for generation of hyphenation pattern from
a word list.

Dictionary problem The task at hand was the
dictionary problem. A dictionary can be seen as a
database of records; in each record, we distinguish the
key part (the word) and the data part (its division).
Given the already hyphenated word list of a language,
a set of patterns is magically generated. Language
hyphenated patterns are much smaller than original
word list and typically encode almost all hyphenation

901

points in input list without mistakes. Liang’s pattern
approach thus could be viewed as an efficient lossy or
lossless compression of hyphenated dictionary with
several orders of magnitude compression ratio.

It has been proved [14, chapter 2] that optimiza-
tion problem of exact lossless pattern minimization
is non-polynomial by reduction to the minimum set
cover problem.

Generated patterns have minimal length, e.g.,
shortest context possible, which results in their gen-
eralization properties. Patterns could hyphenate
words not seen in the learning phase by analogy: yet
another miracle of the generated patterns.

Pattern preparation During 36 years of patgen,
there were hundreds of hyphenation patterns created,
either by hand or generated by program patgen,
or by the combination of both methods [8]. The
advantage of pattern generation is that one can fine-
tune pattern qualities for specific usage. Having an
open-source and maintained word list adds another
layer of flexibility and usability to the deployment of
patterns. This approach is already set up for German
variants and spellings [5], and was an inspiration for
doing the same for the Czech language.

In this paper, we report on the development
of the new Czech word list with a free license and
complementary sets of hyphenation patterns. We
describe the iterative process of initial word list prepa-
ration, word form collection, estimation of pattern
generation parameters, and novel applications of the
technology.

Hyphenation is neither anarchy nor the sole

province of pedants and pedagogues. Used in
moderation, it can make a printed page more visually
pleasing. If used indiscriminately, it can have the
opposite effect, either putting the reader off or
causing unnecessary distraction. (Major Keary)

2 Initial word list preparation

As a rule of thumb, the development of new big
hyphenated word list starts on small data set first.
The experience and outputs from this initial phase,
e.g., hyphenation patterns, are applied to the bigger
and bigger ones.

Bootstrapping idea As word lists of a well-estab-
lished language are sizeable, and manual creation
of huge hyphenated word list is tedious work, we
used the bootstrapping technique. We illustrate the
process of initial word list preparation by the dia-
gram on Figure 1 on the following page. We have
obtained a hyphenated word list with 105,244 words
from the Czech Academy of Sciences, Institute of

The Unreasonable Effectiveness of Pattern Generation

https://web.archive.org/web/20050310054738/http://www.melbpc.org.au/pcupdate/9100/9112article4.htm

902

cs-lemma-ujc-orig.wl
(105 k hyphenated words)

cs-sojka-cover-opt.par
(levels 1-4)

TUGDboat, Volume 0 (9999), No. 0

czhyphen.pat
(levels 1-4)

(as hyphenator)

patgen

cs-lemma-ujc-[1-4].wlh

(created by patterns from 8 levels)

cs-init-[1-3].par
(levels 5-8)

y
patgen
(as hyphenator)

human + vim
(fixes bad hyphens)

pattmp.8

Figure 1: Life cycle of initial word list preparation, illustrated on the development of
105k Czech consistently hyphenated words. czhyphen.pat represents the original
Czech hyphenation patterns from [15] and cs-sojka-cover-opt.par are correct
optimized patgen parameters from the same paper. cs-init-[1-3].par are custom
parameters that trade off bad hyphens (which have to be manually checked) for
missed hyphens. Information on which hyphenations patgen missed and where it
wrongly put a hyphen is sourced from pattmp.

the Czech Language (UJC). After a closer inspec-
tion, we have discovered many problems with the
data, probably stemming from the fact that it has
been crafted by multiple linguists and over the years.
The few hyphenation rules [2] that are in the Czech
language are not getting applied consistently there.
The borderline cases were typically between syllabic
(ro-zum) and etymological variants (roz-um) of hy-
phenation, or the way how to handle words borrowed
from German or English into Czech.

It is impractical to try and manually find incon-
sistencies and systemic errors, even in a relatively
short word list like this. We slightly modified and
extended the process suggested in [13, page 242]:
We used patgen and the current Czech patterns to
hyphenate the word list and manually checked only
the 25,813 words where the proposed hyphenation
points differed from the official (were bad or missed),
creating new word list cs-lemma-ujc-1.wlh [11] in
the process.

Petr Sojka and Ondiej Sojka

But we are erroneous humans making mistakes.
To find these, we have used patgen to generate the
four additional levels of hyphenation patterns on
top of the current patterns from the checked word
list. We have also adjusted the parameters, see
cs-init-[1-3] .par [11] used for generation of the
four additional levels to trade off bad hyphens (which
have to be manually checked) for missed ones. We
have then used these patterns, with eight levels in
total, to hyphenate the checked word list and manu-
ally rechecked the wrongly hyphenated points (dots
in patgen output), with missed hyphenation point
(implicitly marked as the hyphen sign in hyphenated
word list). We have repeated this process three times,
iterating on cs-lemma-ujc-[2-4].wlh. The word
list number four, referred to as the ’small one’; is
used for generation of bootstrapping patterns and
final pattern validation.

3 Word list preparation and design

Any live language constantly changes, and Czech is
no exception. Many new Czech words now come from

TUGboat, Volume 0 (9999), No. 0

other languages, mostly from English. This presents
a challenge for the patterns; they must not only cor-
rectly hyphenate Czech words according to Czech
syllabic boundaries, but foreign words must be hy-
phenated correctly too, according to their new Czech
syllabic pronunciation. [12] To have the patterns keep
up with language evolution, we must maintain not
only the patterns, but also a hyphenation word list.
In this section, we will detail how we have built such
a word list.

csTenTen corpus We have first obtained a word
list with frequencies, generated from the Czech Web
Corpus of TenTen family (csTenTen) [3]. We then
filtered this word list to include only words that are
present more than ten times in two crawls [17] made
in years 2012 and 2017. We ended up with word
list containing 922,216 words, non-negligible part of
which are misspellings and jargon.

Word list cleanup We have then cleaned this
word list by using the Czech morphological analyzer
majka [10] to remove all words not known to it. We
removed 370,291 typos, misspellings, and similar
atypical lexemes and kept only 551,925 frequently
occurring valid words in the dataset.

Word list expansion The morphological analyzer
majka [10] also allows us to expand words into all
their flexive forms as shown on Figure 2. We chose
not to use the expansion feature of majka because the
word list would grow to 3,779,379 (almost a fourfold
increase) and csTenTen already contains most of the
commonly used forms. It would also distort which
hyphenation patgen gives most weight to. We supply
word frequencies from csTenTen to the word list, so
one can give higher weight to patterns that cover the
most common words, eventually.

We expanded the word list with majka by adding
54,569 base forms of words that were present in the
word list, but not in their base form. This increased
the size to 606,494 words.

abdominalni: abdominélni, abdominélnich, abdom-
inalnitho, abdominalnim, abdominalnima, abdomindlnimi,
abdomindlnimu, neabdominélni, neabdominélnich, neab-
dominalniho, neabdominédlnim, neabdominalnima, neab-
dominalnimi, neabdominalnimu

Figure 2: One lemma, expanded into all its lexemes
by majka.

Sustainability The German wortliste [5] project
served as inspiration for our open word list format,
detailed in the README.md [11].

903

One must regard the hyphen as a blemish to be
avoided wherever possible. (Winston Churchill)

4 Bootstrapping — iterative development
of hyphens in the big word list

It would be very tedious to manually hyphenate
such a big word list by hand, so we train patterns
on the small one and apply them on the big word
list, as illustrated in Figure 3 on the following page.
Then, we train patterns on the (now hyphenated)
big word list and have patgen show what it would
have hyphenated differently. With this approach, we
cherry picks inconsistencies in the word list.

Since the big word list contains not only lemmas
(base forms) of words, but also common inflections,
we use regular expressions to add hyphens around
them and fix inconsistencies. We keep iterating on
this, as shown in Figure 3 on the next page, until
patterns, generated with cs-init-[1-3].par [11],
achieve nearly perfect coverage.

The resulting patterns hyphenate according to
the standard Czech hyphenation rule: hyphenation
is allowed everywhere where it does not change the
pronunciation of the word. Thanks to the effective-
ness of pattern generation, this works not only in
Czech words but also foreign (Latin, French, German,
English) ones.

Hyphens, like cats, are capable of arousing
tenderness or shudders. (Pamela Frankau)

5 Pattern generation

The last Czech hyphenation patterns were generated
in 1995 [15], and are in use not only in TEX but
also in other widespread typesetting systems. For
conservative users there is no strong incentive for
change, because the error rate is relatively low (the
first version of validation set had about 4% error
rate), and coverage is relatively high (the first version
of validation set had around 7% missed hyphenation
points).

Pattern generation from 3,000,000 words doesn’t
take hours as it did two decades ago, but seconds,
even on commodity hardware, which allows for rapid
development of “home-made” patterns.

We have developed a Python wrapper for patgen
that we use in Jupyter notebooks. It allows quick
iteration and easy sharing of results—see Table 1
on page 905 or demo.ipynb [11].1

It has also become common to use a validation
dataset to ensure generalization abilities. Our usage

1 In this preprint version we do not report final Czech
hyphenation patterns yet, because we are still iterating on
the big wordlist. We will include final statistics in the journal
version.

The Unreasonable Effectiveness of Pattern Generation

904

cs-lemma-ujc-4.wlh

patgen
(as pattern generator)

cs-sojka-boot.pat

(105 k correctly hyphenated word lemmata)

cs-all-cstenten. wls
(606 k words with common inflections)

TUGDboat, Volume 0 (9999), No. 0

cs-sojka-boot.par

y

(as hyphenator)

patgen

cs-all-cstenten-[1-n].wlh

A

human + vim + regex
(fixes inflections)

patgen
(as hyphenator)

pattmp.4

Figure 3: How we bootstrapped hyphenation of the big word list by training
patterns (cs-sojka-boot.pat) on the small word list and applying them on the

big one. cs-sojka-boot.par are patgen parameters that are designed to generate
many patterns but still retain their generalization properties. pattmp highlights
which hyphenation points in the source file the new pattern level missed, which were
correctly covered and where they wrongly put a hyphen.

of a validation dataset has proved useful. Table 2
shows that if we were to use the correct optimized
parameters from [16] that have been in use for Czech,
we would overfit the training dataset and perform
worse than their size optimized counterparts.

We believe that the patterns could be devel-
oped and serve as lossless compression of wordlist
dataset, thus maximize the effectiveness of pattern
technology.

Life is the hyphen between matter and spirit.
(Augustus William Hare)

6 The unreasonable effectiveness

We were able to solve the dictionary problem for
Czech hyphenation effectively.

Petr Sojka and Ondiej Sojka

Space effectiveness From 3,000,000+ hyphen-
ated words stored in approximately 30,000,000 bytes
we have produced patterns of size 30,000 bytes,
achieving roughly 1000x space lossless compression.

Time effectiveness Using the trie data structure
for patterns makes the time complexity of accessing
the record related to the word, e.g., hyphenation
point, in very low constant time. The constant is
adequate to the depth of the pattern trie data struc-
ture, e.g., 5 or 6 in the case of Czech. In the case,
the whole pattern trie resides in RAM, the time for
finding the patterns for a word is on the scale of
tens, at most hundreds of single processor instruc-
tions. Word hyphenation throughput is then about
1,000,000 words per second on a modern CPU.

TUGboat, Volume 0 (9999), No. 0

905

Table 1: Outputs from running patgen in our Jupyter notebook with two different
parameter sets. The first parameter set is from the German Trennmuster project [5]
and generates 7,291 patterns, 40 kB. The second one from [16] generates shorter and

smaller patterns —4,774 patterns, 25kB.

Level Patterns Good Bad Missed Lengths Params
1 750 1,683,529 525,670 0 15 111
2 3,178 1,628,874 38 54,655 2 6 121
3 2,548 1,683,528 9,931 1 3 7 111
4 1,382 1,683,287 0 242 4 8 141
5 92 1,683,528 0 1 5 9 111
6 0 1,683,528 0 1 610 161
7 1 1,683,529 0 0 711 141
Level Patterns Good Bad Missed Lengths Params
1 1,608 1,655,968 131,481 27,561 13 151
2 1,662 1,651,840 2,533 31,689 1 3 151
3 2,102 1,683,528 2,584 1 25 131
4 166 1,683,135 6 394 25 131

Table 2: A comparison of validation scores of patterns trained on the big (606 k

words) wordlist with different parameters.

Params Good Bad Missed Size Patterns
correctopt [16] 9941 % 3.47% 0.59 % 25 kB 4,774
german [5] 99.40 % 3.33% 0.60% 40 kB 7,291

Optimality Even though finding exact space and
time-optimal solutions is not feasible, finding an
approximate solution close to optimum is possible.
Heuristics and insight expressed above, together with
Jupyter notebook interactive fine-tuning of patgen
parameter options allows for rapid pattern develop-
ment.

Automation A close-to-optimal solution to the
dictionary problem could be useful not only for Czech
hyphenation, but for all other languages [9, 8], and
more generally, for other instances of the dictionary
problem. Developing heuristics for thresholding of
patgen pattern generation parameters, based on a
statistical analysis of big input, data could allow
the deployment of presented approaches on a much
broader problem set and scale. We believe that
parameters could be automatically approximated
from the statistics of the input data.

Pattern generation —in Wigner terms— “has
proved accurate beyond all reasonable expectations”.
Let us paraphrase another one of his quotes:

The miracle of the appropriateness of the lan-
guage of mathematies patterns for the formula-
tion of the laws of physies data is a wonderful

gift which we neither understand nor deserve.
We should be grateful for it and hope that
it will remain valid in future research and
that it will extend, for better or for worse, to
our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.

“We should stop acting as if our goal is

to author extremely elegant theories, and

instead embrace complexity and make use
of the best ally we have: the unreasonable
effectiveness of data.” (Peter Norvig, [7])

7 Conclusion

We have developed a flexible open language-inde-
pendent system [11] for hyphenation pattern gener-
ation. We have demonstrated the effectiveness of
this system by updating the old Czech hyphenation
patterns [15] and achieving record accuracy. We
have also applied recent data and computer science
advancements, like the usage of interactive Jupyter
notebooks and a validation dataset to prevent over-
fitting, to the more than three decades old problem
of pattern generation.

The Unreasonable Effectiveness of Pattern Generation

906

Future work

Word lists for other languages Logical next
steps will be applying developed techniques for dif-
ferent languages: for Slovak and virtually all that
does not yet have word list based hyphenation pat-
tern generation and word list either in Sketch Engine
or elsewhere are available.

Stratification Pattern generation could be further
speed up by several techniques like stratification of
word list on the level of input or on the level of
counting pros and cons examples to include a new
pattern or not.

Pattern-encoded spellchecker We have a big
dictionary of frequent spelling errors from csTenTen
word list. Nothing prevents us from encoding them
into specific patterns or pattern layers with extra
levels and used that information during typesetting,
e.g., to typeset those words with red underlining in
LuaTEX. LuaTgX allows dynamic pattern loading
and Lua programming that will enable the imple-
mentation of this feature, which people are used to
using in editors.

Pattern-based learnable key memories Solu-
tions to versions of dictionary problem are a hot topic
of leading-edge research to design memory data ar-
chitectures like those used in a machine learning of
language [4]. Pattern-based memory network archi-
tectures could speed up language data access in big
memory neural networks considerably.

Acknowledgements

We owe our gratitude to the whole bunch of people:
to Vit Suchomel of Lexical Computing for word lists
from Sketch Engine, to Pavel Smerk for majka and
paper proofreading, to Don Knuth and Frank Liang
for TEX and patgen, and to Vit Novotny for paper
proofreading.

References

[1] R. W. Hamming. The Unreasonable
Effectiveness of Mathematics. The American

Mathematical Monthly 87(2):81-90, 1980.
http://www.jstor.org/stable/2321982
[2] Internetovd jazykova piirucka (Internet

Language Reference Book). http://prirucka.

ujc.cas.cz/7id=135

[3] M. Jakubicek, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of 7th International
Corpus Linguistics Conference (CL), pp.
125-127, Lancaster, July 2013.

[4] G. Lample, A. Sablayrolles, et al. Large
Memory Layers with Product Keys, 2019.
https://arxiv.org/pdf/1907.05242

Petr Sojka and Ondiej Sojka

TUGboat, Volume 0 (9999), No. 0

[5] W. Lemberg. A database of German
words with hyphenation information.
https://repo.or.cz/wortliste.git

[6] F. M. Liang. Word Hy-phen-a-tion by
Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, Aug.
1983.

[7] F. Pereira, P. Norvig, and A. Halevy. The
Unreasonable Effectiveness of Data. IEEE
Intelligent Systems 24(02):8-12, Mar. 2009.
doi:10.1109/MIS.2009.36

[8] A. Reutenauer and M. Miklavec. TEX
hyphenation patterns. https://www.tug.org/
tex-hyphen/

[9] K. P. Scannell. Hyphenation patterns for
minority languages. TUGboat 24(2):236-239,
2003.

[10] P. Smerk. Fast Morphological Analysis
of Czech. In P. Sojka and A. Horak, eds.,
Proceedings of Recent Advances in Slavonic
Natural Language Processing, RASLAN
2009, pp. 13-16, Karlova Studdnka, Czech
Republic, Dec. 2009. Masaryk University.
http://nlp.fi.muni.cz/raslan/2009/

[11] O. Sojka and P. Sojka. cshyphen repository.
https://github.com/tensojka/cshyphen

[12] P. Sojka. Notes on Compound Word
Hyphenation in TEX. TUGboat 16(3):290-297,
1995.

[13] P. Sojka. Hyphenation on Demand. TUGboat
20(3):241-247, 1999. tug.org/TUGboat/
tb20-3/tb64sojka. pdf.

[14] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. PhD
thesis, Masaryk University, Brno, Jan. 2005.

[15] P. Sojka and P. Sevecek. Hyphenation in
TEX — Quo Vadis? TUGboat 16(3):280-289,
1995.

[16] P. Sojka and P. Sevecek. Hyphenation in
TEX — Quo Vadis? In M. Goossens, ed.,
Proceedings of the TEX Users Group 16th
Annual Meeting, St. Petersburg, 1995, pp.
280289, Portland, Oregon, U.S.A., 1995. TEX
Users Group.

[17] V. Suchomel and J. Pomikélek. Efficient
web crawling for large text corpora. In
A. Kilgarriff and S. Sharoff, eds., Proc. of the
seventh Web as Corpus Workshop (WAC), pp.
39-43, Lyon, 2012. http://sigwac.org.uk/
raw-attachment/wiki/WAC7/wac7-proc.pdf

http://www.jstor.org/stable/2321982
http://prirucka.ujc.cas.cz/?id=135
http://prirucka.ujc.cas.cz/?id=135
https://arxiv.org/pdf/1907.05242
https://repo.or.cz/wortliste.git
http://dx.doi.org/10.1109/MIS.2009.36
https://www.tug.org/tex-hyphen/
https://www.tug.org/tex-hyphen/
http://nlp.fi.muni.cz/raslan/2009/
https://github.com/tensojka/cshyphen
tug.org/TUGboat/tb20-3/tb64sojka.pdf
tug.org/TUGboat/tb20-3/tb64sojka.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf

TUGboat, Volume 0 (9999), No. 0 907

[18] E. P. Wigner. The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.
Richard Courant Lecture in Mathematical
Sciences delivered at New York University,
May 11, 1959. Communications on Pure and
Applied Mathematics 13(1):1-14, 1960.
doi:10.1002/cpa.3160130102

¢ Petr Sojka
The Faculty of Informatics at
Masaryk University
Brno, Czech Republic and CsTUG
sojka (at) fi dot muni dot cz
https://www.fi.muni.cz/usr/
sojka/

¢ Ondrej Sojka
CsTUG
Brno, Czech Republic
ondrej.sojka (at) gmail dot com

The Unreasonable Effectiveness of Pattern Generation

http://dx.doi.org/10.1002/cpa.3160130102

	Introduction
	Initial word list preparation
	Word list preparation and design
	Bootstrapping — iterative development of hyphens in the big word list
	Pattern generation
	The unreasonable effectiveness
	Conclusion

