
TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 1

Quickref: a Stress Test for Texinfo
Didier Verna

Abstract
Quickref is a global documentation project for the
Common Lisp ecosystem. It creates reference manu-
als automatically by introspecting libraries and gen-
erating a corresponding documentation in Texinfo
format. The Texinfo files may subsequently be con-
verted into PDF or HTML. Quickref is non-intrusive:
software developers do not have anything to do to
get their libraries documented by the system.

Quickref may be used to create a local website
documenting your current, partial, working environ-
ment, but it is also able to document the whole
Common Lisp ecosystem at once. The result is a
website containing almost two thousand reference
manuals. Quickref provides a Docker image for an
easy recreation of this website, but a public version
is also available and actively maintained.

Quickref constitutes an enormous and success-
ful stress test for Texinfo. In this paper, we give
an overview of the design and architecture of the
system, describe the challenges and difficulties in
generating valid Texinfo code automatically, and put
some emphasis on the currently remaining problems
and deficiencies.

1 Introduction
Lisp is a high level, general purpose, multi-paradigm
programming language created in 1958 by John Mc-
Carthy[2]. We owe to Lisp many of the programming
concepts that are still considered as fundamental
today (functional programming, garbage collection,
interactive development etc.). Over the years, Lisp
evolved as a family of dialects (including Scheme,
Racket, and Clojure, to name a few) rather than as a
single language. Another Lisp descendant of notable
importance is Common Lisp, a language targeting
the industry, which was standardized in 1994[5].

The Lisp family of languages is mostly known
for two of its most prominent (and correlated) char-
acteristics: a minimalist syntax and a very high level
of expressiveness and extensibility. The root of the
latter, right from the early days, is the fact that
code and data are represented in the same way (a
property known as homoiconicity[3, 1]). This makes
meta-programming not only possible but also trivial.
Being a Lisp, Common Lisp not only maintains this
property, but also provides an unprecedented arsenal
of paradigms making it much more expressive and
extensible than its industrial competitors such as
C++ or Java.

Interestingly enough, the technical strengths of
the language come with serious drawbacks community-
wise (a phenomenon also affecting other dialects,
such as Scheme). These problems are known and
have been discussed many times already[4, 7]. They
may explain, at least partly, why in spite of its tech-
nical potential, the Lisp family of languages never
really took over, and probably never will. The sit-
uation can be summarized as follows: Lisp usually
makes it so easy to “hack” things away that every
Lisper ends up developing his or her own solution,
inevitably leading to a paradox of choice. The result
systematically is a plethora of solutions for every
single problem that every single programmer faces.
Most of the time, these solutions work, but they are
either half-baked or targeted to the author’s specific
needs and thus not general enough, it is difficult to
assert their quality, and they are usually not (well)
documented.

Being aware of the situation, the community
has been attempting to “consolidate” itself in var-
ious ways. Several websites aggregate resources
related to the language or its usage (books, tuto-
rials, implementations, development environments,
applications, etc.). The Common Lisp Foundation
(https://cl-foundation.org/) provides technical
(sometimes even financial) support and infrastructure
for project authors. Once a year, the European Lisp
Symposium (https://www.european-lisp-symposium.
org) gathers the international community, equally
opening to researchers and practitioners, newcomers
and experts.

From a more technical standpoint, solving the
paradox of choice, that is, deciding on official solu-
tions for doing this or that is much more problematic,
mainly because there is no such thing as an official
authority in the community. On the other hand,
some libraries do impose themselves as de facto stan-
dards. Two of them are worth mentioning here. Most
non-trivial Common Lisp packages today use ASDF
for structuring themselves. ASDF allows you to de-
fine your package architecture in terms of source files
and directories, dependencies and other metadata.
It automates the process of compiling and loading
(dependencies included). The second one is Quick-
lisp (https://www.quicklisp.org). Quicklisp is
both a central repository for Common Lisp libraries
(not unlike CTAN) and a programmatic interface for
it. With Quicklisp, downloading, installing, compil-
ing and loading a specific package on your machine
(again, dependencies included) essentially becomes a
one-liner.

One remaining problem is that of documenta-
tion. Of course, it is impossible to force a library

https://cl-foundation.org/
https://www.european-lisp-symposium.org
https://www.european-lisp-symposium.org
https://www.quicklisp.org

? 2 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

(asdf:defsystem :net.didierverna.declt
:long-name "Documentation Extractor from Common Lisp to Texinfo"
:description "A reference manual generator for Common Lisp libraries"
:author "Didier Verna"
:mailto "didier@didierverna.net"
:homepage "http://www.lrde.epita.fr/~didier/software/lisp/"
:source-control "https://github.com/didierverna/declt"
:license "BSD"
...)

Figure 1: ASDF system definition excerpt

author to properly document his or her work. One
could consider writing the manuals they miss for the
third-party libraries they use, but this never happens
in practice. There is still something that we can do to
mitigate the issue, however. Because Common Lisp
is highly reflexive, it is relatively straightforward to
retrieve the information necessary to automatically
create and typeset reference manuals (as opposed to
user manuals). Several such projects exist already
(remember the paradox of choice). In this paper
we present our own, probably the most complete
Common Lisp documentation generator to date.
Enter Quickref…

2 Overview
Quickref is a global documentation project for the
Common Lisp ecosystem. It generates reference man-
uals for libraries available in Quicklisp automatically.
Quickref is non-intrusive, in the sense that software
developers do not have anything to do to get their li-
braries documented by the system: mere availability
in Quicklisp is the only requirement. In this sec-
tion, we provide a general overview of the system’s
features, design, and implementation.

2.1 Features
Quickref may be used to create a local website docu-
menting your current, partial, working environment,
but it is also able to document the whole Quicklisp
world at once, which means that almost two thousand
reference manuals are generated. Creating a local
documentation website can be done in two different
ways: either by using the provided Docker image
(the most convenient solution for an exhaustive web-
site), or directly via the programmatic interface, from
within a running Lisp environment (when only the
documentation for the local, partial, installation is
required). If you don’t want to run Quickref yourself,
a public website is also provided and actively main-
tained at quickref.common-lisp.net. It always
contains the result of a full run of the system on the
latest Quicklisp distribution.

2.2 Documentation Items
Reference manuals generated by Quickref contain
information collected from various sources. First of
all, many libraries provide a README file of some
sort, which can make for a nice introductory chap-
ter. In addition to source files and dependencies,
ASDF offers ways to specify project-related metadata
in the so-called system definition form. Figure 1
illustrates this. Such information can be easily (pro-
grammatically) retrieved and used. Next, Lisp itself
has some built-in support for documentation, in the
form of so-called docstrings. As their name suggests,
docstrings are (optional) documentation strings that
may be attached to various language constructs such
as functions, variables, methods and so on. Figure 3
provides an example. When available, docstrings
greatly contribute to the completeness of reference
manuals, and again, may be retrieved programmati-
cally through a simple standard function call.

(defmacro @defconstant (name &body body)
"Execute BODY within a @defvr {Constant}.

NAME is escaped for Texinfo prior to rendering.
BODY should render on *standard-output*."
`(@defvr "Constant" ,name ,@body))

Figure 3: Common Lisp docstring example

As for the rest, the solution is less straightfor-
ward. We want our reference manuals to advertise
as many software components as possible (functions,
variables, classes, packages etc.). In general there
are two main strategies for collecting that kind of
information.

Code Walking The first one, known as code walk-
ing, consists in statically analyzing the source code.
A code walker is usually at least as complicated as
the syntax of the target language, because it requires
a parser for it. Because of Lisp’s minimalist syn-
tax, using a code walker is a very tempting solution.
On the other hand, Lisp is extremely dynamic in
nature, meaning that many of the final program’s

quickref.common-lisp.net

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 3

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 2: Quickref pipeline (Main thread, External Process)

components may not be directly visible in the source
code. On top of that, programs making syntactic
extensions to the language would not be directly
parsable. In short, it is practically impossible to
collect all the required information by code walking
alone. Therefore, we do not use that approach.
Introspection Our preferred approach is by intro-
spection. Here, the idea is to actually compile and
load the libraries, and then collect the relevant in-
formation by inspecting the memory. As mentioned
before, the high level of reflexivity of Lisp makes
introspection rather straightforward. This approach
is not without its own drawbacks however. First,
actually compiling and loading the libraries requires
that all the necessary (possibly foreign) components
and dependencies are available. This can turn out
to be quite heavy, especially when the two thou-
sand or so Quicklisp libraries are involved. Secondly,
some libraries have platform, system, compiler, or
configuration-specific components that may or may
not be compiled and loaded, depending on the exact
conditions. If such a component is skipped by our
system, we won’t see it and hence we won’t docu-
ment it. We think that the simplicity of the approach
by introspection greatly compensates for the risk of
missing a software component here and there. That
is why introspection is our preferred approach.

2.3 Toolchain
Figure 2 depicts the typical reference manual produc-
tion pipeline used by Quickref , for a library named
foo.
1. Quicklisp is first used to make sure the library is

installed upfront, which results in the presence
of a local directory for that library.

2. Declt (https://www.lrde.epita.fr/~didier/
software/lisp/misc.php#declt) is then run
on that library to generate the documentation.
Declt is another library of ours, written 5 years
before Quickref, but with that kind of applica-
tion in mind right from the start. In particular,
it is for that reason that the documentation
generated by Declt is in Texinfo intermediate
format.

3. The Texinfo file is finally processed into HTML.
Texinfo (https://www.gnu.org/software/texinfo/)
is the GNU official documentation format. There
are three main reasons why this format was cho-
sen when Declt was originally written. First,

it is particularly well suited to technical doc-
umentation. More importantly, it is designed
as an abstract, intermediate format from which
human-readable documentation can in turn be
generated in many different forms (PDF and
HTML notably). Finally, it includes very conve-
nient built-in anchoring, cross-referencing, and
indexing capabilities.
Quickref essentially runs this pipeline on the

required libraries. Some important remarks need to
be made about this process.
1. Because Declt works by introspection, it would

be unreasonable to load almost two thousand
libraries in a single Lisp image. For that reason,
Quickref doesn’t actually run Declt directly, but
instead forks it as an external process.

2. Similarly, makeinfo (texi2any in fact), the pro-
gram used to convert the Texinfo files to HTML,
is an external program written in Perl (with
some parts in C), not a Lisp library. Thus, here
again, we fork a makeinfo process out of the
Quickref Lisp instance in order to run it.

2.4 Performance
Experimental studies have been conducted on the
performance of the system. There are different sce-
narios in which Quickref may run, depending on
the exact number of libraries involved, their current
state, and the level of required “isolation” between
them. All the details are provided in [6], but in short,
there is a compromise to be made between the execu-
tion time and the reliability of the result. We found
that for a complete sequential run of the system on
the totality of Quicklisp, the most frequent scenario
takes around 2 hours on our test machine, whereas
the safest one requires around seven hours.

In order to improve the situation, we recently
added support for parallelism to the system. The
upgraded architecture is depicted in Figure 4. In
this new processing scheme, an adjustable number
of threads is devoted to generating the Texinfo files
in parallel. In a second stage, an also adjustable
number of threads is in charge of picking the Texinfo
files as they come, and creating the corresponding
HTML versions. A specific scheduling algorithm (not
unlike that of the make program) delivers libraries in
an order, and at a time suitable to parallel processing
by the Declt threads, avoiding any concurrency prob-
lems. With this new architecture in place, we were

https://www.lrde.epita.fr/~didier/software/lisp/misc.php#declt
https://www.lrde.epita.fr/~didier/software/lisp/misc.php#declt
https://www.gnu.org/software/texinfo/

? 4 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

Library Pool Declt

Declt

Declt

Texinfo Files Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 4: Quickref parallel processing (Declt thread, Makeinfo thread)

able to cut the processing time by a factor of four,
reducing the worst case scenario to 1h45 and the
most frequent one to half an hour. These numbers
make it reasonable to run Quickref on one’s local
machine again.

3 Challenges
Quickref is a challenging project in many regards.
Two thousand libraries is a lot to process. Setting up
the environment necessary to properly compile and
run those libraries is not trivial, especially because
many of them have platform or system-specific code
and require foreign dependencies. Finally, Quickref
constitutes a considerable (and successful) stress test
for Texinfo. The Texinfo file sizes range from 7Ko to
15Mo (make it double for the generated HTML ones).
The number of lines of Texinfo code in those files
extends from 364 to 285 020, the indexes may contain
between 14 and 44 500 entries, and the processing
times vary from 0.3s to 1m 38s per file.

Challenges related to the project scalability and
performance have been described previously[6]. This
section focuses on more general or typesetting /
Texinfo-oriented ones.

3.1 Metadata Format Underspecification
One difficulty in collecting metadata is that their
format is often underspecified, or not specified at
all, as is the case with ASDF system ones. To give
just a single example, Figure 5 lists several of the
possible values we found for the author metadata.
As you can see, most programmers use strings, but
the actual contents vary greatly (single or multiple
names, email addresses, middle letter, nicknames,
etc.), and so does the formatting. For the anecdote,
we found one attempt at pretty printing the contents
of the string with a history of authors, and one
developer even went as far as concealing his email
address by inserting Lisp code into the string itself…

It would be unreasonable to even just try to
understand all these formats (what others will we
discover in the future?), so we remain somewhat
strict in what we recognize — in that particular case,
strings of the form "author[<email>]", or a list

of such. The Declt user manual has a Guidelines
section with some advice for library authors that
would accept to be friendlier with our tool. We
cannot force anyone to honor our guidelines however.

"Didier Verna"
"Didier Verna <didier@lrde.epita.fr>"
"Didier Verna didier@lrde.epita.fr"
"didier@lrde.epita.fr"
"<didier@lrde.epita.fr>"
"Didier Verna and Antoine Martin"
"Didier Verna, Antoine Martin"
"Didier Verna Antoine Martin"
"D. Verna Antoine E Martin"
"D. Verna Antoine \"Joe Cool\" Martin"
("Didier Verna" "Antoine Martin")
"

Original Authors:
Salvi Péter,
Naganuma Shigeta,
Tada Masashi,
Abe Yusuke,
Jianshi Huang,
Fujii Ryo,
Abe Seika,
Kuroda Hisao

Author Post MSI CLML Contribution:
Mike Maul <maul.mike@gmail.com>"

"(let ((n \"Christoph-Simon Senjak\")) ~
(format nil \"~A <~C~C~C~C~A>\" ~
n (elt n 0) (elt n 10) (elt n 16) ~
#\\@ \"uxul.de\"))"

Figure 5: ASDF author metadata

On the other hand, Quickref has an interesting
social effect that we particularly noticed the first
time the public website was released. In general,
people don’t like our documentation for their work
to look bad, especially when it is publicly available.
In the first few days following the initial release and
announcement of Quickref, we literally got dozens of
reports related to typesetting glitches. Programmers
rushed to the website in order to see what their
library looked like. In the cases were the bugs weren’t
on our part, many of the concerned authors were
hence willing to slightly bend their own coding style,
in order for our documentation to look better. We
still count on that social effect.

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 5

3.2 Definitions Grouping
Rather than just providing a somewhat boring list
of functions, variables, and other definitions, as ref-
erence manuals do, Declt attempts to improve the
presentation in different ways. In particular, it makes
sense to group related definitions together when pos-
sible.

A typical example of this is when we need to
document accessors (readers and writers to the same
information). It makes sense to group these defini-
tions together, provided that their respective doc-
strings are either nonexistent, or exactly the same
(this is one of the incentives given to library authors
in the Declt’s user manual Guidelines section). This
is exemplified in Figure 6. Another typical example
consists in listing methods (in the Object-Oriented
sense) within the corresponding generic function’s
entry.

context-hyperlinksp CONTEXT [Function]
(setf context-hyperlinksp) BOOL CONTEXT [Function]

Access CONTEXT ’s hyperlinksp flag.

Package [net.didierverna.declt], page 29,
Source [doc.lisp], page 24, (file)

Figure 6: Accessors definitions grouping

Texinfo provides convenient macros for defin-
ing usual programming language constructs (@defun,
@defvar, etc.), and “extended” versions for adding
sub-definitions (@defunx, @defvarx, etc.). Unfortu-
nately, definitions grouping prevents us from using
them, for several reasons.
1. Nesting @def... calls would lead to undesirable

indentation.
2. Heterogeneous nesting is prohibited. For exam-

ple, it is not possible use @defvarx within a call
to @defun (as surprising as it may sound, such
kind of heterogeneous grouping makes sense in
Lisp).

On the other hand, that kind of thing is possible
with the lower-level (more generic) macros, as hetero-
geneous categories become simple macro arguments.
One can, for example use the following (which we
frequently do):
@deffn {Function} ...
@deffnx {Compiler Macro} ...
...
@end deffn
This is why we stick to those lower-level macros, at
the expense of re-inventing some of the higher-level
built-in functionality.

Even with this workaround, some remaining
limitations still get in our way.

1. There are only nine canonical categories and it
is not possible to add new ones (at least not
without hacking Texinfo’s internals).

2. Although we understand the technical reasons
for it (parsing problems, probably), some of the
canonical categories are arguable. For example,
the distinction between typed and untyped func-
tions makes little sense in Common Lisp which
has optional static typing. We would prefer
to have a single function definition entry point
handling optional types.

3. Heterogeneous mixing of the lower-level macros
is still prohibited. For example, it remains im-
possible to write the following (still making sense
in Lisp):

@deffn {Function} ...
@defvrx {Symbol Macro} ...
...
@end deffn

3.3 Pretty Printing
Pretty printing is probably the biggest challenge
in typesetting Lisp code, because of the language’s
flexibility. In particular, it is very difficult to find
the right balance between readability and precision.

Identifiers In Lisp, identifiers can be basically
anything. When identifiers contain characters that
are normally not usable (e.g. blanks or parenthesis),
the identifier must be escaped with pipes. In order
to improve the display of such identifiers, we use
several heuristics.
• A symbol containing blank characters is nor-

mally escaped like this: |my identifier|. Be-
cause the escaping syntax doesn’t look very nice
in documentation, we replace blank characters
with more explicit Unicode ones, for instance
my␣identifier. We call this technique “reveal-
ing”. Of course, if one identifier happens to
contain one of our revealing characters already,
the typesetting will be ambiguous. The case
should be extremely rare though.

• In some situations on the other hand, it is ac-
tually better to not reveal the blank characters.
The so-called setf (setter / writer) functions
are such an example. Here, the identifier is in
fact composed of several symbols, such as in
(setf this). Revealing the whitespace charac-
ter would only clutter the output, so we leave it
alone.

• Finally, some unusual identifiers that are nor-
mally escaped in Lisp, such as |argument(s)|,

? 6 draft: August 3, 2019 15:26 TUGboat, Volume 0 (9999), No. 0

do not pose any readability problems in docu-
mentation, so we just typeset them without the
escaping syntax.

Qualification Another issue is that of symbol qual-
ification. With one exception, symbols in Lisp be-
long to a package (more or less the equivalent of
a namespace). Many Lispers use Java-style pack-
age names, which can be quite long. Typesetting a
fully qualified symbol would give something like that:
my.long.package.name:symbol. Lisp libraries usu-
ally come with their own very few packages, so type-
setting a reference manual with thousands of symbols
fully qualified with the same package name would
look pretty bad. Because of that, we avoid typeset-
ting the package names in general. Unfortunately, if
different packages contain eponymous symbols, this
will lead to a confusing output. Currently, we don’t
have a satisfactory answer to this problem.

Docstrings The question of how to typeset doc-
strings is also not trivial. People tend to use varying
degrees of plain-text formatting in them, with all
kinds of line lengths, etc. Currently, we use only a
very basic heuristic to determine whether an end
of line in a docstring is really wanted here, or just
a consequence of reaching the “right margin”. We
are also considering providing an option to simply
display the docstrings verbatim, and on the long
term, we plan to support markup languages such as
Markdown.

References A Texinfo-related problem we have is
that links are displayed differently, depending on the
output format, and with some rather undesirable
DWIM behavior. Table 1 shows the output of a
call to @ref{anchor, , label} in various formats
(anchor is the link’s internal name, label is the
desired output).

HTML label
PDF [label], page 12,
Info *note label: anchor.

Emacs Info mode See label.
Table 1: Texinfo links formatting in various output
formats

In PDF, the presence of the trailing comma
is context-dependent. In Info, both the label and
the actual anchor name are typeset, which is very
problematic for us (see Section 3.4). In Emacs Info
mode, the casing of “See” seems to vary. In general,
we would prefer to have more consistent output across
the different formats, or at least, more control over
it.

3.4 Anchoring
The final Texinfo challenge we want to address here
is that of anchoring. In Texinfo, anchor names have
severe limitations: dots, commas, colons, and paren-
thesis are explicitly forbidden (due to the final dis-
play syntax in Info). This is very unfortunate be-
cause those characters are extremely common in Lisp
(parenthesis of course, but also dots and colons in
the package qualification syntax).

Our original (and still current) solution is to
replace those characters by a sequence such as <dot>.
Of course, this makes anchor names particularly ugly,
but we didn’t think that was a problem because we
have nicer labels to point to them in the output (in
fact, labels have a less limited syntax, although this
is not well documented). However, we later realized
that anchor names still appear in the HTML output
and also in pure Info. Consequently, we are now
considering changing our escaping policy, perhaps by
using Unicode characters as replacements, just like
we already do on identifiers (see Section 3.3).

The second anchoring problem we have is that
of Texinfo nodes, the fundamental document struc-
turing construct. Nodes have two very strong lim-
itations: their names must be unique and there is
no control over the way they are displayed in the
output. This is a serious problem for us because
Lisp has a lot of different namespaces. A symbol
may refer to a variable, a function, a class, and many
other things at the same time. Consequently, if we
were to use one node for each definition, we would
need to mangle the node name in a way that would
make it barely human-readable. Consequently, we
originally decided not to do this, and avoid nodes
as much as possible (somewhat of a paradox, given
the importance of nodes in Texinfo). For example,
our generated reference manuals have just one node
entitled “Exported Functions”, and the library’s API
(perhaps constituted of hundreds of functions) listed
in there, with manual anchors instead of nodes for
every public function.

While this works well for PDFoutput, we later
realized that this makes indexing practically useless
in other formats. In PDF, the indexes point to pages,
which is as specific as it can get on (even virtual)
paper. In formats which don’t have page numbers
however, such as Info and HTML, the indexes point to
the menu entry containing the first node referenced.
Basically, this means for instance that all indexes for
the hundreds of public functions in a library point
to the same location in the HTML reference manual,
which is way too coarse to be usable.

TUGboat, Volume 0 (9999), No. 0 draft: August 3, 2019 15:26 ? 7

Because of that, we are now considering chang-
ing our original policy with respect to nodes, and
get back to associating every definition with one
node, at the expense of having very long and ugly
node names. It is our hope that one day, the node
names uniqueness constraint in Texinfo be relaxed,
perhaps disambiguating by using their hierarchical
organization.

4 Conclusion and Perspectives
Although a relatively young project, Quickref is al-
ready quite successful. It is able to document almost
two thousand Common Lisp libraries without any
showstopper. Less than 2% of the Quicklisp libraries
still pose problems and some of the related bugs
have already been identified. The Common Lisp
community seems generally grateful for this project.

Quickref also constitutes an enormous, and suc-
cessful, stress test for Texinfo. Given the figures
involved, it was not obvious how makeinfo would
handle the workload, but it turned out to be very
reliable and scalable. Although the design of Texinfo
sometimes gets in our way, we still consider it a good
choice for this project, in particular given the diver-
sity of its output formats and its built-in indexing
capabilities.

In addition to solving the problems described
in this paper, the project also has much room for
improvement left. In particular, the following are at
the top level of our TODO list.
1. The casing problem needs to be addressed. Tra-

ditional Lisp is case-insensitive but internally
upcases every symbol name (except for escaped
ones). Several modern Lisps offer alternative
policies with respect to casing. Quickref doesn’t
currently address casing problems at all (not
even that of escaped symbols).

2. Our indexing policy could be improved. Cur-
rently, we only use the built-in Texinfo indexes
(Functions, Variables, etc.) but we also provide
one level of sub-indexing. For instance, macros
appear in the function index, but they are listed
twice: once as top level entries, and once under
a Macro sub-category. The question of which
amount of sub-indexing we want, and whether
to create and use new kinds of indexes is under
consideration.

3. Although our reference manuals are already
stuffed with cross-references, we plan to add
more. Because Declt was originally designed to
generate one reference manual at a time, only
internal cross-references are available. The exis-
tence of Quickref now raises the need for exter-

nal cross-references (that is, between different
manuals).

4. Many aspects of the pretty printing could still be
improved, notably that of so-called “unreadable”
objects and lambda lists.

5. In addition to HTML, we plan to provide PDF
as well as Info files on the website, since they
are readily available.

6. We intend to integrate Quickref with Emacs
and Slime (a de facto standard Emacs-based
development environment for Common Lisp).
In particular, we want to give Emacs the abil-
ity to browse the Info reference manuals online
or locally if possible, and provide Slime with
commands for opening the Quickref documenta-
tion directly from Lisp source code displayed in
Emacs buffers.

7. Finally, we are working on providing new in-
dex pages for the website. Currently, we have a
library index and an author index. We are work-
ing on providing keyword and category indexes
as well.

References
[1] A. C. Kay. The Reactive Engine. PhD thesis,

University of Utah, 1969.
[2] J. MacCarthy. Recursive functions of symbolic

expressions and their computation by machine,
part i. Communications of the ACM 3(4):184–195,
Apr. 1960.
doi:10.1145/367177.367199

[3] M. D. McIlroy. Macro instruction extensions of
compiler languages. Communications of the ACM
3:214–220, Apr. 1960.
doi:10.1145/367177.367223

[4] M. Tarver. http://www.marktarver.com/
bipolar.html, 2007.

[5] Ansi. American National Standard: Pro-
gramming Language – Common Lisp. ANSI
X3.226:1994 (R1999), 1994.

[6] D. Verna. Parallelizing quickref. In 12th European
Lisp Symposium, pp. 89–96, Genova, Italy, Apr.
2019.
doi:10.5281/zenodo.2632534

[7] R. Winestock. The Lisp curse. http:
//www.winestockwebdesign.com/Essays/
Lisp_Curse.html, Apr. 2011.

� Didier Verna
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre
France
didier (at) lrde.epita.fr
http://www.didierverna.info

http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/367177.367223
http://www.marktarver.com/bipolar.html
http://www.marktarver.com/bipolar.html
http://dx.doi.org/10.5281/zenodo.2632534
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html

	Introduction
	Overview
	Features
	Documentation Items
	Toolchain
	Performance

	Challenges
	Metadata Format Underspecification
	Definitions Grouping
	Pretty Printing
	Anchoring

	Conclusion and Perspectives

