
TUGboat, Volume 0 (9999), No. 0 draft: July 11, 2020 14:23 ? 1

LaTeX-on-HTTP: commoditize LATEX as a
cloud service for application developers

Yoan Tournade

Abstract

Although LATEX is widely used in academia and ed-
ucation, only a few developers use it to edit PDFs
in web applications or IT systems. This is strange
when we think that lot of developers are well exposed
to these academic and scientific milieux — and that
many recognize LATEX for its superior typesetting
qualities.

In this paper, we try to answer two questions:

• Why LATEX use in IT systems is not widespread —
and not even common?

• How can we change this state of affairs?

We give an overview of LaTeX-on-HTTP, a ten-
tative to commidize LATEX use in web applications
or IT systems, and to ease its adoption by modern
developers.

1 Introduction

LATEX has its indisputable niches, like acamedic and
scientific publications. It is more and more used and
accessible for the layman computer user to complete
various edition chores, thanks to web projects like
Overleaf. It has also become a reference for résumé
creation for technical professionals.

Isn’t that strange then that one of the popula-
tion the most exposed to LATEX and the most likely
to credit its greatness, the computer engineers, do not
use — and maybe do not even think to use — LATEX
in the applications they develop.

Currently a modern application developer that
need PDF edition for a project will found many solu-
tions by searching the web:

1. HTML/CSS to PDF converters;

2. instruction-based PDF generators;

3. headless calls to browser or office softwares.

Browsing a couple of Stack Overflow entries will give
our developer a ready to be copy-pasted first working
code sample, in its language of interest. LATEX will
no appear in the results; and will most certainly not
pop up in our developer mind as an eligible tool.

While all these solutions provide decent results,
we argue they are far off the typesetting quality
attainable by LATEX.

We can legitimate the prevalence of the first class
of solutions by the opportunity to leverage existing
HTML and CSS code, but this can’t explain why
LATEX would be virtually absent from the common
set of solutions.

2 Why LATEX hasn’t permeated modern
applications for PDF edition?

We explain this state of affairs from three facets:
techniques, customs and knowledges.

2.1 Technical barriers: the not so
accessible LATEX runtime

It is rather easy to install a LATEX distribution on a
personal computer. Modern services like CoCalc or
Overleaf have even removed this need and drastricaly
reduced the time required to first interact with LATEX,
providing convenience. Tools like MathJax or LaTeX
Base have even demonstrated that LATEX can be run
in a browser.

However the requirements of an application de-
veloper are different: he wants indeed convenience,
but more importantly he needs reproducibility and
scaling — and he certainly does not want to battle
with its infrastructure team to explain why it would
be pertinent to add many hundred of megabytes of
complex runtime requirements to generate PDFs in
their application servers.

When the developer has only several hours, or at
best days, to automate PDF edition, it will shy away
by the complexities of adding the LATEX runtime
in his application, and go for the safer and more
recognized solutions.

2.2 Cultural glass walls: mental buckets of
typical uses

Many developers, coming or having been exposed to
acamedic and scientific milieux, know of LATEX and
recognize its typesetting superiority. They are the
people who could shame one of their mates for not
using LATEX in their latest technical publication.

Nevertheless for them LATEX is in a mental
bucket that does not permeate with their web ap-
plication developments or IT system integrations
activities.

More than not, they will not even think about
LATEX for editing a PDF document in their applica-
tion: a glass wall of customs is erected between their
need and the LATEX solution.

2.3 Imperfect knowledge bases: learning
by copying

Even if our developer thought about LATEX as a
prospective solution, how could it learn about its
implementation?

As a developer, we do not try to reinvent the
wheel at each task given to us. We search and we
found shared knowledge about recommended tool
usage and common patterns. Basically, we use the

http://github.com/YtoTech/latex-on-http

? 2 draft: July 11, 2020 14:23 TUGboat, Volume 0 (9999), No. 0

more readily available and copy-pasteable code sam-
ples for our need; and tweak our custom solution
from there.

Of course our developer could easily find a proper
LATEX template to start from for his PDF applica-
tion — there are great resources on the web for that.
But then? Our developer will need the code to com-
pile their LATEX template to a PDF— and that, they
will not find on the web. Compile a LATEX document
on my computer or on the web? Easy. Compile
a LATEX template from a web application — beeing
from a server or from any browser — in a couple of
line of codes and without adding potentially prob-
lematic requirements? Not so easy.

Few pertinents examples will lead our developer
to a way to implement LATEX in his application. If he
has the time to be curious and is up for a challenge,
he will for sure find a path. This is especially so
in the niches where the needs for very high-quality
or specialized document edition will justify the cost
of bringing LATEX in the infrastructure. But this is
not the typical case which interest us: the common
modern web developer that at first just wants a
rather simple PDF document in his application.

3 Introducing LaTeX-on-HTTP

The need to create LaTeX-on-HTTP has first emerged
when I first converted my quotes-and-invoices con-
sulting templates to LATEX. I was really glad of the
result, which included some basic automation, but
I wanted the other members of the team to be able
to edit these PDF documents — without having to
install several hundred of megabytes of additional
software, or to require support to explain why the
system complained about a missing CTAN package
(which is all very foreign for anyone not introduced
to LATEX, and should not be required to compile a
fixed template).

Thus the basic requirements for LaTeX-on-HTTP

were rather simple: take the TEX Live runtimes, put
them on a server, add an HTTP-based API between
the user and the server so we can pass the files to
be compiled. Voilà — now my team just need an in-
ternet access to generate their PDF documents, and
they may not even know that they use LATEX.

3.1 HTTP: the web lingua franca

The HTTP API is the important part here; it gives
us several researched properties:

• as HTTP is ubiquitous in modern applications,
the service is accessible from most of the techni-
cal stacks (no more need for complex runtime
requirements, a simple HTTP client suffice);

• the verb of HTTP is very familiar to developers;

• it advertises the solution as intended for automa-
tion and integrations.

3.2 Hello world: normalizing a compilation
job

Let’s now present some of the intricaties of the actual
implementation by looking at a simple example.

The following JSON code is sent in a POST

HTTP request to the /builds/sync endpoint, which
will return in response a PDF file (when the compi-
lation succeed):

{

"compiler": "lualatex",

"resources": [

{

"main": true,

"content": "\\documentclass{article}

\n \\usepackage{graphicx}\n

\\begin{document}\n Hello World\\\\ \n

\\includegraphics[height=2cm]{logo.png}

\n \\end{document}"

},

{

"path": "logo.png",

"url": "https://www.ytotech.com/static/

images/ytotech_logo.png"

}

]

}

You can try a similar example on the com-
mand line of your computer by using curl; a snip-
pet is available on the project page: github.com/

YtoTech/latex-on-http.
As you can observe, we pass two main things to

the LaTeX-on-HTTP server:

• a set of resources — or source files — to be com-
piled;

• the engine selected — and other potential op-
tions — to control the compilation environment.

You can also remark that we can provite differ-
ent means to transfer resources to be compiled: by
passing the string content directly, by providing an
URL pointing to a file — we can imagine and provite
several other ways, for convenience and different use
cases.

This tentative to normalize a LATEX compilation
job input is important for ensuring the reproducibil-
ity of the process.

3.3 Real-life example: editing a letter

A developer can take this API to construct a real-life
exemple. Let’s say our developer wants to edit a
personal letter from the bank IT system, notitying
customer of their account opening. Assuming Python
is used, the process could look like the following code:

https://github.com/YtoTech/latex-on-http
https://github.com/YtoTech/latex-on-http

TUGboat, Volume 0 (9999), No. 0 draft: July 11, 2020 14:23 ? 3

Open and read the template LaTeX file.

with open("opening-letter-template.tex") as f:

t_str = f.read()

Replace the dynamic content.

t_str = t_str.replace(

"$letter-title$", "Your account...")

t_str = t_str.replace(

"$letter-body$", "Dear Mr...")

Generate the PDF file,

using an HTTP client (requests).

r= requests.post(

"https://latex.ytotech.com/builds/sync",

json={

"compiler": "pdflatex",

"resources: [

{

"main": true,

"content": t_str

}

]

}

)

Do something with output PDF file.

with open("opening-letter.pdf", "wb") as f:

f.write(r.content)

The templating could have been done with LATEX
tools, but it is just easier and faster for our developer
to interpolate the dynamic content in his native
language.

From that simple base example, our developer
can easily inject his application data in the letter to
be edited; and he can takes the resulting generated
PDF to return it in a web page, in his own application
API or store it in a storage system.

4 Conclusion

By reducing the runtime requirement to use LATEX
to a familiar HTTP API, we remove maybe the main
friction preventing developers to adopt LATEX in their
applications for PDF document edition.

To bolster the prospective success of the solution,
we must now engage in a process to document and to
publicize this usage of LATEX in web applications and
IT systems — and hope we’ll see better typesetted
documents in our daily applications in the future as
a result.

� Yoan Tournade
Soubeyrac
Le Laussou, 47150
France
y (at) yoantournade dot com

https://yoantournade.com

	Introduction
	Why LaTeX hasn't permeated modern applications for PDF edition?
	Technical barriers: the not so accessible LaTeX runtime
	Cultural glass walls: mental buckets of typical uses
	Imperfect knowledge bases: learning by copying

	Introducing LaTeX-on-HTTP
	HTTP: the web lingua franca
	Hello world: normalizing a compilation job
	Real-life example: editing a letter

	Conclusion

