Symmetry in the Coplanarity Condition

We can rewrite the triple product without difficulty using

Noting that $\AA^{*}=-\AA$ and $\dot{\mathrm{r}}^{*}=-\stackrel{\circ}{\mathrm{r}}$, since $\stackrel{\circ}{\mathrm{r}}$ and \AA are quaternions with zero scalar parts, we first obtain

$$
\begin{equation*}
t=\stackrel{\circ}{\mathrm{r} q} \cdot \mathrm{O} \mathrm{Q} \ell \tag{2}
\end{equation*}
$$

We then find by expanding the dot-product for t in terms of the scalar and vector components of $\dot{\mathrm{q}}=(q, \mathbf{q})$ and $\dot{\mathrm{d}}=(d, \mathbf{d})$:

$$
\begin{equation*}
(\mathbf{d} \cdot \mathbf{r})(\mathbf{q} \cdot \boldsymbol{\ell})+(\mathbf{q} \cdot \mathbf{r})(\mathbf{d} \cdot \boldsymbol{\ell})+(d q-\mathbf{d} \cdot \mathbf{q})(\boldsymbol{\ell} \cdot \mathbf{r})+d[\mathbf{r} \mathbf{q} \boldsymbol{\ell}]+q[\mathbf{r} \mathbf{d} \boldsymbol{\ell}] . \tag{3}
\end{equation*}
$$

While

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{S}}=\sum_{i=1}^{n} w_{i} e_{i}\left(\stackrel{\mathrm{r}}{i}^{\circ} \mathrm{d} \dot{\ell}_{i}^{*}\right) \quad \text { and } \quad \stackrel{\circ}{\mathrm{t}}=\sum_{i=1}^{n} w_{i} e_{i}\left(\stackrel{\circ}{\mathrm{r}}_{i}^{*}{ }_{\mathrm{q}}^{\mathrm{\ell}} \dot{\ell}_{i}\right) . \tag{4}
\end{equation*}
$$

We also still have the three equations

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{q}} \cdot \delta \stackrel{\circ}{\mathrm{q}}=0, \quad \stackrel{\circ}{\mathrm{~d} \cdot} \cdot \delta \stackrel{\circ}{\mathrm{~d}}=0, \quad \text { and } \quad \stackrel{\circ}{\mathrm{q}} \cdot \delta \mathrm{\circ} \mathrm{~d}+\stackrel{\circ}{\mathrm{d}} \cdot \delta \stackrel{\circ}{\mathrm{q}}=0, \tag{5}
\end{equation*}
$$

all of which we can shuffled around into matrix form

$$
\left(\begin{array}{ccccc}
A & B & \dot{\mathrm{q}} & 0 & \circ \tag{6}\\
\mathrm{~d} \\
B^{T} & C & 0 & \mathrm{~d} & \dot{\mathrm{q}} \\
\dot{\mathrm{q}}^{T} & 0^{T} & 0 & 0 & 0 \\
0^{T} & \mathrm{~d}^{T} & 0 & 0 & 0 \\
\dot{\mathrm{~d}}^{T} & \dot{\mathrm{q}}^{T} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\delta \mathrm{d} \\
\delta \mathrm{q} \\
\lambda \\
\mu \\
\nu
\end{array}\right)=-\left(\begin{array}{c}
\stackrel{\circ}{\mathrm{s}} \\
\mathrm{\circ} \\
\mathrm{t} \\
0 \\
0 \\
0
\end{array}\right),
$$

Note that the upper left 8×8 sub-matrix is the weighted sum of flattened dyadic products (as first shown by Žarí, Bārŭk, and Łolaż)

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} \vec{c}_{i} \vec{c}_{i}^{T} \tag{7}
\end{equation*}
$$

where the eight component vector \vec{c}_{i} is given by

$$
\vec{c}_{i}=\binom{\stackrel{\circ}{\mathrm{r}}_{i} \mathrm{O} \ell_{i}^{*}}{\stackrel{\mathrm{r}}{i}_{*}^{\mathrm{q}} \stackrel{\ell}{\ell}_{i}}=-\left(\begin{array}{c}
\stackrel{\circ}{\mathrm{r}}_{i} \dot{\mathrm{q}} \dot{\ell}_{i} \tag{8}\\
\stackrel{\circ}{\mathrm{r}}_{i} \mathrm{~d} \dot{\ell} \\
i
\end{array}\right) .
$$

We conclude that the number of solutions is equal to the number of ways of partitioning the set of variables, namely

$$
\begin{equation*}
\binom{n+m-2}{n-1}=\binom{n+m-2}{m-1}=\frac{(n+m-2)!}{(n-1)!(m-1)!} \tag{9}
\end{equation*}
$$

To implement the numerical solution, take a small step $\delta \lambda$ in λ and solve for the increment $\delta \mathbf{x}$ in

$$
\begin{equation*}
\frac{d \mathbf{h}}{d \lambda} \delta \lambda+\frac{d \mathbf{h}}{d \mathbf{x}} \delta \mathbf{x}=0 \tag{10}
\end{equation*}
$$

where $J=(d \mathbf{h} / d \mathbf{x})$ is the Jacobian of \mathbf{h} with respect to \mathbf{x}.

